ON A SYSTEM OF SIMULTANEOUS ITERATIVE FUNCTIONAL EQUATIONS

Janusz Matkowski

Abstract. A system of two simultaneous functional equations in a single variable, related to a generalized Golab-Schinzel functional equation, is considered.

Introduction. The Golab-Schinzel type functional equation

$$f(x + yf(x)^p) = f(x)f(y),$$

where p is a fixed integer number, was studied in [3] (cf. also [4] where more general equation was considered). Suppose that a function $f: \mathbb{R} \to \mathbb{R}$ is a solution of this equation. Setting here $x = \alpha$ and next $x = \beta$ gives the system of two simultaneous Schröder functional equations

$$f(a^px + \alpha) = af(x), \qquad f(b^px + \beta) = bf(x),$$

which may be interpreted as a Golab-Schinzel type equation on a restricted domain. In the present note we examine a little more general system

(*)
$$f(Ax + \alpha) = af(x), \qquad f(Bx + \beta) = bf(x).$$

We show that, in the case when $A\beta + \alpha \neq B\alpha + \beta$, under some modest regularity assumptions, there are only constant solutions. Therefore, the main results are concerned with the case $A\beta + \alpha = B\alpha + \beta$. It turns out that, in this case, if $\log A$ and $\log B$ are not commensurable, and system (*) has a nontrivial continuous solution, then there exists a real $p \neq 0$, such that

$$A=a^p, \qquad B=b^p.$$

AMS (1991) Subject Classification: Primary 39B62.

The main results give the general form of solutions which are continuous at a point or Lebesgue measurable.

The Lebesgue measurable solutions of (*) with A = B = 1 was considered by W.E. Clark and A. Mukherjea [2]. The continuous (at least at one point) solutions of the system of functional equations

$$f(x+a) = f(x) + \alpha, \qquad f(x+b) = f(x) + \beta,$$

was considered by the present author in [9] (cf. also M. Kuczma, B. Choczewski and R. Ger [7], §§ 9.5, 9.6.6 and 6.1).

1. Some auxiliary results. Denote by N, Z, Q, respectively, the set of positive integers, integers, and rational numbers.

LEMMA 1. Let α , β , a, b, A, B; $A \neq 0 \neq B$, be fixed real numbers. Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies the system of functional equations

(1)
$$f(Ax + \alpha) = af(x), \quad f(Bx + \beta) = bf(x), \quad x \in \mathbb{R}.$$

10. If $A\beta + \alpha \neq B\alpha + \beta$ then f is periodic, and for every $n, m \in \mathbb{N}$,

(2)
$$p_{n,m} := \beta(1+B+\ldots+B^{m-1})(A^n-1)+\alpha(1+A+\ldots+A^{n-1})(1-B^m)$$

is a period of f.

 2° . If $A\beta + \alpha = B\alpha + \beta$ and $A \neq 1$ then

$$f\left(A^nB^m(x-\frac{\alpha}{1-A})+\frac{\alpha}{1-A}\right)=a^nb^mf(x), \qquad x\in\mathbb{R}, \ n,m\in\mathbf{Z}.$$

PROOF. From (1), by induction,

$$f(A^nx + \alpha(1+A+\ldots+A^{n-1})) = a^nf(x),$$

$$f(B^m x + \beta(1 + B + ... + B^{m-1})) = b^m f(x),$$

for all $x \in \mathbb{R}$ and $n, m \in \mathbb{N}$. Hence, replacing x by $B^m x + \beta(1 + B + \ldots + B^{m-1})$ in the first of these equations, we get

$$f(A^{n}B^{m}x + \beta A^{n}(1 + B + \ldots + B^{m-1}) + \alpha(1 + A + \ldots + A^{n-1})) = a^{n}b^{m}f(x),$$

for all $x \in \mathbb{R}$ and $n, m \in \mathbb{N}$. In the same way, replacing x by $A^n x + \alpha(1 + A + \ldots + A^{n-1})$ in the second equation gives

$$f(A^{n}B^{m}x + \alpha B^{m}(1 + A + \ldots + A^{n-1}) + \beta(1 + B + \ldots + B^{m-1})) = a^{n}b^{m}f(x),$$

for all $x \in \mathbb{R}$ and $n, m \in \mathbb{N}$. Comparing the left-hand sides of the above two formulas with x replaced by $A^{-n}B^{-m}x$, we immediately get

$$f(x+p_{n,m})=f(x), \qquad x\in\mathbb{R}, \ n,m\in\mathbb{N}.$$

Since $p_{1,1} = \beta(A-1) + \alpha(1-B) = (A\beta + \alpha) - (B\alpha + \beta) \neq 0$, the function f is periodic. This proves 1^0 .

