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Abstract. In this paper, we solve the functional equation

Ji(pr, ¢s) + f2(ps, qr) = g(p, Q)h(r,s)  (p,g,7, s €)0,1])

where f1, f2,g, b are complex-valued functions defined on ]0,1]. This func- - - -
tional equation is a generalization of a functional equation which was in- -
strumental in the characterization of symmetric divergence of degree a in

[3]. This equation arises in the characterization of symmetric weighted di-
vergence of degree o and symmetric inset divergence of degree a. .

1. Introduction. Let Ty = {P = (p1,p2,..., ) [ 0 < Pk < 1, T, Pk
= 1} denote the set of all n-ary discrete probability distributions, that is,
I'; is the class of discrete distributions on a finite set  of cardinality n. For
P and @ in T, Kullback and Leibler [8]) (see also [7]) defined the directed

divergence as

(1.1) Da(PIQ) = 3 pelog2

k
k=1 Ik

This measure is nonnegative and attains minimum whep P = Q. -Thus,
it serves as a distance measure between the distributions’ P and Q. It-is o

frequently used in statistics, pattern recognition, coding theory, signal pro-

cessing and information theory. However, this directed divergence is neither
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symmetric nor does it satisfy the triangle inequality and thus its application
as a metric is limited. So, in [4] the notion of symmetric divergence between
any two probability distributions P and @ in 'S, was introduced as

(1.2) Jn(P,Q) = Da(P||Q) + Dn(Q||P)

to restore the symmetry. In explicit form J,, is given by
n
Dk
(1.3) In(P,Q) = D (Px — qu)log._—.
k=1 S

The measure (1.3) is called the J-divergence in honor of Jeffrey who first
used this measure in connection with some estimation problems in [4]. A
well known generalization of the J-divergence (see [3]) is the symmetric
divergence of degree a and it is given by

n o, 1l—-a oa.1—o
1(Peq "+ aRpr ") — 2
(14) Jn,a(P7 Q) = Ek l( 5 ;l—a _ Ilc . ) )

where a # 1. The J-divergence of degree a is a one parameter generalization
of (1.3) since (1.4) tends to (1.3) as @ — 1. This measure satisfies the
composition law

L5 Jnma(P*x R, Q% S)+ Jnm,o(P%x5,Q x R)
(1.5) =20 a(P,Q) + 2 a(Ry S) + Ma(P, Q) R S)

for all P,Q € T and R, S € I'Y, where

PxR= (p11'1,... yP1Tmy P2T15 -« s P2Tmy e oo s PaT1,y .- ’pn'rm)

and A = 2°~! — 1. The measure (1.4) was characterized in [3] through the
sum property and the composition law (1.5). The functional equation

(1.6)  f(pr,qs) + f(ps,qr) = f(p,@)f(r,8)  (p,q,7,5 €]0,1])

was instrumental in the characterization of (1.4). In this paper, we solve the
functional equation

(FE) fi(pr,gs) + fa(ps,qr) = g(p,q)h(r,s)  (p,q,7,s €]0,1]),

where f1, f2,9,h are complex-valued functions. The solutions of (FE) are
obtained via a system of equations

(SE) F(pr,qs) + F(ps,qr) = g(p,q)h1(r,8)  (p,q,7,5 €]0,1]),

(DE)  f(pr,as) - f(ps,ar) = g(p )ha(rs)  (pyasrs €10, 1])
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obtained from (FE). The equation (FE)-is useful in the characterizatiohs of
symmetric weighted divergence of degree o and symmetric inset divergence
of degree a. For some other functional equations and inequalities related to
characterization of distance measures between probabilities distributions see

(3], [5] and [6].

