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Abstract . In this paper, we solve the functional equation 

fi(pr,qs) +h(ps,qr) = g(p, q)h(r, s) (p, g, r, 3 G]0,1]) 

where f\,f2,g,h are complex-valued functions defined on ]0,1]. This func­
tional equation is a generalization of a functional equation which was in­
strumental in the characterization of symmetric divergence of degree at in 
[3]. This equation arises in the characterization of symmetric weighted di­
vergence of degree a and symmetric inset divergence of degree a. 

1. INTRODUCTION. Let T°n = {P = (pi,p2,... ,P*)'| 0 < pk < 1, SLiPfc 
= 1} denote the set of all n-ary discrete probability distributions, that is, 
T° is the class of discrete distributions on a finite set fi of cardinality n. For 
P and Q in T°, Kullback and Leibler [8]) (see also [7]) defined the directed 
divergence as 

This measure is nonnegative and attains minimum when P = Q. Thus, 
it serves as a distance measure between the distributions P and Q: It is 
frequently used in statistics, pattern recognition, coding theory, signal pro­
cessing and information theory. However, this directed divergence is neither 
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symmetric nor does it satisfy the triangle inequality and thus its application 
as a metric is limited. So, in [4] the notion of symmetric divergence between 
any two probability distributions P and Q in T° , was introduced as 

(1-2) Jn(P,Q) = Dn(P\\Q) + Dn(Q\\P) 

to restore the symmetry. In explicit form Jn is given by 
n 

(1.3) Jn(P,Q) = 5 > * - ^ ) l o e - -

The measure (1.3) is called the J-divergence in honor of Jeffrey who first 
used this measure in connection with some estimation problems in [4]. A 
well known generalization of the ./-divergence (see [3]) is the symmetric 
divergence of degree a and it is given by 

(1.4) j n A P , Q ) = & M ^ J i ś r ) s l , 

where a ̂  1. The 7-divergence of degree a is a one parameter generalization 
of (1.3) since (1.4) tends to (1.3) as a —» 1. This measure satisfies the 
composition law 

(p*R,Q*s) + JnmAP*s,Q*R) 
( ' ) =2Jn,a(P,Q)-r2Jm,a{R,S) + XJnA^Q)JmA^S) 

for all P,Q e T°n and R,S £ where 

P*R = ( p i r i , . . . ,pirm,p2ri,... ,p2rm,... , p „ r i , . . . , p „ r m ) 

and A = 2 ° - 1 — 1. The measure (1.4) was characterized in [3] through the 
sum property and the composition law (1.5). The functional equation 

(1.6) f(pr, qs) + f(ps, qr) = f(p, q)f(r,s) (p, q,r, s e]0,1]) 

was instrumental in the characterization of (1.4). In this paper, we solve the 
functional equation 

(FE) fi(pr,qs) +f2(ps,qr) = g(p,q)h(r,s) (p,q,r,s e]0,1]), 

where f\,f2,g,h are complex-valued functions. The solutions of (FE) are 
obtained via a system of equations 

(SE) F(pr,qs) + F(ps,qr) = g(p,q)hl(r,s) (p,q,r,s G]0,1]), 

(DE) / (pr , qs) - f(ps, qr) = <?(p, q)h2(r, s) (p, q, r, s €]0,1]) 
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obtained from (FE) . The equation (FE) is useful in the characterizations of 
symmetric weighted divergence of degree a and symmetric inset divergence 
of degree a. For some other functional equations and inequalities related to 
characterization of distance measures between probabilities distributions see 
[3], [5] and [6]. 

2. Notation and terminology. Let / denote the open-closed unit 
interval ]0,1]. Let K and C denote the set of real numbers and the set of 
complex numbers, respectively. A map L : I —• C is called logarithmic if and 
only if L(xy) = L(x) + L(y) for all x,y £ I. A function M on / is called 
multiplicative if and only if M(xy) — M(x)M(y) for all x, y € / . For regular 
solutions of multiplicative or logarithmic Cauchy functional equations the 
interested reader should refer to [1]. The capital letters M. and L along with 
their subscripts are used exclusively for multiplicative and logarithmic maps, 
respectively. For a map /:/—>• C, the notation / ^ 0 means that / is not 
identically zero on / ; " / is nonzero" means / ^ 0. 