To prove 20 note that

$$\beta = \alpha \frac{B-1}{A-1}.$$

Hence, applying the first formula of the previous part of the proof, we get

$$a^{n}b^{m}f(x)$$

$$= f\left(A^{n}B^{m}x + \beta A^{n}(1+B+\ldots+B^{m-1}) + \alpha(1+A+\ldots+A^{n-1})\right)$$

$$= f\left(A^{n}B^{m}x + \alpha \frac{B-1}{A-1}A^{n}(1+B+\ldots+B^{m-1}) + \alpha(1+A+\ldots+A^{n-1})\right)$$

$$= f\left(A^{n}B^{m}x + \frac{\alpha}{A-1}(A^{n}B^{m}-1)\right)$$

for all $x \in \mathbb{R}$ and $n, m \in \mathbb{N}$. It is easy to check that this formula is also true for all $n, m \geq 0$, $n, m \in \mathbb{Z}$. Taking n = 0 we obtain

$$f\left(B^mx+\frac{\alpha}{A-1}(B^m-1)\right)=b^mf(x), \qquad x\in\mathbb{R},\ m\in\mathbb{Z},\ m\geq0.$$

Replacing here x by $B^{-m}[x - \frac{\alpha}{A-1}(B^m - 1)]$ gives

$$f\left(B^{-m}x + \frac{\alpha}{A-1}(B^{-m}-1)\right) = b^{-m}f(x), \quad x \in \mathbb{R}, \ m \in \mathbb{N}.$$

Thus we have shown that

$$f\left(B^mx+\frac{\alpha}{A-1}(B^m-1)\right)=b^mf(x), \qquad x\in\mathbb{R}, \ m\in\mathbf{Z}.$$

In the same way we prove that

$$f\left(A^nx+\frac{\alpha}{A-1}(A^n-1)\right)=a^nf(x), \qquad x\in\mathbb{R},\ n\in\mathbb{Z}.$$

Take now arbitrary $n, m \in \mathbf{Z}$. Applying the last two formulas we have

$$a^{n}b^{m}f(x) = a^{n} (b^{m}f(x)) = a^{n}f \left(B^{m}x + \frac{\alpha}{A-1}(B^{m}-1)\right)$$

$$= f\left(A^{n}[B^{m}x + \frac{\alpha}{A-1}(B^{m}-1)] + \frac{\alpha}{A-1}(A^{n}-1)\right)$$

$$= f\left(A^{n}B^{m}x + \frac{\alpha}{A-1}(A^{n}B^{m}-1)\right) = f\left(A^{n}B^{m}\left(x - \frac{\alpha}{1-A}\right) + \frac{\alpha}{1-A}\right)$$

for all $x \in \mathbb{R}$, which completes the proof.

A function $f: \mathbb{R} \to \mathbb{R}$ is called microperiodic if it has arbitrarily small positive periods. In the sequel we need also the following result due to A. Lomnicki [8] (for short proofs cf. R. Ger, Z. Kominek and M. Sablik [5], and M. Kuczma [6]).

LEMMA 2. Every Lebesgue measurable microperiodic function $f : \mathbb{R} \to \mathbb{R}$ is constant almost everywhere.