2. Notation and terminology. Let I denote the open-closed unit
interval ]0,1]. Let R and C denote the set of real numbers and the set of
complex numbers, respectively. A map L : I — Cis called logarithmic if and
only if L(zy) = L(z)+ L(y) for all 2,y € I. A function M on [ is called
multiplicative if and only if M(zy) = M(z)M(y) for all z,y € I. For regular
solutions of multiplicative or logarithmic Cauchy functional equations the
interested reader should refer to {1]. The capital letters M. and L along with
their subscripts are used exclusively for multiplicative and logarithmic maps,
respectively. For a map f: I — C, the notation f # 0 means that f is not
identically zero on I; ” f is nonzero” means f # 0.

3. Some preliminary results. The followmg results are needed to
establish the main results of this paper.

'LEMMA 1 [2]. The complete list of functions f,g : I = C which satisfy

(3.1) f(zy) = f(2)g(y) + f(y)g(=)

is the following:

(3.2) - f=0 and g arbitrary;
f(z) =cL{z)M (),
(3.3) { 9(a) =M(2);

{ f(z) =c[My(z) — Ma(z)),
(3.4)

9() =3[Mi(e) + My(@)], My # My,

where c is an arbitrary complex constants, M, My, M, are arbitrary nonzero
multiplicative maps, and L is an arbitrary logarithmic function.

LEMMA 2. Let f,g1,92 : I — C satisfy

(3.5) f(zy) = a1(2)f(y) + 92(v) f()
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for all z,y € I. Then f,g,,g, are given by

(3.6) f=0 and g, and g; are arbitrary;

f(z) = eM(2)L(z),
(3.7 g1(z) = M(z) — acM(z)L(z),
92(y) = M(y) + acM(y)L(y),

(@) = dMy(@) - M), |
@8 | 9@ = 3M@) + My(@)] - aclMi(@) - Ma(a)),

92(9) = 31Mi() + My(@)] + acMa(y) - M (y)],

where o (#0), c are arbitxjary_‘ complex constants, M, My, M, are arbitrary
nonzero multiplicative maps, and L is an arbitrary logarithmic function.

PROOF. If f = 0, then any arbitrary maps g; and g, satisfy (3.5) and one
obtains the solution (3.6). Henceforth, we suppose f # 0.
Interchanging z and y in (3.5), we get -

(3:9) (9:2) - (W) = 11(0) - @)

If g1 = g2, then usihg Lemma 1 we get (37) and (3.8) with a = 0. So, we
assume that g; # g2. Then from (3.9) we have

f() = erlga(@) - 91 (o).

The constant ¢; = 6 implies f(z) = 0 which is not the case. So, ¢; # 0. Let
= :}5 so'that : :

- (3.10) 92(2) = 91(z) + 2af(2).
From (3.10) and (3.5), we obtain
f(zy) = 9(2)f(4) + 9() (=),

where

@) @ Sn@+afe).
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Now from Lemma 1, (3.11) and (3.10), we have the solutions (3 7) and (3.8)
ahd the proof of the lemma is complete. a

Lemma 2 is used repeatedly in Sections 4 and 5.

4. Solution of the equation (SE). In this section, we determine the
solution of the functional equation (SE). :

THEOREM 1. The functions f, F : I* — C satisfy the functional equation

(4.1) f(pr,gs) + f(ps,qr) = f(p,9)F(r,s)  (p,q,r,8€ D

" if and only if

- (4.2) f=0 and F arbitrary;
(4.3 f(p,9) =M(p)M(9)le + L(q) - L(p)],
& F(r,3) =2M(r)M(o);
(4.4) f(p, ) =aMi(p)M2(q) + BM1(q)M2(p),
' F(r,8) = M; (r)My(s) + My(s)My(r),

where a, B are arbitrary complex constants, M, My, M, :-I — C are nonzero
multiplicative functions, and L : I — C is a logarithmic map. -

Proor. First that f = 0 implies F is arbitrary. So, we assume from now
on f # 0. Then F # 0. Interchanging r and s in (4.1), we see that F is
symmetric, that is

(4.5) F(r;s) = F(s,r).

