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ON A SYSTEM OF SIMULTANEOUS
ITERATIVE FUNCTIONAL EQUATIONS

JANUSZ MATKOWSKI

. Abstract. A system of two simultaneous functional equations in a single
variable, related to a generalized Golagb—Schinzel functional equation, is con-
sidered. '

Introduction. The Golagb-Schinzel type functional equation

f(e +¥f@)F) = f@) 1),

where p is a fixed integer number, was studied in [3] (cf. also [4] where more
general equation was considered). Suppose that a function f : R — R is
a solution of this equation. Setting here £ = a and next z = B gives the
system of two simultaneous Schroder functional equations

f(@Pz +a)=af(z),  f(bPz + B)=bf(z),

which may be interpreted as a Golab—Schinzel type equation on a restricted
domain. In the present note we examine a little more general system

(%) f(Az +a) = af(z),  f(Bz+p)=>bf(2)

We show that, in the case when AS + a # Ba + 3, under some modest
regularity assumptions, there are only constant solutions. Therefore, the
main results are concerned with the case A8 + a = Ba + (. It turns out
that, in this case, if log A and log B are not commensurable, and system (*)
has a nontrivial continuous solution, then there exists a real p # 0, such that

A=a?, B=0.
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The main results give the general form of solutions which are continuous at
a point or Lebesgue measurable.

The Lebesgue measurable solutions of (¥) with A = B = 1 was considered
by W.E. Clark and A. Mukherjea [2]. The continuous (at least at one point)
solutions of the system of functional equations

fata)=f@) +a  fo+b)=f)+h

was consi_deréd by the present author in [9] (cf. also M. Kuczma, B. Cho-
czewski and R. Ger [7], §§ 9.5, 9.6.6 and 6.1).

1. Some auxiliary results. Denote by N, Z, Q, respectively, the set of
positive integers, integers, and rational numbers.

LEMMA 1. Let o, B8, a, b, A, B; A # 0 # B, be fixed real numbers.
Suppose that f : R — R satisfies the system of functional equations

()  f(Az+e)=af(s), f(Bz+p)=bf(z), z€R.
19, If AB + a # Ba + f3 then f is periodic, and for every n,m € N,
(2) pom :=B(1+B+...+B™" ) (A" 1) +a(1+A+...+ A" 1) (1-B™)

is a period of f. .
20, IfAB+a=Ba+ 0 and A# 1 then

@ a nim ‘
—A)+1—A)_ab f(=), z€R, n,melZ.

f (A"B"‘ (-5

Proor. From (1), by induction,
f(A%z+a(l+A+...+ A" ) =a"f(2),

f(B™z+p(1+B+...4+ B™)) =b"f(z),

for all z € R and n, m € N. Hence, replacing z by B'":c+ﬂ(1+B+ +4B™-1)
in the first of these equations, we get

f(A"B™z 4+ A1+ B+...4+ B" V)t a(l4+ A+...+ An-i)) =
.a"b’"f(:c),' '
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for all z € R and n,m € N. In the same way, replacing =z by A"z + o(1 +
A+ ...+ A™1) in the second equation gives

f(A"Bmz+aB™(1+A+...+ A" )+ (1 +B+...+ B™!)) =
aﬂb"lf(m),

for all z € R and n, m € N. Comparing the left-hand sides of the above two
formulas with z replaced by A= B~™z, we immediately get

f@+pam)=f(z), =z€R, n,meN.
Since p1,) = (A - 1)+ a(1 — B) = (AB + a) — (Ba + f) # 0, the function

f is periodic. This proves 1°.
To prove 2° note that

B-1
p=aT
Hence, applying the first formula of the previous part of the proof, we get

a™b™ f(z)
=f(A"B™z 4+ fA*(1+B+...+ B" ) +a(l+ A+...+ A*))
=f (A"B"‘a: +a=—

A_iA"(l+B+...+B""l)+a(1+A+...+A"'1))

(44

=f (A"B"‘:c+ T (A" - 1))

for all z € R and n,m € N. It is easy to check that this formula is also true
for all n,m > 0, n, m € Z. Taking n = 0 we obtain

f(Bre+ z21 (B~ 1) =4"(0),  zeR, mez, m20.

Replacing here z by B~™[z — 25 (B™ — 1)] gives

«

A-1

f(B'”‘z+ (B-"'—l))=b-mf(z), z€R, meN.