2. Main results. We begin this section with the following

PROPOSITION 1. Let α , β , a, b, A, B; $A \neq 0 \neq B$, be fixed real numbers such that

$$A\beta + \alpha \neq B\alpha + \beta$$

and

(3) inf
$$\{up_{k,l} + vp_{n,m} : up_{k,l} + vp_{n,m} > 0; k,l,m,n \in \mathbb{N}; u,v \in \mathbb{Z}\} = 0$$
,

where the numbers $p_{n,m}$ are defined by (2). Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies the system of functional equations

$$f(Ax + \alpha) = af(x),$$
 $f(Bx + \beta) = bf(x),$ $x \in \mathbb{R}.$

10. If f is continuous at least at one point then f is constant. Moreover, if $a \neq 1$ or $b \neq 1$ then $f \equiv 0$.

20. If f is Lebesgue measurable then f is constant almost everywhere in \mathbb{R} . Moreover, if $a \neq 1$ or $b \neq 1$ then f = 0 almost everywhere.

PROOF. Put

$$\mathbf{D} := \{ up_{k,l} + vp_{n,m} : k, l, m, n \in \mathbb{N}; u, v \in \mathbf{Z} \}.$$

According to Lemma 1.10 we have

$$f(x+p_{n,m})=f(x), \qquad x\in\mathbb{R}.$$

It follows that f(x+p)=f(x) for all $p \in \mathbb{D}$ and $x \in \mathbb{R}$. By (3) the set \mathbb{D} is dense in \mathbb{R} , and consequently f is microperiodic. The continuity of f at least at one point implies that f is continuous everywhere and, of course, f must be constant. The part 2^0 is a consequence of Lemma 2.

REMARK 1. Note that the condition (3) is satisfied if for some $k, l, m, n \in$ N the numbers $p_{k,l}$ and $p_{n,m}$ are not commensurable.

The above proposition shows that the case $A\beta + \alpha \neq B\alpha + \beta$ is not very interesting. Therefore in the sequel we assume that

$$A\beta + \alpha = B\alpha + \beta.$$

REMARK 2. Suppose that $A \neq 1 \neq B$. Then the numbers $\alpha/(1-A)$ and $\beta/(1-B)$ are, respectively, the unique fixed points of the functions $g_1, g_2 : \mathbb{R} \to \mathbb{R}$, $g_1(x) := Ax + \alpha$ and $g_2(x) = Bx + \beta$. Since the condition $A\beta + \alpha = B\alpha + \beta$ can be written in the form

$$\frac{\alpha}{1-A}=\frac{\beta}{1-B},$$

it means that $\xi := \alpha/(1-A)$ is a common fixed point of these functions. If moreover A and B are positive then

$$g_i((\xi,\infty))=(\xi,\infty)$$
 and $g_i((-\infty,\xi))=(-\infty,\xi), i=1,2.$

It follows that for every function $f:(\xi,\infty)\to\mathbb{R}$ satisfying (*) for all $x\in(\xi,\infty)$, the counterpart of Lemma 1.20 remains true.

REMARK 3. To obtain another interpretation of the condition $A\beta + \alpha = B\alpha + \beta$ suppose that there exists a bijective solution of (*). Then the inverse function f^{-1} satisfies the functional equations

$$Af^{-1}(x) + \alpha = f^{-1}(ax), \qquad Bf^{-1}(x) + \beta = f^{-1}(bx), \qquad x \in \mathbb{R}$$

Setting here x = 0 we get $Af^{-1}(0) + \alpha = f^{-1}(0)$ and $Bf^{-1}(0) + \beta = f^{-1}(0)$ which implies that $\alpha/(1-A) = f^{-1}(0) = \beta/(1-B)$ must be a common fixed point of the linear functions mentioned in Remark 2.

Note also that if system (*) has a nontrivial solution satisfying a modest regularity condition, then the numbers A, B, a, and b are dependent. In fact, we have the following

THEOREM 1. Let α , $\beta \in \mathbb{R}$ and a, b, A, $B \in (0, \infty)$, $A \neq 1 \neq B$, be such that

$$\frac{\log A}{\log B} \notin \mathbb{Q}, \qquad \frac{\alpha}{1-A} = \frac{\beta}{1-B}.$$

Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies the system of equations

$$f(Ax + \alpha) = af(x),$$
 $f(Bx + \beta) = bf(x),$ $x \in \mathbb{R}.$

If $\log |f|$ is bounded on a neighbourhood of a point then there exists $p \in \mathbb{R}$, $p \neq 0$, such that

$$A=a^p, \quad \cdot B=b^p.$$

PROOF. By assumption there exist $x_0 \in \mathbb{R}$, $\delta > 0$, and M > 0 such that

$$-M \leq \log |f(x)| \leq M, \quad x \in (x_0 - \delta, x_0 + \delta).$$

Since $\log A$ and $\log B$ are not commensurable, in view of Kronecker theorem, the set

$${n \cdot \log A + m \cdot \log B : n, m \in \mathbf{Z}}$$

is dense in \mathbb{R} . It follows that there exist sequences $n_k, m_k \in \mathbb{Z} \setminus \{0\}, k \in \mathbb{N}$, such that

$$\lim_{k\to\infty}(n_k\log A+m_k\log B)=0.$$

Consequently,

$$\lim_{k\to\infty}\frac{m_k}{n_k}=-\frac{\log A}{\log B},$$

and

$$\lim_{k\to\infty}A^{n_k}B^{m_k}=1.$$

From Lemma 1.20 we have

$$\left|f\left(A^{n_k}B^{m_k}\left(x_0-\frac{\alpha}{1-A}\right)+\frac{\alpha}{1-A}\right)\right|=a^{n_k}b^{m_k}\mid f(x_0)\mid, \qquad k\in\mathbb{N}.$$

Since

$$\lim_{k\to\infty}\left(A^{n_k}B^{m_k}\left(x_0-\frac{\alpha}{1-A}\right)+\frac{\alpha}{1-A}\right)=x_0,$$

we infer that there is a $k_0 \in \mathbb{N}$ such that

$$-M \leq \log (a^{n_k}b^{m_k} | f(x_0) |) \leq M, \qquad k \geq k_0,$$

what can be written in the form

$$-M - \log |f(x_0)| \le n_k \log a + m_k \log b \le M - \log |f(x_0)|, \qquad k \ge k_0.$$

Note that

$$\lim_{k\to\infty} |n_k| = \lim_{k\to\infty} |m_k| = +\infty$$

(in the opposite case $\log A$ and $\log B$ would be commensurable). Dividing the last inequalities by n_k , and then letting $k \to \infty$ implies

$$\lim_{k\to\infty}\frac{m_k}{n_k}=-\frac{\log a}{\log b}.$$

It follows that

$$\frac{\log A}{\log B} = \frac{\log a}{\log b},$$

which may be written in the following equivalent form

$$\frac{\log A}{\log a} = \frac{\log B}{\log b}.$$

Hence, putting

$$p:=\frac{\log A}{\log a},$$

we get $A = a^p$ and $B = b^p$ what was to be shown.

Justified by Theorem 1 we examine system (*) assuming that there is a $p \in \mathbb{R}$, $p \neq 0$, such that $A = a^p$, $B = b^p$.

THEOREM 2. Let α , β , $p \in \mathbb{R}$, $p \neq 0$, and $a, b \in (0, \infty)$, $a \neq 1 \neq b$, be such that

$$\frac{\log a}{\log b} \notin \mathbb{Q}, \qquad \frac{\alpha}{1-a^p} = \frac{\beta}{1-b^p},$$

and put

$$\xi \coloneqq \frac{\alpha}{1-\alpha^p}.$$

 1° . If $f:(\xi,\infty)\to\mathbb{R}$ satisfies the system of functional equations

$$f(a^px + \alpha) = af(x),$$
 $f(b^px + \beta) = bf(x),$ $x > \xi,$

and it is continuous at least at one point, then there is a constant $c \in \mathbb{R}$ such that

$$f(x) = c(x-\xi)^{1/p}, \qquad x > \xi.$$

 2° . If $f:(-\infty,\xi)\to\mathbb{R}$ satisfies the system of functional equations

$$f(a^px + \alpha) = af(x),$$
 $f(b^px + \beta) = bf(x),$ $x < \xi,$

and it is continuous at least at one point, then there is a constant $c \in \mathbb{R}$ such that

$$f(x) = c(\xi - x)^{1/p}, \qquad x < \xi.$$

 3° . If $f: \mathbb{R} \to \mathbb{R}$ satisfies the system of functional equations