3. Some preliminary results. The following results are needed to 
establish the main results of this paper. 

L E M M A 1 [2]. The complete list of functions f,g : I —• C which satisfy 

(3-1) f(xy) = f(x)g(y) + f(y)g(x) 

is the following: 

(3.2) / = 0 a/id g arbitrary; 

(3.3) 
f(x) =cL{x)M(x), 

g(x) =M(x); 

i f(x) =c[Mi(x) - M2(x)), 

( 3 ' 4 ) l = \[Mx{x) + M 2 ( z ) ] , M i 5̂  M 2 , 

where c is an arbitrary complex constants, M , M i , M 2 are arbitrary nonzero 
multiplicative maps, and L is an arbitrary logarithmic function. 

L E M M A 2. Let f,g\,gi : / . - * C satisfy 

(3.5) fM ~9i(x)f{y) + 92(y)f(x) 
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for all i , y e / . Then f,g\,g2 are given by 

(3.6) / = 0 and gi and g2 are arbitrary; 

f{x) = cM(x)L(x), 

(3.7) { gi(x) = M ( x ) - acM(x)L(x), 

g2(y) = M(y) + acM(y)L(y), 

/ ( a ; ) = c [ M 1 ( x ) - M 2 ( x ) ] , 

(3.8) ^ = 5 [ M i ( x ) + M 2 ( « ) ] - ac[Mj(x) - ilfj(ar)], 

52(») = \[Mx{y) + M2(y)] + oc[Af,(y) - Af ?(»)], 

wAere a (^ 0), c are arbitrary complex constants, M, Mi, M2 are arbitrary 
nonzero multiplicative maps, and L is an arbitrary logarithmic function. 

P R O O F . If / = 0, then any arbitrary maps 51 and g2 satisfy (3.5) and one 
obtains the solution (3.6). Henceforth, we suppose / ^ 0. 

Interchanging x and y in (3.5), we get 

(3*9) M s ) - g2(x)]f(y) = [9l(y) - g2(y)]f(x). 

If 9i — 92t then using Lemma 1 we get (3.7) and (3.8) with a = 0. So, we 
assume that g\ ^ g2. Then from (3.9) we have 

f(x) = ci[g2(x) - gi(x)]. 

The constant cj = 0 implies f(x) = 0 which is not the case. So, c\ ^ 0. Let 
c\ = ^ so that 

(3.10) * 2 ( * ) - f t O O + 2a/(*) . 

From (3.10) and (3.5), we obtain 

f(xy) = g(x)f(y) + g(y)f{x), 

where 

(3.11) g(x)^gi(x) + af(x): 
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Now from Lemma 1, (3.11) and (3.10), we have the solutions (3.7) and (3.8) 
and the proof of the lemma is complete. • 

Lemma 2 is used repeatedly in Sections 4 and 5. 

4. Solution of the equation (SE). In this section, we determine the 
solution of the functional equation (SE). 

T H E O R E M 1. The functions /, F : I2 —• C satisfy the functional equation 

(4.1) f(pr,qs) + f(ps,qr) = f(p,q)F{r,s) (p,q,r,sen 

/ = 0 and F arbitrary; 

f f(p,q) =M(p)M(q)[a + L(q) - L(p)], 

\F(r,s)=2M(r)M(s); 

f f(p,q) =aM1(p)M2(q) + /?M 1( 9)M 2(p), 

\ F(r,s) =M1(r)M2(s) + M 1 (« )M 2 ( r ) , 

where a,/3 are arbitrary complex constants, M , M i , M 2 : J C are nonzero 
multiplicative functions, and L : I —• C is a logarithmic map. 

P R O O F . First that / = 0 implies F is arbitrary. So, we assume from now 
on / ^ 0. Then F ^ 0. Interchanging r and s in (4.1), we see that F is 
symmetric, that is 

(4.5) F(r,s) = F(s,r). 

Substituting p = r = 1 in (4.1), we have 

(4.6) f(s,q) = f(l,q)F(l,s)-f(l,qs). 