Thus we have shown that

?.1(3',""1)) =b"f(z), =z€R, meZ.

b (B"‘a:+ a
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In the same way we prove that
f (A"x+ A_‘iT(An - 1)) = a" f(z), z€R, nel.
Take now arbitrary n,m € Z. Applying the lést two formulas we have

b fle) = a" 67 (@) = a"f (B + 5287 - 1)

— nrpm @ m __ __._.a no_

__f(A (B z+A_l(B 1)]+A—1(A 1))

_ npm o npm _ _ npm _ a3 o
_f(ABa:+A_1(AB 1))_f(AB (a: 1_A)+1_A)
for all z € R, which completes the proof. a -

A function f : R = R is called microperiodic if it has arbitrarily small
positive periods. In the sequel we need also the following result due to A.
Lomnicki [8] (for short proofs cf. R. Ger, Z. Kominek and M. Sablik [5], and
M. Kuczma [6]).

LEMMA 2. Every Lebesgue measurable microperiodic function f :R - R
is constant almost everywhere.

2. Main results. We begin this section with the following

ProposITION 1. Let a, 8, a, b, A, B; A # 0 # B, be fixed real numbers
such that .

AB+a# Ba+ B,
and
(3) inf {upk,i + vPnm : Pkt + VPam >0; klmneN; u,ve Z}=0,

where the numbers py, ,, are defined by (2). Suppose that f : R — R satisfies
the system of functional equations

f(Az+a)=af(z), f(Bz+f)=bf(z), wER.

19, If f is continuous at least at one point then f is constant. Moreover,
ifa#1lorb#1 then f=0.
20, If f is Lebesgue measurable then f is constant almost everywhere
_in R . Moreover, ifa # 1 orb# 1 then f =0 almost everywhere.
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PRrooOF. Put
D := {upr i+ Vpom: kI,mneN; u,veZ}.
According to Lemma 1.1° we have

f(m+pn,m)=f($), z €R.

It follows that f(z 4+ p) = f(z) for all p € D and = € R. By (3) the set D
is dense in R, and consequently f is microperiodic. The continuity of f at
least at one point implies that f is continuous everywhere and, of course, f .
must be constant. The part 20 is a consequence of Lemma 2. a

REMARK 1. Note that the condition (3) is satisfied if for some k,l,m,n €
N the numbers pi,; and p,,m are not commensurable.

The above proposition shows that the case Af + a # Ba+ $ is not very
interesting. Therefore in the sequel we assume that )

REMARK 2. Suppose that A # 1 # B. Then the numbers a/(1 — A)
and B/(1 — B) are, respectively, the unique fixed points of the functions
g1,92 : R = R, g1(z) := Az + o and g3(z) = Bz + B. Since the condition
AB + a = Ba + 8 can be written in the form

a B

1-A. 1-PB’

it means that £ := a/(1 — A) is a common fixed point of these functions. If
moreover A and B are positive then

gi ((5; OO)) = (E,OO) and gi ((—OO,E)) = (—00,{), i= 1,2.

It follows that for every function f : (§,00) — R satisfying (*) for all
z € (€, 00), the counterpart of Lemma 1.2° remains true.

REMARK 3. To obtain another interpretatidn of the condition Af + a =
Bo+ (3 suppose that there exists a bijective solution of (*). Then the inverse
function f~! satisfies the functional equations

Af"Me)+a=f"(az), - Bf'(x)+B=f""(ba), =z€R.
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Setting here z = 0 we get Af~1(0)+a = f~1(0) and Bf~'(0)+ 8 = f~1(0)
which implies that /(1 ~ A) = f~1(0) = 8/(1 — B) must be a common fixed
point of the linear functions mentioned in Remark 2.

Note also that if system (*) has a nontrivial solution sat.isfying a modest
regularity condition, then the numbers A, B, a, and b are dependent. In
fact, we have the following

THEOREM 1. Let a, B € R and a, b, A, B € (0,00), A# 1 ;éB, be such
that : log A 5 .

og / @
IogB¢Q’ 1-A  1-B’
Suppose that f : R — R satisfies the system of equations

f(Az + a) = af(z), f(Bz + B) = bf(z), z € R.

If logo|f| is bounded on a neighbourhood of a point then there exists
pER, p#0,such that - ’

A=a?, B=10P.

PROOF. By assumption there exist zo € R, § > 0, and M > 0 such that
-M <Llog | f(z) < M, z € (z0 — 6, zo +6).

Since log A and log B are not commensurable, in view of Kronecker theorem,
the set
{n-logA+m-logB: n,meZ}

is dense in R. It follows that there exist sequences ny, m; € Z\\{O}), k €N,
such that '

klim (nilog A+ mylog B) = 0.