Substituting p = r = 1 in (4.1), we have

(46) - f(s,9) = £(1,9)F(1, ) - £(1,g5).
Defining
(4.7)  9(9):=f(l,9) and  h(s):= F(l 8)

for g,8 € I, and usmg (4.7) in (4. 6), we obtain

(4 8) » f(3,9) = g(@)h(s) — g(gs).
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Letting p = ¢ = 1 in (4.1), we see that
(4.9) f(r,8) + f(s,7) = aF(r,s)

where a := f(1,1) = g(1) is a complex constant. Substituting g=s= =1lin
(4.1) and then using (4.5) and (4.7), we get

(4.10) £(p,r) = F(p, DR(r) = £(pr,1).

Putting ¢ = 1 in (4.8) and using (4.7), we obtain

(4.11) £(5,1) = ah(s) - g(s).

Using (4.11) in (4.10) and (4.8), we get

(412)  f(p,7) = ah(p)h(r) — g(p)h(r) + g(pr) — ah(pr),
and |

(4.13)  2g(pr) — ah(pr) = g(r)h(p) + g(p)h(r) — ah(p)h(r).

Defining

| 1
(4.14) #(p) = g(p) — 5ah(p),
and using (4.14) in (4.13), we have

h( ) h(p)

(4.15) () = d(p)—5~ + ()=~ (prel).

The general solutions of (4.15) can be obtained from Lemma 1. Thus, we
have the list of solutions:

#(p) = 0,
(4.16) {h(p) arbitrary, .

(417 { ¢(p) =cM(p)L(p),

h(p) =2M(p),

¢(p) =c[M1(p) — Ma(p)),
(419 {h(p), Mi(p)+ Ma(p), My # My,
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where ¢ is an arbitrary constant, L : I — C is a logarithmic function, and
M, My, My : I — C are multiplicative functions. ]

Now we consider three cases corresponding to the above solutions.

Cask 1. Consider the solution (4.16). By (4.16) and (4.14), we have

(4.19) g(p) = %ah(p). ;

SuBCASE 1.1. First we assume @ = 0. Then (4.19) implies that g = 0,
and (4.8) yields that f = 0, which is not the case. So a # 0. :
SUBCASE 1.2. Next suppose, a # 0. Then using (4.19) in (4. 8), we obtain

2
(4.20) f(s,9) = —9(@)g(s) - 9(qs).
Letting s = 1 in (4.1) and using (4.7), (4.19) and (4.20), we get -

(4.21) ag(q)g(pr) - a®g(par) = 29(p)g(q)p(r) — ag(p)g(gr) — ag(r)g(pq).

For fixed but arbitrary ¢ in I, we define

(4.22) ¥(p) == 9(0)9(p) — ag(pq),

then (4.21) becomes

g(r)

(4.23) w(or) = v 5 + () 22,

+ ()=~

Note that only % is dependent on ¢, and that ¢ is independent of q The
general solution of (4.23) can be obtained from Lemma 1 as

7/

(4.24) ¥(p) =0 and g arbitrary, |
(4.25) ¥(p) = cL(p)M(p) and g(p) = aM(p),

(4.26) ¥(p) = c[M1(p) — M2(p)] and g(p) = o[M:i(p) + M2(p)]

for My # M3, where ¢ is a function of ¢. Note the independence of g from
q. To prove our assertions we are going to use mostly g. Using %(p) = 0 in
(4.22) we get ag(pq) = g(p)g(q) for some q. Since g is arbitrary, in this case,
we can assume that ag(pq) = g(p)g(q) holds for all p and q. Hence, we have

(4.27) | Lo g(p)=aM(p), pel.

/
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Using (4.27) into (4.20), we get

(428 £(5,9) = aM ()M (q).
Using (4.28) in (4.9), we obtain
(4.29) | F(r,s) = 2M(r)M(s).