Defining 

(4.7) 9(q):=f(hq) and h(s) := F(l,s) 

for q, s € / , and using (4.7) in (4.6), we obtain 

(4.8) f(s,q) = g(q)h(s)-g{qs). 

if and only if 

(4.2) 

(4-3) 

(4.4) 
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Letting p = q = 1 in (4.1), we see that 

(4.9) f(r,s) + f(»,r) = aF(r,s) 

where a := / (1 ,1) = fif(l) is a complex constant. Substituting q = s = \ in 
(4.1) and then using (4.5) and (4.7), we get 

(4.10) f(p,r) = f(p,l)h(r)-f(pr,l). 

Putting q = 1 in (4.8) and using (4.7), we obtain 

(4.11) f(s,l) = ah(s)-g(s). 

Using (4.11) in (4.10) and (4.8), we get 

(4.12) f(p, r) = ah(p)h(r) - g(p)h(r) + g{pr) - ah(pr), 

and 

(4.13) 2g(pr) - ah(pr) = g(r)h{p) + g(p)h(r) - ah(p)h(r). 

Defining 

(4.14) 4>(p) := g(p) - ^ah(p), 

and using (4.14) in (4.13), we have 

(4.15) ^ ( p r ) = ^ ( p ) ^ l + ^ ( r ) ^ ) ( p , r € / ) . 

The general solutions of (4.15) can be obtained from Lemma 1. Thus, we 
have the list of solutions: 

(4.16) (<KP) = 0, 
I h(p) arbitrary, 

, . f m =cM(p)L(p), 
1 * J 1 Hp) = 2 M ( P ) , 

(4.18) 
J <t>(p)=c[Mi(p)-M2(p)], 

\ h(p) =M,(p) + M2(p), . M i ^ M 2 , 
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whore c is an arbitrary constant, L : I —* C is a logarithmic function, and 
M , M i , M 2 : / — C are multiplicative functions. 

Now we consider three cases corresponding to the above solutions. 
C A S E 1. Consider the solution (4.16). Dy (4.16) and (4.14), we have 

(4.19) g(p) = ^ah(p). 

SUBCASE 1.1. First we assume a = 0. Then (4.19) implies that g — 0, 
and (4.8) yields that / = 0, which is not the case. So a 0. 

SUBCASE 1.2. Next suppose, a ^ 0. Then using (4.19) in (4.8), we obtain 

(4.20) f{s,q)=\g{q)9{s)-g{qs). 

Letting s = 1 in (4.1) and using (4.7), (4.19) and (4.20), we get 

(4.21) ag(q)g(pr) - a2g(pqr) = 2g(p)g(q)p(r) - ag(p)g{qr) - ag(r)g(pq). 

For fixed but arbitrary q in / , we define 

(4.22) ip(p) := g{q)g{p) - ag(pq), 

then (4.21) becomes 

(4.23) ifr(pr) = + V » ( r ) ^ -

Note that only tfi is dependent on q, and that g is independent of q. The 
general solution of (4.23) can be obtained from Lemma 1 as 

(4.24) 0(p) = 0 and g arbitrary, 

(4.25) V(p) = cL(p)M(p) and g{p) = oM(p), 

(4.26) V(P) = c[M,(p) - M 2(p)] and g(p) = a[Mx{p) + M 2 (p)J 

for M i M 2 , where c is a function of q. Note the independence of g from 
q. To prove our assertions we are going to use mostly g. Using i>{p) = 0 in 
(4.22) we get (ig(pq) = g(p)g(q) for some q. Since g is arbitrary, in this case, 
we can assume that ag(pq) = g(p)g(q) holds for all p and q. Hence, we have 

(4.27) g(p) = aM(p), p e l . 
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Using (4.27) into (4.20), we get 

(4.28) f(s,q) = aM(s)M(q). 

Using (4.28) in (4.9), we obtain 

(4.29) F(r,s) = 2M(r)M(s). 

This gives the solution (4.3) with L = 0. 
Inserting (4.25) into (4.22), we get 

fp(p) = a2 M(pq) - a2 M(pq) = 0, 

which reduces to the above case with ag(pq) = g(p)g(q) for all p and q, that 
is, to the solution (4.3) (using only g). 