—00

.Consequéntly,
im ™ = logA~
k—oo Np - logB’
and

lim A™B™ =1,

lc—}oo
From Lemma 1.2° we have -

|# (4B o - 20) + 7o) = 5™ 1 s 1 ke
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Since

ni ' m __«@ « \ L
‘ klggo(A B (20 I—A)+ I—A)—xo’
we fiifer that there is a ko € N such that

—M S hg(amkbmk l f(zo) |) S M7 k 2 i&?o,
what can be written in the form

~log | f(20) |< niloga+ inglogh < M —log | f(zo) |, . k> ko.
Note that ‘ v _
Jin Loy b= fii | my = +oo

(in the opposite case log A and logB would bé commérisurable). Dividing
the last inéqualities by ny, and then letting k — oo intplies

I‘Ug a
k—ro0 11.‘ og 6
It follows that |
log A lbg a
fog B logh’
which may be written in the following equmlent form
l‘og A_ logB B
Toga A Togh -
Hents, pitting
. bEA
T Pgd’
we gét A= df and B=pp what was €6 BE Shown. o

Juitified by Thedrem b we exafiine system (+) assuniing that there is a
p ER, p# 0, siek that A= av; é—bv .

TreoREM 2. Let &, f, p € R, p£06, and d,6¢ (0,00), d #£1#£b, be
stfeh that ) -
~ logd ie, o B

A S e
and piit N
NS e

9 - Knniles...
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1°. If f: (§,00) = R satisfies the system of functional equations
fl@’z+ o) =af(z),  fOPz+p)=bf(z), =z>§,

and it is continuous at least. at one j)oint, then there is a constant ¢ € R such
that

f@)=cz-OVP, z>¢.
2°. If f: (—o0,€) — R satisfies the system of functional equations
fl@Pz +a)=af(z), [f(B"z+P)=0bf(z), =z<¢,

and it is continuous at least at one pomt then there is a constant ¢ G R such
that

f@) =,  z<t.
3°. If f : R = R satisfies the system of functional‘_equations
f@r+a)=af(z), f(BPz+p)=bf(z), zER,

and in each of the intervals (€,00) and (—00,£) there is at least one point of
continuity of f, then there are ¢, c; € R such that

a@-&tr,  z>¢
f(z): 0,» ‘ $=E
02(5_3)1/”’ z<§
PRoOF. 1°. Since %%g—% ¢.Q , by the Kronecker theorem, Fhe set .
D={a"b™: n,meZ}

is dense in (0, 00) . Applying Lemma 1.2° w:th A=a? and B = bP (cf. also
Remark 2) we obtain .

@ fa-Or +9=tf), =>¢, teD.

Let zo > € be a point of the continuity of f, a.nd z>& a.rbltra,ry Since
(zo — &)/ (z — &) > 0, there exists a sequence ¢, €D, k € N, such that

_e\Ur
hm ty = (zo €) .
k—oc0 i T —f
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Note that _
lim ((z ~ )8 +6) = 2o.

Taking t = t; in (4) gives | '
. flz =0t +& =tef(z), ~keN.

~-

L“éttihg k — oo, and makiné use of the éontinuity of f at the point zg, in

this relation yields |
N € 1/p
fao = (25¢) 1@

Hence, putting _
\ ¢ := f(zo)(z0 — §)7'/7,

we obtain _
fz) =clz = §)'V",
which completes the proof of 1°.

To prove 2° suppose that f is continuous at a point zg < &, and take an
arbitrary = < &. Then (zo — £€)/(z — €) is positive, and we can repeat the
.same argument as in the part 1°.

Suppose that f : R — R satisfies the cons1dered system of functional
equations. Setting z = £ in the first of these equations gives f(§) = af(£).
Since a # 1, we get f(§) =0. Now 3°% is a consequence of 1° and 2°. This
completes the proof. a

ExampLE. Consider the sysﬁem of functional equations
fz+3)=2f(x), fOz+8)=3f(z), =z€R,
where f : R = R. Thus we havea = 2, a =3,b =3, 8 = 8, and p = 2.
Because log2/log3 is irrational, and a/(1 — a?) = /(1 — b?) = -1, the
numbers a, 8, a, b, and p satisfy the assumptions of Theorem 2. If f is

continuous at two points z; and z, such that z; < —1 < z; then, by
Theorem 2, there exist ¢;, ¢z € R such that

avz+l, z>-1
f(a:): 0, » z=-1.
av-l-z, z<-1

THEOREM 3. Let o, B, p€ R, p# 0, and a, b € (0,0), a ;é‘ 1#b, be
such that
loga a . B

logb¢Q’ l—a?r  1-b’