This gives the solution (4.3) with L = 0.
Inserting (4.25) into (4.22), we get

¥(p) = a®* M(pq) — a> M(pq) =

which reduces to the above case thh ag(pq) = g(p)g(q) for all p and q, that
is, to the solution (4.3) (using only g).
Similarly, from (4.26) and (4.20), we obtain

430)  f(po)= —Ml(p)Mz(q)+ Ml(‘I)Mz(P),

and then from (4.9), we see that

»(4 31) , F(r,.s) My(r)Ma(s) + Ml(s)Ml(r);
This leads to the solution (4. 4) with @ = # = %. Here again we made use of

g only.
"~ Case 2. Now we consider the case correspondmg to (4.17). From (4.17),
we-get .

43) hp)=2M0) md ()= aM()+ MELG)

a.fter absorbing the constant ¢ with the logarithmic function L. Now lettmg
(4.32) into (4.8), we see that

f(p9) = M(D)M(g)a + L(g) - L(p)]

and this in (4.9) gives.'
- F(r, s) 2M(r)M(s).

:Thls yields the solution (4.3).
CAske 3. By (4 18) and (4 14), we obta.m

| { h(p) = M,(p) + My(p),

(4.33) 9(p) = clMy(p) - Ma()] + g[Ml'(p) + Ma(p)}
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for M,y ;é M,. Letting (4.33) into (4.8), we have

(439) () = (5 - ) Mip)Ma(@) + (5 + ¢) Mi (@) Ma(p).
Putting (4.34) in (4.9) and simplifying, we obtain
(435) F(r,s) = Mi(r)My(s) + My(s)My(r).
Thus, we obtam from (4.34) a,nd (4.35), the asserted solution (4.4) with
a=3-c, ,B =g +ec.

Since there are no more cased left, the proof of the theorem is now com-

plete. ]

COROLLARY 1. The functions F,g,hy : I* — C satisfy the functional
equation

(SE) F(pr’ qs) + F(ps’ qr) = g(p, qv)hl(;"’ 3) (P, q,T,8 € I)
if and only if |

(4.36) F = 0, g=0, and h, arbitrary;
(4.37) F=0, hi =0, and. g arbitrary;

F(pq) = M(p)M(g)la + L(g) - L(p)),

(439) 9(,0) = 3F(p,9),
hy(r,s) = bM(r)M(s); K

F(p,0) = aby(0)Ma(a) + BV (0) Ma(r),
(4.39) - {elpa)= %F (. 9),.
{ Fa(r8) = 21 Ma(s) + Ma() e ()

where a ,b(# 0),a, are arbitrary constants, L:1I- C is a logarithmic
funetion, and M, My, M, : I — C are nonzero multiplicative functxons &

PRrooF. Letting 7= s = 1 in (SE), we obtam

(4.40) 2F(p,q) = h1(1 l)y(P,q)
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Suppose hy(1,1) = 0. Then from (4.40), we get F' = 0 and this in (SE)
yields the solutions (4.36) and (4.37).
Suppose hi(1,1) # 0. Then by (4.40), we have

2
(4.41) 9(p,q) = 3 F (s ),

where b = hy(1,1). Letting (4.41) into (SE), we get

2 .
(442)  Fprgs)+ F(ps,qr) = SF(peq)in(r ).

The general solution of (4.42) can be obtained from Theorem | and thus,
we get the asserted solutions (4.37), (4.38) and (4.39). This completes the
proof. , O

5. Solution of the equation (DE).

THEOREM 2. The functions f,g,hs : I* — C satisfy the functional equa-
tion

(DE) f(pryqs) = f(ps,qr) = g(p, )ha(r,8)  (p,g,r,s€ 1)
if and only if

f(p.q) = ¥(pq),
(5.1) K g=0,

hy arbitrary;

f(p.q) = ¥(pg),
(5.2) g arbitrary,
hz = 0,'

4

$.0) = w0 - aa | (3 - ) M1

+ (5 + 08) Ma(o)] (¥1(0) - a0

(53) g(pg)=a [(% - aﬂ) Mi(p)M>(q)