Similarly, from (4.26) and (4.20), we obtain 

(4.30) f(p,q) = ^M1(p)M2(q) + | m 1 ( 9 ) M 2 ( P ) , 

and then from (4.9), we see that 

(4.31) F(r,s) = Mi(r)M2(s) + M^Miir). 

This leads to the solution (4.4) with a = /3 = | . Here again we made use of 
g only. 

C A S E 2. Now we consider the case corresponding to (4.17). From (4.17), 
we get 

(4.32) h(p) = 2M(p) and g{p) = aM{p) + M(p)L{p\ 

after absorbing the constant c with the logarithmic function L. Now letting 
(4.32) into (4.8), we see that 

/(p, q) = M(P)M(q)[a + L(q) - L(p)) 

and this in (4.9) gives 
F(r,s) = 2M(r)M(s). 

This yields the solution (4.3). 
C A S E 3". By (4.18) and (4.14), we obtain 

{ 
h(p) = M1(p) + M2(p), 

( 4 ' 3 3 ) * g(p) = c[^t(p) - M2(p)) + l[Mx{p) + M2(p)] 
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for M i 5* M 2 . Letting (4.33) into (4.8), we have 

(4.34) f(p,q) = (I - c) M i ( p ) M 2 ( 9 ) + ( | + c) M , ( c ) M 2 ( p ) . 

Putting (4;34) in (4.9) and simplifying, we obtain 

(4.35) F{r,s) = Mi(r)M2(s) +Mi{s)M2(r). 

Thus, we obtain from (4.34) and (4.35), the asserted solution (4.4) with 
Q = f - C, 0 = f + C. 

Since there are no more cased left, the proof of the theorem is now com­
plete. • 

COROLLARY 1. The functions F,g,hi : I2 —• C satisfy the functional 
equation 

(SE) F(pr,qs) + F(ps,qr) = g(p,q)hi(r,s) (p,q,r,s £ I) 

if and only if 

(4.36) F = 0, 5 = 0, and hi arbitrary; Ł 

(4.37) F = 0, hi = 0, and g arbitrary; 

(4.38) 

( F(p, q) = M(p)M(q)[a + L(g) - L(p)], 
2 

g(p,q)=-^F(p,q), 
[hi(r,s) = bM(r)M(s); , 

(4.39) 

f F(p, 9 ) = a M i ( p ) M 2 ( 9 ) + j3Mi(q)M2(p), 
2 

9(P,<l)= -^F{p,q),, 

hi(r,s) = b-[Mx{r)M2{s) + Mi(s)M2(r)], 

where a,b(-/L 0),a,/3 are arbitrary constants, L : I -* C is a logarithmic 
function, and M,Mi,M2 :1 —*• C are nonzero muitipiicative functions. 

P R O O F . Letting r = s = 1 in (SE), we obtain 

(4.40) 2F(p,,q) = hi(l,l)g(p,q). 
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Suppose / i i ( l , l ) = 0. Then from (4.10), we get /•".= 0 and this in (SE) 
yields the solutions (4.36) and (4.37). 

Suppose In (1,1) ^ 0. Then by (4.40), we have 

(4.41) 

where b = h . j ( l , l ) . Letting (4.41) into (SE), we get 

(4.42) 
2 

F(pr,qs) + F(ps,qr) = ^F{p,q)hi(r,s). 

The general solution of (4.42) can be obtained from Theorem 1 and thus, 
we get the asserted solutions (4.37), (4.38) and (4.39). This completes the 
proof. • 

5. Solution of the equation (DE). 

THEOREM 2. The functions f,g,h2 '• / 2 —*• C satisfy the functional equa­
tion 

(DE) f(pr,qs) - f(ps,qr) = g(p,q)h2(r,s) (p,g,r,s 6 /) 

if and only if 

f(p,q) = i>(pq), 

(5-1) 5 = 0, 
h2 arbitrary; 

(5.2) 

(5.3) 

f f(p, q) = i>(pq\ 
g arbitrary, 
h2 = 0; 

f(p, q) = i>(pq) - aa ( M Mi(p) 

M 2 (p ) \Mi(q) - M2(q)], 

9(P,q) = *[(\-<*0)Ml(p)M2(q) 

+ (^+a^JMi(q)M2(q) , 

{ h2(r,s) = a[Mi(r)M2(s) - Mi(s)M2(r)]; 
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(5.4) 