$$f(a^px + \alpha) = af(x), \qquad f(b^px + \beta) = bf(x), \qquad x \in \mathbb{R}$$

and in each of the intervals (ξ, ∞) and $(-\infty, \xi)$ there is at least one point of continuity of f, then there are $c_1, c_2 \in \mathbb{R}$ such that

$$f(x) = \left\{ egin{array}{ll} c_1(x-\xi)^{1/p}, & x > \xi \ 0, & x = \xi \ c_2(\xi-x)^{1/p}, & x < \xi \end{array}
ight.$$

PROOF. 1°. Since $\frac{\log a}{\log b} \notin \mathbb{Q}$, by the Kronecker theorem, the set

$$\mathbf{D} = \{a^n b^m : n, m \in \mathbf{Z}\}$$

is dense in $(0,\infty)$. Applying Lemma 1.2° with $A=a^p$ and $B=b^p$ (cf. also Remark 2) we obtain

(4)
$$f((x-\xi)t^p+\xi)=tf(x), \qquad x>\xi, \ t\in \mathbb{D}.$$

Let $x_0 > \xi$ be a point of the continuity of f, and $x > \xi$ arbitrary. Since $(x_0 - \xi)/(x - \xi) > 0$, there exists a sequence $t_k \in \mathbb{D}$, $k \in \mathbb{N}$, such that

$$\lim_{k\to\infty}t_k=\left(\frac{x_0-\xi}{x-\xi}\right)^{1/p}.$$

Note that

$$\lim_{k\to\infty}\left((x-\xi)t_k^p+\xi\right)=x_0.$$

Taking $t = t_k$ in (4) gives

$$f((x-\xi)t_k^p+\xi)=t_kf(x), \qquad k\in\mathbb{N}.$$

Letting $k \to \infty$, and making use of the continuity of f at the point x_0 , in this relation yields

$$f(x_0) = \left(\frac{x_0 - \xi}{x - \xi}\right)^{1/p} f(x).$$

Hence, putting

$$c := f(x_0)(x_0 - \xi)^{-1/p}$$
,

we obtain

$$f(x) = c(x-\xi)^{1/p},$$

which completes the proof of 1^0 .

To prove 2^0 suppose that f is continuous at a point $x_0 < \xi$, and take an arbitrary $x < \xi$. Then $(x_0 - \xi)/(x - \xi)$ is positive, and we can repeat the same argument as in the part 1° .

Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies the considered system of functional equations. Setting $x = \xi$ in the first of these equations gives $f(\xi) = af(\xi)$. Since $a \neq 1$, we get $f(\xi) = 0$. Now 3^0 is a consequence of 1^o and 2^o . This completes the proof.

EXAMPLE. Consider the system of functional equations

$$f(4x+3) = 2f(x),$$
 $f(9x+8) = 3f(x),$ $x \in \mathbb{R},$

where $f: \mathbb{R} \to \mathbb{R}$. Thus we have a=2, $\alpha=3$, b=3, $\beta=8$, and p=2. Because $\log 2/\log 3$ is irrational, and $\alpha/(1-a^p)=\beta/(1-b^p)=-1$, the numbers α , β , a, b, and p satisfy the assumptions of Theorem 2. If f is continuous at two points x_1 and x_2 such that $x_1 < -1 < x_2$ then, by Theorem 2, there exist $c_1, c_2 \in \mathbb{R}$ such that

$$f(x) = \begin{cases} c_1 \sqrt{x+1}, & x > -1 \\ 0, & x = -1. \\ c_2 \sqrt{-1-x}, & x < -1 \end{cases}$$

THEOREM 3. Let α , β , $p \in \mathbb{R}$, $p \neq 0$, and $a, b \in (0, \infty)$, $a \neq 1 \neq b$, be such that

$$\frac{\log a}{\log b} \notin \mathbb{Q}, \qquad \frac{\alpha}{1-a^p} = \frac{\beta}{1-b^p},$$

and put

$$\xi := \frac{\alpha}{1 - a^p}.$$

1°. If $f:(\xi,\infty)\to \mathbb{R}$ satisfies the system of functional equations

$$f(a^p x + \alpha) = af(x), \qquad f(b^p x + \beta) = bf(x), \qquad x > \xi,$$

and for a nonempty open interval $I \subset (\xi, \infty)$ the restriction $f|_I$ is Lebesgue measurable, then there is a constant $c \in \mathbb{R}$ such that

$$f(x) = c(x - \xi)^{1/p}$$
 a. e. in (ξ, ∞) .