+ (3 +a8) Mo,
 ha(r,8) = a[My (r)Ma(s) — My (s)Ma(r)];
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f(p, ) = $(pq) — aaM(p)M(q)[1 — BL(p)|L(q),
(5.4) 9(p,q) = aM(p)M(q)[1 — B(L(p) - L(q))],
ha(r,s) = aM(r)M(s)[L(r) — L(s));

f(p,q) = ¥(pq) — aM(p)M(q)L(p)L(q),
(5.5) 9(p,q) = caM(p)M(q)[L(p) — L(q)},
hay(r,s) = eM(r)M(s)[L(r) — L(s)];

f(p,9) = ¥(pq) — a[My(p) — Ma(p)][Mi1(q) - M2(q)),
(5.6) 9(p,q) = ca[M1(p)M3(q) — M1(q)M(p)],
ha(r, ) = c[M1(r)Ma(s) — My (s)My(r)],

where 1 : I — Cis an arbitrary function, L : I — C is a logarithmic function,

and M,My,M; : I — C are the multiplicative maps, and «,,a,b,c are
arbitrary complex constants.

Proor. If g = 0, then (DE) implies
(5.7) f(pr,qs) = f(ps,qr)  (pygymys€1).
Hence, letting 7 = ¢ = 1 in (5.7), we see that
f(p,3) = ¥(ps),
where () := f(z,1) is an arbitrary complex-valued function, and &, is
arbitrary. This gives the solution (5.1). Similarly, if h; = 0, we obtain
the asserted solution (5.2). From now on we assume that g and h, are not

identically zero.
Interchanging r with s in (DE), we get

(5.8) f(ps,qr) - f(pr,qs) = g(p, Oha(s, 7).

Adding (5.8) to (DE), we get

(5.9) 9(P, @) ha(r,8) + ha(s,7)] = 0.

4 - Annales...
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Since g # 0, from (5.9) we get
(5.10) ha(r,8) = —ha(s, 1),

that is, hq is skew-symmetric.
Letting ¢ = s = 1 in (DE), we obtain

(5.11) f(p,r) = 9(pr) - g(p, Dha(r, 1)

where ¥(z) := f(z,1). Repiacing r by zr and s by ys in (DE), we get
(5.12) f(pzr,qys) — f(pys, qzr) = g(p, )ha(27, ys).
Similarly, replacing p by pz and ¢ by gy in (DE), we obtain

(5.13) f(pzr,qys) — f(pzs, qyr) = g(pz, qy)ha(r, s).

Again, replacing p by ps,q by gr,r by z, and s by y in (DE), we get
(5.14) f(pzs,qyr) — f(psy,qrz) = g(ps, qr)ha(z, y).

Adding (5.13) to (5.14) and then applying (5.12) to it, we get
(5.15) 9(p, Dha(2z7,ys) = g(pz, qy)ha(r, s) + g(ps, qr)ha(z, y)

for all p,q,7,s,2,y € I. Letting p = ¢ = 1 in (5.15), we get

(5.16) aha(zr,ys) = g(z,y)ha(r,s) + g(s,r)ha(z, y),
where
(5.17) a:=g(1,1).

CAsE 1. Supposea # 0. Then (5.16) reduces to

(518) hz(l"l‘, ys) = gl(z» y)hZ(r’s) + gl(sa T)hZ(z, y)a
where
(5.19) ney) = 129,

Letting r = y = 1 in (5.18), and then using (5.10), we get

(5.20) ha(z,8) = g1(s, 1)ha(z,1) — g1(z, Dhy(s, 1).
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Now (5.11) becomes

(5.21) f(p,7) = ¥(pr) - agi(p, 1)ha(r,1).
Next, substituting y = s = 1 in (5.18), we get

(5.22) $(zr) = ¢1()(r) + $2(r)d(2),
where

(5.23) $1(z) = q(z, 1),

{¢(fb‘) = hy(z, 1),
d2(z) = g1(1, 2).