{ f{p,q) = tftpq) - aaM(p)M(q)[l - PL(p)]L(q), 
g(p,q) = aM(p)M(q)[l - f3(L(p) - L(q))), 
h2(r,s) = aM(r)M(s)[L{r) - 1(a)]; 

(5.5) 
' /(/>, q) = f(pq) - c2aM(p)M(q)L(p)L(q), 
g(p,q) = caM(p)M(q)[L(p)-L(q)}, 

^ h2(r,s) = cM(r)M(s)[L(r) - L(s)]; 

(5.6) 
f f(P,q) = i>{pq) - c2a[Mx(p) - M 2 (p ) ] [M 1 ( g ) - M2(q)}, 

g(p,q) = ca[Mx(p)M2(q) - Mi{q)M2{p)], 
{ h2(r,s) = c[M,{r)M2{s) - M1(s)M2(r)], 

where t/>: 7 —• C JS an arbitrary function, L : / —* C is a logarithmic function, 
and M,Mi,M2 : I —> C are the multiplicative maps, and a,/?,a,6,c are 
arbitrary complex constants. 

P R O O F . If g = 0, then ( D E ) implies 

(5.7) f(pr, qs) = f(ps, qr) (p, q,r,se I). 

Hence, letting r = q = 1 in (5.7), we see that 

f(p,s) = ip(ps), 

where tp(x) := f(x, 1) is an arbitrary complex-valued function, and h2 is 
arbitrary. This gives the solution (5.1). Similarly, if h2 = 0, we obtain 
the asserted solution (5.2). From now on we assume that g and h2 are not 
identically zero. 

Interchanging r with s in (DE) , we get 

(5.8) f(ps, qr) - f(pr, qs) = g(p, q)h2(s, r). 

Adding (5.8) to (DE) , we get 

(5.9) g(p,q)[h2(r,s) + h2(s,r)] = 0. 

4 - Annales . 
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Since g ^ 0, from (5.9) we get 

(5.10) h2(r,s) = -h2(s,r), 

that is, h2 is skew-symmetric. 

Letting q = s = 1 in (DE) , we obtain 

(5.11) f(p,r) = i>(pr) - g{p,\)h2{r,\) 

where i>(x) := f(x, 1). Replacing r by xr and s by ys in (DE), we get 

(5.12) f(pxr,qys) - f(pys,qxr) = g(p,q)h2(xr,y$). 

Similarly, replacing p by px and q by 93/ in (DE), we obtain 

(5.13) f(pxr, qys) - f(pxs, qyr) = g(px, qy)h2(r, s). 

Again, replacing p by ps,q by qr,r by x, and 5 by y in (DE) , we get 

(5.14) f(pxs, qyr) - f(psy, qrx) = g(ps, qr)h2(x, y). 

Adding (5.13) to (5.14) and then applying (5.12) to it, we get 

(5.15) g(p,q)h2(xr,ys) = g(px,qy)h2(r,s) + g(ps,qr)h2(x,y) 

for all p,q,r,s,z,y G I. Letting p = q = 1 in (5.15), we get 

(5.16) ah2(xr, ys) = g(x, y)h2(r, s) + g(s, r)h2(x, y), 

where 
(5.17) a := $(1,1). 

C A S E 1. Suppose a ^ 0. Then (5.16) reduces to 

(5.18) h2(xr,ys) = gi(x,y)h2(r,s) + sn(s, r)A 2(z,2/), 

where 

(5.19) „ ( , , , ) 

Letting r = y = 1 in (5.18), and then using (5.10), we get 

(5.20) h2(x, s) = 9l(s, l)h2{x, 1) - 0,(3, l)h2(s, 1). 



Now (5.11) becomes 

(5.21) f(p,r) = i>(pr)-agi(p,l)h2(r,l). 