 2° . If $f:(-\infty,\xi)\to\mathbb{R}$ satisfies the system of functional equations

$$f(a^px + \alpha) = af(x),$$
 $f(b^px + \beta) = bf(x),$ $x < \xi,$

and for a nonempty open interval $I \subset (-\infty, \xi)$ the restriction $f|_I$ is Lebesgue measurable, then there is a constant $c \in \mathbb{R}$ such that

$$f(x) = c(\xi - x)^{1/p} \qquad \text{a. e. in } (-\infty, \xi).$$

 3° . If $f: \mathbb{R} \to \mathbb{R}$ satisfies the system of functional equations

$$f(a^p x + \alpha) = a f(x),$$
 $f(b^p x + \beta) = b f(x),$ $x \in \mathbb{R},$

and each of the intervals (ξ, ∞) and $(-\infty, \xi)$ contains a nonempty open interval I such that $f|_I$ is Lebesgue measurable, then there are $c_1, c_2 \in \mathbb{R}$ such that

$$f(x) = \left\{ egin{array}{ll} c_1(x-\xi)^{1/p}, & x > \xi \ 0, & x = \xi \ c_2(\xi-x)^{1/p}, & x < \xi \end{array}
ight.$$
 a.e. in $\mathbb R$

PROOF. 1°. Let $f:(\xi,\infty)\to\mathbb{R}$ be a solution of the considered system of functional equations which is Lebesgue measurable on a nonempty open interval $I\in(\xi,\infty)$. Define $f_0:(\xi,\infty)\to\mathbb{R}$ by

$$f_0(x) = (x - \xi)^{1/p}, \qquad x > \xi.$$

It is easy to verify that the function $\phi:(\xi,\infty)\to\mathbb{R}$,

$$\phi(x) := \frac{f(x)}{f_0(x)}, \qquad x > \xi,$$

satisfies the simultaneous system of functional equations

(5)
$$\phi(a^px+\alpha)=\phi(x), \qquad \phi(b^px+\beta)=\phi(x), \qquad x>\xi.$$

Note that the family of functions $(h^t: t \in \mathbb{R}), h^t: (\xi, \infty) \to \mathbb{R}$, defined by

(6)
$$h^t(x) = a^{pt}(x-\xi) + \xi, \quad x > \xi, \ t \in \mathbb{R},$$

is a continuous iteration group. Thus there exists a homeomorphism $\gamma: \mathbb{R} \to (\xi, \infty)$ (cf. J. Aczél [1], Chapter 6) such that

(7)
$$h^{t}(x) = \gamma \left(\gamma^{-1}(x) + t \right), \quad x > \xi, \ t \in \mathbb{R}.$$

Hence

$$h^{1}(x) = a^{p}x + \alpha = \gamma \left(\gamma^{-1}(x) + 1\right), \qquad x > \xi.$$

Put

$$r := \frac{\log b}{\log a}.$$

Taking t = r in (6), and making use of the assumption $a^p \beta + \alpha = b^p \alpha + \beta$, gives

$$h^r(x) = b^p x + \beta = \gamma \left(\gamma^{-1}(x) + r \right), \qquad x > \xi.$$

Therefore we can write (5) in the form

$$\phi\left[\gamma\left(\gamma^{-1}(x)+1\right)\right]=\phi(x)\,,\qquad \phi\left[\gamma\left(\gamma^{-1}(x)+r\right)\right]=\phi(x)\,,\qquad x>\xi\,.$$

It follows that the function $\phi \circ \gamma : \mathbb{R} \to \mathbb{R}$ satisfies the system of equations

$$\phi \circ \gamma(s+1) = \phi \circ \gamma(s), \qquad \phi \circ \gamma(s+r) = \phi \circ \gamma(s), \qquad s \in \mathbb{R}$$

which means that $\phi \circ \gamma$ is periodic of periods 1 and r. Hence, by an obvious induction,

$$\phi \circ \gamma(s+n+mr) = \phi \circ \gamma(s), \quad s \in \mathbb{R}, \ n, m \in \mathbb{Z}.$$

Since r is irrational, $\{n+mr: n, m \in \mathbb{Z}\}$ is a dense set in \mathbb{R} , and consequently $\phi \circ \gamma$ is microperiodic.