The general solution of (5.22) can be obtained from Lemma 2 as

ha(z,1) =0,
(5.24) g1(z, 1) arbitrary,
91(1,z) arbitrary;

(5.25) a(z,1) = M(z) - BM(2)L(z),

{ ha(z,1) = aM(z)L(z),
g1(1,z) = M(z) + BM(z)L(z);

ha(z,1) = a[M;(z) — My(z)],
(5.26) 91(2,1) = 3{Mr(2) + Ma(a)] ~ (M (x) - Ma(e)],
91(1,2) = 3{Mi(2) + My(2)) + aB[My(2) ~ Ma(2)].

Now we consider several subcases.

SuBcAsE 1.1. From (5.24) and (5.20) we see that Ay = 0. Since hy # 0
by our assumption, this case is not possible.

SuBcAst 1.2. By (5.25) and (5.20), we get
(5.27) hao(z,s) = aM(z)M(s)[L(z) — L(s)).
Using (5.21) and (5.25), we get

(5.28) f(p,r) = 9(pr) — aaM(p)M(r)[1 - BL(p)]L(r).

4™
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Letting (5.27) and (5.28) into (DE), we obtain

(5.29) 9(p,q) — aM(p)M(g)[1 - B(L(p) — L(q))).

Hence we have the solution (5.4).

Suscaske 1.3. By (5.26) and (5.20), we obtain
(5.30) ha(z,s) = o[ My (z)M2(s) — My(s)My(z)].

Using (5.21) and (5.26), we get

oy O (- o8) o

+ (% + aﬂ) Mz(l))] [Mi(r) — Ms(r)].

Using (5.31) and (5.30) in (DE), we get

632 g0 =a|(5-08) MM+ (5 +a8) a0

This gives the solution (5.3). Now case one is complete.

CasE 2. Now we consider the case a = 0. Putting p=¢ = 1 in (DE), we
see that

(5.33) f(s,7) = £(r,5)

and (5.16) gives

(5.34) 9(2,y)ha(r,8) + g(s,7)ha(,y) = 0.
Since hy # 0, (5.34) yields

(535) g(:v,y) = Oth2(.'1:, y)a

where a is a complex constant. Note that a # 0, otherwise ¢ = 0 contrary
to our assumption. Letting (5.35) into (5.15), we get

(5.36) h2(p, Q)ha(zT,y8) = ha(px, qy)ha(r, ) + ha(ps, gr)ha(z, y),

where p,q,7, 8,2,y € I.
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We claim that h2(p,1) # 0. Suppose not. Letting r = y = 1 in (5.36), we
obtain

ha(p, g}ha(z, s) = ha(pz, q)ha(1, ) + ha(ps, )ha(z, 1).
By (5.10), we get
ha(p, ¢)h2(z,s) = 0.
Hence hy = 0 contrary to our assumption that hy # 0. Hence hy(p, 1) # 0.

Let p = p, € I such that hy(p,, 1) # 0. Letting p = p, and ¢ = 1 in (5.36),
we obtain

(5'37) 132("1:7‘7 ys) = h](-’t,’y)hz(T,S) + h1(87 7‘)’7‘2(‘”3 y)a
where
(5.38) ha(z,y) = 12(PeTY)

h?(pov 1) .

Letting y = s = 1 in (5.37), we see that
(5.39) ¢(er) = ¢1(2)¢(r) + b2(r)¢(),

o #(z) = ha(z,1),
(5.40) $1(z) = h(z, 1),
¢2(z) = hi(1, ).