9‘
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and put
a

1—ar’

¢ =

1°. If f : (£, 00) = R satisfies the system of functional equations
f(aPz + @) = af(z), f(Pz + B) = bf(z), z>E,

and for a nonempty open interval I C (§,00) the restriction f|; is Lebesgue
measurable, then there is a constant ¢ € R such that

f@)=clz-6Y? a. e in (€00).
2°. If f : (—o0,&) — R satisfies the system of functional equations

f(aPz + o) = af(z), f(Pz +B) =bf(z), =<,

and for a nonempty open interval I C (~o0, ) the restriction f | is Lebesgue
measurable, then there is a constant ¢ € R such that

@) =cE-2)'?  a e in (—o0,f).

3°. If f : R — R satisfies the system of funétional equations
f(aPz + a) = af(z), Pz + B) = bf(=), z € R,

~and each of the intervals (§,00) and (—00,£) contains a nonempty open
interval I such that f|; is Lebesgue measurable, then there are ¢y, c; € R
such that

c1(z - §)'?, >

f@)=4<0 z=¢§ a.e. inR
o -a)'/?,  z<¢

PRroOOF. 1°. Let f : (§,00) = R be a solution of the considered syétem :

of functional equations which is Lebesgue measurable on a nonempty open
interval I € (§,00). Define fo : (§,00) = R by

fol@) = (z-OY?, z>¢
It is easy to verify that the function ¢ : (§,00) & R,

— f(z)
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satisfies t(l;’e sixnultaoeous system of functional equations .
®) oz +0)=4a), Pr+p)=d2), z>E |
Note that tﬁe family of functions (hv‘::t eR), ht :‘.(E, 00) - R,‘:deﬁned by )
(6) | Ii'(a:):v'a’”(z—ﬁ)+§, z > &, tGR, " \

is a continuous »itera.tioﬁ group. Thus there exists a homeomorphism
v :R = (£,00) (cf. J. Aczél [1], Chapter 6) such that

(M h’(.z') ¥ ('y"(a:) + t) , z> ’5,‘ te R Co
Hence ’ -
hl(x)=apz+a:7(7'1(z)+1), z>E. i

Put
" _logh

T= loga’

Taking t = r in (6), and makmg 'use of the assumptlon apﬂ ta= bPa + ,B,
gives S
h"(a:)—b”z+,3 7( l(a;)+r),‘ a:>£
Therefore we can write (5) in the form
¢ly(r @ +1)]=¢@), (@ +r)]=4¢0), z>¢.
It follows that the function ¢ o~ : R — R satisfies the system of equations
pov(s+1)=gon(s), govls+r)=¢ov(s) scR,

which means that ¢o v is periodic of periods 1 and r. Hence, by an obvnous‘
mductlon, :

¢07(3+n+mr)=¢07(s), s€R, n,meL.
Since r is irrational, {n + mr : n,m € Z}isa denée set in R, and conse-
quently ¢.0+ is microperiodic.. B
From (6) and (7) we get
7(r7(@) +t) = a"(z—£)+£, &> teR.
Settmg z = 4(0) glves

)= ((0)-€) €, tER,
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so v is a diffeomorphism. By assumption ¢ = f/fo is measurable on a
nonempty open interval I C (&, 00). It follows that the function ¢ o v is
measurable on the open interval v~!(I). The microperiodicity of ¢o implies -
that it is Lebesgue measurable on R. By Lemma 2 there is a ¢ € R such that
¢ oy = ¢ almost everywhere in R. Hence ¢ = ¢ a.e. in R, and from the
definition of ¢ we obtain f = cfy a.e. in R. This completes the proof of 1°.
The proof of 2° is analogous. Part 3° is an obvious consequence of 1° and 2°.

a

REMARK 4. In Theorem 1 (and consequently in Theorems 2 and 3) we
have assumed that A, B € (0,00) and A # 1 # B. It is easy to verify that
if A#1, B=1,0r A=1, B # 1, the condition (3) is fulfilled and we can
apply the Proposition. The case A =1 = B, as we have already mentioned,
was considered in [2].

Note also that if f : R — R is a solution of system (x), then

f (A% +a(A+1)) = af(z), f(B*+B(B+1))=b(z), z€R.

Thus, without any loss of generality we could assume that the numbers A,
B, a, and b are positive.
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