Next, substituting y = 5 = 1 in (5.18), we get 

(5.22) 4>(xr) = <h(*)<Kr) + <h(r)<K*), 

where 

4>(x) = h2(x,l), 

(5.23) 

The general solution of (5.22) can be obtained from Lemma 2 as 

(5.24) 

/i 2(a:,l) = 0, 

g\(x, 1) arbitrary, 

g\(\,x) arbitrary; 

(5.25) 

(5.26) 

' h2(x,l) = aM(x)L(x), 
<7i(x,l) = M(x)-(3M(x)L{x), 

9l(l,x) = M(x) + 0M(x)L(x); 

(h2(x,l) = a[Ml(x)-M2(x)], 

gi(x, 1) = ^[Mt(x) + M2(x)} - a/?[M,(z) - M2(x)}, 

gi(l,x) = i[A#!(«) + M2(x)] + aflMxlx) - M2{x)). 

Now we consider several subcases. 

SUBCASE 1.1. From (5.24) and (5.20) we see that / i 2 = 0. Since h2 ^ 0 
by our assumption, this case is not possible. 

SUBCASE 1.2. By (5.25) and (5.20), we get 

(5.27) h2(x, s) = aM(x)M(s)[L(x) - L(s)]. 

Using (5.21) and (5.25), we get 

(5.28) f(p, r) = 4>(pr) - aaM{p)M(r){\ - PL(p)]L(r). 
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Letting (5.27) and (5.28) into (DE) , we obtain 

(5.29) g(p,q) - aM{p)M{q)[\ - (3(L(p) - L(q))). 

Hence we have the solution (5.4). 

SUBCASE 1.3. By (5.26) and (5.20), we obtain 

(5.30) h2(x,s) = a[Mi(x)M2(s) - Ml{s)M2(x)]. 

Using (5.21) and (5.26), we get 

Q - a ^ M ^ p ) 

[Mi(r)~ M2(r)}. 
(5.31) 

f(p, r) =ip(pr) — aa 

M2(p) 

Using (5.31) and (5.30) in (DE) , we get 

(5.32) g(p,q) = a ( M Mx{p)M2{q) + ( - + <*/?) M 2 (p )M 1 ( f / ) 

This gives the solution (5.3). Now case one is complete. 

C A S E 2. Now we consider the case a = 0. Putting p = q = 1 in (DE) , we 
see that 

(5.33) f{s,r) = f(r,s) 

and (5.16) gives 

(5.34) g(x, y)h2(r, s) + g(s, r)h2(x, y) = 0. 

Since h2 £ 0, (5.34) yields 

(5.35) g(x,y) = ah2(x,y), 

where a is a complex constant. Note that a ^ 0, otherwise g = 0 contrary 
to our assumption. Letting (5.35) into (5.15), we get 

(5.36) h2(p, q)h2(xr, ys) = h2{px, qy)h2(r, s) + h2(ps, qr)h2(x, y), 

where p, q, r, s,x,y 6 / . 
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We claim that h2(p, 1) ^ 0. Suppose not. Letting r = y = 1 in (5.36), we 
obtain 

h2(p,q)h2(x,s) = h2(px,q)h2(l,s) + h2(ps,q)h2(x, 1). 

By (5.10), we get 
h2(p,q)h2(x,s) = 0. 

Hence h2 = 0 contrary to our assumption that h2 ^ 0. Hence h2(p, 1 ) ^ 0 . 
Let p — p0 G / such that h2(pc, 1) ^ 0. Letting p = p0 and q = 1 in (5.36), 
we obtain 

(5.37) 

where 

(5.38) 

h2(xr,ys) = hi(x,y)h2(r,s) + hx(s,r)h2{x,y), 

, ( x h2(p0x,y) 
hi(x,y) = 

h2{p0, 1) ' 

Letting y = s = 1 in (5.37), we see that 

(5.39) <K*r) = Mx)<K*) + Mr)<Kx), 

where 

' <HX) = ll2(x,l), 

(5.40) J ^ ( . T ) = / M ( X , 1 ) , 
, <fo(x) = hx(l,x). 

The general solution of (5.39) tan be obtained from Lemma 2. Hence we 
have 

(5.41) 

(5.42) ' 

'M*, i ) = o, 
/ i i (a:, 1) arbitrary, 

h\(l,x) arbitrary; 

/ i 2 (x , 1) =aM(x)Z/(x), 

ln(x, 1) =M(x) - dM(x)L(x), 

hi(l,x)=M(x) + dM(x)L(x); 

(5.43) 

li2(x,l)=c[Mx(x)- M2(x)}, 

/»,(«, 1) =^[Mi(a:) + M 2 (x)] - rfc[Af,(x) - M2{x)}, 

hi(l,x) = l-[Mx(x) + M2(x)} + dc[M,( i ) - M 2 ( z ) ] . 