The general solution of (5.39) can be obtained from Lemma 2. Hence we
have

h2($’ 1) =0,
(5.41) hi(z, 1) arbitrary,

hi(1,z) arbitrary;

hy(z,1) =aM(z)L(x),
(5.42) - h(z,1y=M(z) - dM(z)L(z),
hi(l,z) =M(z) + dM(z)L(z);
ha(z,1) =c[M(z) - Ma(z)],
(5.43) (2, 1) =5{Ma(2) + Ma(2)] - de[s(z) - My(2)],

hi(1,2) =-;-[M]((L') + My(z)] + de[My(z) — My(z)).
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Letting y = » = 1 in (5.37) and using (5.10), we obtain
(5.44) ha(z,s) = ha(z, 1) (s, 1) = ha(s, 1)hy(z, 1).

Now we consider three subcases.

Suscast 2.1. From (5.41) and (5.44), we get ha = 0 contrary to our
assumption. Hence this case is not possible.

SUBCASE 2.2. By (5.42) and (5.44), we get
(5.45) ha(z,8) = cM(2)M(s)[L(z) — L(s)]
and (5.35) gives
(5.46) 9(z,y) = acM(z)M (y)[L(z) — L(y)].
Using (5.45) and (5.46) in (5.11), we obtain
(5.47) f(pr) = P(pr) — ac® M(p)M(r)L(p)L(r).

Hence by (5.45) - (5.47), we have the solution (5.5).
SuBCASE 2.3. Finally, from (5.43) and (5.44), we get

(5.48) ha(w,8) = c[My(z)Ms(s) — My(s)Ma(2)]

and from (5.35),

(5.49) 9(2,y) = ac[Mi(z)My(y) — M1 (y)Ma(z)].

Using (5.48) and (5.49) in (5.11), we get

(5.50) f(p,r) = ¥(pr) = Pa[Mi(p) - Ma(p)|[Mi(r) — Ma(r)].

Hence we have the asserted solution (5.6).
Since no more cases left, this completes the proof.of the theorem. O

6. The main result. In this section, we will present the general complex-
-valued solution of the functional equation (FE) without assuming any regu-
larity condition on the unknown functions. The reasons for considering (SE)
and (DE) in Sections 4 and 5 respectively are the following.

Interchanging r with s in (FE), we obtain

(6.1) fi(ps,qr) + fa(pr,qs) = g(p,q)h(s, 7).
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Adding (6.1) to (FE), we get
(SE) F(pr,4s) + F(ps,qr) = g(p, 0 (8),
where

(6.2) { F(p,q) := fi(p, ) + fo(p,q),

hi(r,s) := h(r,s) + h(s,r).
Similarly, subtracting (6.1) from (FE), we obtain

(DE) f(prsas) = f(ps,qr) = g(p, Dha(r, 5),

where

(6.3) -

f(p.q) = fi(p,9) — f2(p, ),
ha(r,s) 1= h(r,s) — h(s,r).

The solutions of (SE) and (DE) are already given in Sections 4 and 5,
respectively. Hence, by using the solutions of (SE), (DE), (6.2) and (6.3),
we determine the solutions of (FE). To obtain the solution of (FE), one has
to consider a total of twenty four cases. After, some tedious calculations, we
have the following theorem.

THEOREM 3. The functions fy, fa,g,h : I* — C satisfy the functional
equation '

(FE) fi(pryqs) + fa(ps.qr) = g(p,¢)h(r,s)  (p,g,7,s €]0,1))
if and only if

fi(p, q) = ¥(pg),
f2(p,q) = —¥(pq),

(6.4) h(r,s) arbitrary,
9(p,q) = 0;
fi(p, ) = ¥(pg),
65) fa(p,q) = —9(pg),

h(r,s) =0,
9(p, q) arbitrary;
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fi(p, @) = ¥(pq) — caM(p)M(g)[1 — BL(p)]L(q),
f2(p,q) = —9(pg) + caM(p)M(g)[1 — BL(p)}L(q),