From (6) and (7) we get

$$\gamma\left(\gamma^{-1}(x)+t\right)=a^{pt}(x-\xi)+\xi\,,\qquad x>\xi,\ t\in\mathbb{R}.$$

Setting $x = \gamma(0)$ gives

$$\gamma(t) = a^{pt} (\gamma(0) - \xi) + \xi, \qquad t \in \mathbb{R},$$

so γ is a diffeomorphism. By assumption $\phi = f/f_0$ is measurable on a nonempty open interval $I \subset (\xi, \infty)$. It follows that the function $\phi \circ \gamma$ is measurable on the open interval $\gamma^{-1}(I)$. The microperiodicity of $\phi \circ \gamma$ implies that it is Lebesgue measurable on \mathbb{R} . By Lemma 2 there is a $c \in \mathbb{R}$ such that $\phi \circ \gamma = c$ almost everywhere in \mathbb{R} . Hence $\phi = c$ a.e. in \mathbb{R} , and from the definition of ϕ we obtain $f = cf_0$ a.e. in \mathbb{R} . This completes the proof of 1^o . The proof of 2^o is analogous. Part 3^o is an obvious consequence of 1^o and 2^o . \square

REMARK 4. In Theorem 1 (and consequently in Theorems 2 and 3) we have assumed that $A, B \in (0, \infty)$ and $A \neq 1 \neq B$. It is easy to verify that if $A \neq 1$, B = 1, or A = 1, $B \neq 1$, the condition (3) is fulfilled and we can apply the Proposition. The case A = 1 = B, as we have already mentioned, was considered in [2].

Note also that if $f: \mathbb{R} \to \mathbb{R}$ is a solution of system (*), then

$$f(A^2x + \alpha(A+1)) = a^2f(x), f(B^2x + \beta(B+1)) = b^2f(x), x \in \mathbb{R}.$$

Thus, without any loss of generality we could assume that the numbers A, B, a, and b are positive.

Acknowledgment. The author would like to thank Professor K. Baron for his valuable comments.

REFERENCES

- J. Aczél, Lectures on Functional Equations and their Applications, New York, London, 1966.
- [2] W. E. Clark, A. Mukherjea, Comments on a Functional Equation, Real Analysis Exchange 6 (1980-81), 192-199.
- [3] N. Brillouët-Bellout, On some functional equations of Golgb-Schinzel type, Aequationes Math. 42 (1991), 239-270.
- [4] J. Brzdek, Subgroups of the group Z_n and a generalization of the Golgb-Schinzel functional equation, Aequationes Math. 43 (1992), 59-71.
- [5] R. Ger, Z. Kominek, M. Sablik, Generalized Smital's lemma and a theorem of Steinhaus, Radovi Mat. 1 (1985), 101-119.
- [6] M. Kuczma, Note on Microperiodic Functions, Radovi Matematički 5 (1989), 127-140.
- [7] M. Kuczma, B. Choczewski, R.Ger, Iterative Functional Equations, Cambridge University Press 1990.
- [8] A. Lomnicki, O wielookresowych funkcjach jednoznacznych zmiennej rzeczywistej, Sprawozdania Tow. Nauk. Warsz. 6 (1918), 808-846.

[9] J. Matkowski, Cauchy functional equation on a restricted domain and commuting functions, Lecture Notes in Mathematics 1163 (1985), 101-106.

DEPARTMENT OF MATHEMATICS TECHNICAL UNIVERSITY WILLOWA 2 43-309 BIELSKO-BIALA POLAND