54 

Letting y = r = 1 in (5.37) and using (5.10), we obtain 

(5.44) h2(x,s) = h2(x, l) / i i(«, 1) - h2(s, l)/»i(x, 1).' 

Now we consider three subcases. 

SUBCASE 2.1. From (5.41) and (5.44), we get h2 = 0 contrary to our 
assumption. Hence this case is not possible. 

SUBCASE 2.2. By (5.42) and (5.44), we get 

(5.45) h2(x, s) = cM(x)M(s)[L(x) - L(s)] 

and (5.35) gives 

(5.46) g(x,y) = acM(x)M(y)[L(x) - L(y)]. 

Using (5.45) and (5.46) in (5.11), we obtain 

(5.47) /(p, r) = xp(pr) - ac2M(p)M(r)L(p)L(r). 

Hence by (5.45) - (5.47), we have the solution (5.5). 

SUBCASE 2.3. Finally, from (5.43) and (5.44), we get 

(5.48) h2(x,s) = c[Mx(x)M2{s)-Mx{s)M2{x)} 

and from (5.35), 

(5.49) g{x,y) = ac[Mi{x)M2{y)-Mx{y)M2{x)}. 

Using (5.48) and (5.49) in (5.11), we get 

(5.50) /(p,r) = V(pr) - c 2 a[M x (p) - M2{p)][Mx{r) - M 2 ( r ) ] . 

Hence we have the asserted solution (5.6). 
Since no more cases left, this completes the proof.of the theorem. • 

6. The main result. In this section, we will present the general complex-
- valued solution of the functional equation (FE) without assuming any regu­
larity condition on the unknown functions. The reasons for considering (SE) 
and (DE) in Sections 4 and 5 respectively are the following. 

Interchanging r with s in (FE) , we obtain 

(6.1) flips,qr) + f2(pr,qs) = g(p,q)h(s,r). 
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Adding (6.1) to (FE) , we get 

(SE) F(pr,qs) + F{ps,qr) = g(p,q)hi(r,s), 

where 

(6.2) 
F{p,<i) •= h(p,q) + h{p,(i), 
h\(r,s) := h(r,s) + h(s,r). 

Similarly, subtracting (6.1) from (FE) , we obtain 

(DE) f(pr,qs) - f(ps,qr) = g(p,q)h2(r,s), 

where 

(6.3) 
f(p,q) := f\(p,<i)- f2(p,q), 
Ii2(r,s) := h(r,s) - h(s,r). 

The solutions of (SE) and (DE) are already given in Sections 4 and 5, 
respectively. Hence, by using the solutions of (SE), (DE), (6.2) and (6.3), 
we determine the solutions of (FE) . To obtain the solution of (FE) , one has 
to consider a total of twenty four cases. After, some tedious calculations, we 
have the following theorem. 

T H E O R E M 3. Tiie functions f\,f2,g,h: I2 —> C satisfy the functional 
equation 

(FE) f\(pr,qs) +f2(ps,qr) = g(p,q)h(r,s) (p,q,r,s G]0,1]) 

if and only if 

(6.4) 

(6.5) 

' fi(p,q) = ^{pq), 

h(p,q) = -i>(pq), 
yh(r,s) = 0, 

{ g(p,q) arbitrary; 
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(6.6) 

Mp,q) = TP(pq) - caM(p)M(q)[l - (3L(p))L(q), 

Mv,q) = - I K P 9 ) + caM(p)M(q)[l - PL(p)}L(q), 

h(r,s) = aM(r)M(s)[L(r) - L(s)], 

g(p,q) = cM(p)M(q)[l - 0(L(p) - L(q))}; 

(6.7) 

f /i(P,<?) = V>(P<?) " c2aM(p)M(q)L(p)L(q), 

/ 2 (p ,? ) = -Tp(pq) + c2aM{p)M(q)L(p)L(q), 

h(r,s) = cM{r)M(s)[L(r) - L(s)}, 

[g(p,q) = caM(p)M(q)[L(P)-L(q)}; 