(6:6) h(r,s) = aM(r)M(S)[L(r) - L(5))
9(p,q) = cM(p)M(q)[! - B(L(p) — L(q))];
fi(p,q) = ¥(pqg) - FaM(p)M(q)L(p)L(q),
6.7) f2(p,q) = —9(pq) + aM(p)M(q)L(p)L(q),

h(r,s) = eM(r)M(s)[L(r) = L(s)],
9(p,q) = caM (p)M(q)[L(p) — L(q)];

( fi(p,q) = ¥(pq) + M(p)M(qg)[c + L(g) — L(p)],
fa(p,q) = =¥(pg) + M(p)M(q)[c + L(q) — L(p)],
(6.8) L h(r,s) = bM(r)M(s),

| 9(p:9) = %M(p)M(q)[c + L(q) - L(p));

([ fi(p, @) = ¥(pg) — baM (p)M(g)[1 — BL(p)]L(q)
+OMEIM() |5+ L) - L)
f2(p,a) = —(pq) + baM (p)M(g)[1 — BL(p)]L(q)

+ oM [+ 16o) - L),

h(r,s) = aM(r)M(s) [% +a{L() - 1Y
L 9(p,q) = bM(p)M(q)[1 - B(L(p) — L(9)));

- (6.9) 4

( f1(p,q) = ¥(pq) — b*aM (p)M(q)L(p)L(q)
+ M(p)M(g){L(q) — L(p)],

f2(p,q) = —(pq) + B> aM(p)M(q)L(p)L(q)
(6.10) . + M(p)M(q)[L(q) - L(p)],

B, = M) [~ + (20 - 1),
| 9(p, ) = baM(p)M(q)[L(p) - L(q)];




57

(P 9) = ¥(pg) = ac’[M1(p) — Ma(p)I[Mi(g) — Ma(q)],
f2(p,q) = —¥(pq) + ac®[My(p) — Ma(p))[Mi(q) — Ma(q)],
h(r,s) = c[Mi(r)Ms(s) — My(s)M,(r)],

9(p,q) = ca[M1(p)M:2(q) — M1(q) Ms(p));

( f1(p, ) = ¥(pg) + a M (p) Ms(q) + BM1(q)Ma(p),
f2(P,q) = —¢(pg) + aM1(p) Ma2(q) + BM1(q) Ma(p),

(6.12) 3 h(r,s) = g[M](r)Mg(S) + M (s)My(r)),

(6.11)

| 9(p,q) = %[GMI(P)Mz(‘I) + BMi(q)M2(p));

[ f1(p,9) = $(pg) — a[Mi(p) — Ma(p)][Mi(g) — Ma(q)]

+ ;—ica[Ml(p)Mz(q) - Mi(q)Ma(p)),
f2(p,q) = —¥(pg) + Fa[Mi(p) — Ma(p)][Mi(q) — Ma(q))

+ SealMy(p)Ma(q) ~ M (0)Mo(p),
h(r,s) = (‘;‘ " ) My(r)Ma(s) + (g . ) My(8) Ma(r),
L 9(P, q) = ca[My(p)M,(q) — Mi(q)M2(p));

(6.13) |

[ i) = ¥(pq) — ca [(% - aﬂ) Mi(p)

+ (% + aﬂ) Mz(l’)] (Mi(q) - M2(q)]

+ (% - aﬂ) My (p)Ma(q) + G + aﬂ) M, (q) Ma(p),

6.10) f2(p,q) = —(pq) + ca K% - aﬂ) My(p)
+ (% + aﬂ) Mz(p)] [Mi(fz) - Ma(q)]
+ (% - aﬂ) My(p)My(q) + (% + aﬂ) My (q)Ma(p),

)= (@t 1) Mr(rIMa(e) - (o= 2) aroppato,

90)= ¢ | (5~ 08) 20)80(0) + (5 + 08) (a1
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where ¥ : I — C is an arbitrary function, L : [ — C is a logarithmic map,
M, My, M; : I — C are multiplicative functions, and «, 3(# 0), b(# 0),¢,d
are arbitrary complex constants.
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