(6.8) 

f / i (p ,9) = V>(p<?) + M(p)M(q)[c + L(q) - L(p)], 

Mp,q) = -ł(pq)+ M(p)M(q)[c+ L{q) - L(p)}, 

h(r,s) = bM(r)M(s), 

g(p,q) = -bM{p)M{q)[c + L(q) - L(p)}; 

(6.9) 

f / i (P ,? ) = V>(P<?) - 6aM(p)M(g)[l - PL(p)]L(q) 

1 
+ bM(p)M(q) + L ( 9 ) - L(p) 

/ 2 (P ,9) = -rP(pq) + 6 a M ( p ) M ( 9 ) [ l - /3L(p)]L( 9) 
1 

+ bM{p)M(q) 
0 

+ L(q) - L(p) 

h(r,s) = aM(r)M(s) + a{L(r)-L(s)} 

{ g(p,q) = bM(p)M(q)[l - P(L(p) - L(q))}; 

(6.10) 

{ / i (P ,9) = i>{pq) - b2aM(p)M(q)L(p)L(q) 
+ M(p)M(q)[L(q)-L(p)}, 

/ 2(P,9) = -VKP9) + b2aM(p)M(q)L(p)L(q) 
+ M(p)M(q){L(q)-L(p)], 

h(r,s) = M(r)M(s) 

{ g(p,q) = baM{p)M(q)[L{p) - L(q)}; 

-±-b+c{L(r)-L(S)} 
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(6.11) 

(6.12) 

(6.13) 

(6.14) { 

[ MM) = *(pq) - <*c2[Mx(p) - M2(p)][Mx(q) - M2{q% 

MP,1) = + «c 2 [A/t(p) - M2(p))[Mx(q) - M2(q)}, 

/i(r,a) = c[Mi(r)M2(s) - Mx(s)M2(r)], 

[ 9{p,q) = ca[Mi(p)M2(q) - Mx(q)M2(p)); 

/l(P ,9) = V>(p<?) + aMx(p)M2(q) + /3Mx(q)M2(p), 

/ 2 (P , ? ) = -Wm) + aMx(p)M2(q) + (3Mx(q)M2(p), 

h(r,s) = h-[Mx{r)M2{s) + M, ( s )M 2 ( r ) ] , 

g(p,q) = ^[aMx(p)M2(q) + PMx(q)M2(p)]; 

f / l (p ,9) = V>(p<?) ~ c2a[Mx(p) - M2(p)][Mx(q) - M2(q)} 

+ ^ca[Mx(p)M2(q) - Mx(q)M2(p)], 

/ 2 (P ,7) = -i>{pq) + c 2 a[M,(p) - M2(p)}[Mx(q) - M2(q)] 

+ ^ca[Mx(p)M2(q) - Mx{q)M2{p% 

h(r,s) = + c) M1(r)M2(s) + - M,(s)M2(r), 

{ 9(P,q) = ca[Mx(p)M2{q) - Mx(q)M2(p)}; 

/ i (p , q) = Hpq) - c a [Q - a- 5) MX(P) 

+ Q+ M 2 (p)] [Af,(c7)-M 2 (c)] 

+ Q - a/j) M 1 (p)M 2 ( r / ) + Q + a/j) M 1 ( r / )M 2 (p) , 

/2(P,9) = -rl>(pq) + ca - M,(p) 

+ Q + a ^ M 2 ( p ) ] [ M ^ - M ^ c ) ] 

+ Q - a/?) Mx(p)M2(q) + Q + a/?) M , ( 9 ) M 2 ( p ) , 

fc(r,«) = ( a + 0 Af,(r)A#2(*) - ( a - 0 M j ^ M ^ r ) , 

( fl(p,«) = c - a/?) M 1 ( p ) M 2 ( 9 ) + Q + a/j) M 1 ( g ) M 2 ( p ) 
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where : I —• C is an arbitrary function, L : / —• C is a logarithmic map, 
M, M\,M2 : / - * C are multiplicative functions, and ct,ft(^ 0), 6(7^ 0),c, d 
are arbitrary complex constants. 
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