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O N N O N - N E G A T I V E SOLUTIONS 

O F A C O N V O L U T I O N E Q U A T I O N 

W I T O L D J A R C Z Y K 

Abstract. Some properties of non-negative measurable solutions of equa­
tion (1) are studied. The obtained results are stronger versions of those from 
[6] and their proofs are shorter and simpler. 

Given a semigroup (5, +), a solution (p : S —• R of the Cauchy equation 

<p(x + y) = <f(x)<p(y) 

and a measure v on a set E C S integrate (if possible) the above equality 
with respect to y. Then 

J <p(x + y)du(y) = <p(x) j <p(y)dv(y) 
E E 

for every x.C. S. Thus, assuming that the number c = J <p(y)du(y) is positive 
E 

and finite and putting n = \v, we come to the equation 

(1) <p(x) = J <p(x + y)dn(y). 
E 

This equation originates from probability, especially from the theory of 
renewal processes and was intensively studied by many authors starting from 
G. Choquet and J . Deny [2] in 1960. There is a lot of results giving the form 
of non-negative solutions of equation (1) in various classes of functions and 
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under various assumptions imposed on the semigroup S and the measure 
H (cf. [10] and the references therein, also [8] for the infinite-dimensional 
case). 

In [6], trying to find another way of solving equation (1), the author of 
the present paper proved a result describing a convexity property of its non-
-negative solutions in a pretty general, purely algebraic setting. This is only 
a step in the procedure but demands weaker assumptions concerning the 
semigroup and the solution as usual. 

The aim of this paper is to give shorter and simpler proofs of more general 
versions of the results presented in [6]. The main one (Theorem 1) is an 
integral counterpart of the following result (see [5, Theorem 1.1]). Its special 
case was proved by K . Baron and the author in [1]. 

Denote by e j , . . . ,ek the canonical zero-one basis of the fc-dimensional 
Euclidean real space. Let P\,... ,Pk be sets of integers satisfying the con­
ditions 

(2) Pi + lcPi, i=l,...,k, 

and put P = P i x . . . x Pk-

T H E O R E M . Let A\,... ,Ak be positive reals and let <p : P R be a 
non-negative solution of the equation 

k 

(3) v>(n) = ^ ^ ( n + ei). 

Then 

- v(n) 2 < <p(n - m)y?(n + m) 

for every vectors n G P and m G Z f c such that n - m, n + m G P. 
The Theorem turned out to be very useful in sojving quite a lot of prob­

lems not only in the theory of functional equations (for some of them see [4] 
and [5, Chapters II and IV]). In the present paper we are going to make use 
of it to prove Theorem 1. 

Let (5,+) be an Abelian semigroup. Given a non-void set A C S denote 
by S(A) the semigroup (with the neutral element denoted by 0) generated 
by A: 

S(A) = { n a a i + . . . + nkak : n G N„, a^,... ,ak £ A, k G N}. 
Fix a non-void set E C S and assume that the semigroup S{E) is can-

cellative, i.e. 
x + z = y + z implies x = y 
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for every x, y,z G S(E). Due to a'theorem of 0 . Ore [9] (see also [3, Section 
1.10] or [7, Theorem 4.5.2]) it is known that there exists a group (G(E)}+) 
such that (S(E), +) is a subsemigroup of (G(E),+) and 

G(E) = S(E)-S(E). 

Moreover, the group (G(E), +) is Abelian which follows almost immediately 
from the commutativity of S(E). 

Let 9J1 be a a-algebra of subsets of E and let /t : 9J1 —>• [0, oo] be a a-finite 
measure. Given a positive integer p denote by 9ft®p and /J® p the ^-products 
of p copies of OT and fi, respectively. 

Fix a set A" C G(E) satisfying the condition 

(4) X + EC.X. 

In what follows if n G Zk then |n| will stand for the number n\ +... +ilk-

T H E O R E M 1. Let if : A' —> R be a n on-negative solution of equation (1) 
and assume that the function 

(5) Ev 3(eu... , ep) ^ <p{x + d + . . . + ep) 

is 9JlQp-measurable for every x G A' and p G N . 
If k is a positive integer and (/],..., Uk G are pairwise disjoint non-

-void sets then 

x...xU^k 

< J ifix + U + . . . + / . | „ - I „ | ) ^ ® 1 " " , U | ( « l , - - - , < | n - , „ | ) 

U ^ - m i x . . . x U ; k - m k 

I 
U^+m^x...xU^ 

for every x G X and vectors n G N£ and m G Z f c s^cń that n - m, n + m G 

P R O O F . Fix a point x G A ' , a positive integer k, and pairwise disjoint non-
-void sets {/] , . . . , 1/* G 9J1. First assume additionally that U\ U . . . U Uk = £• 
For every n G NQ put 

V>(n)= y v ( x + * i + . . . + « w ) r f / i ® | n | ( f i , . . . , i w ) . 

t/;1 x. . .xi/ ;* 
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Since <p is non-negative it follows from (1) that 

V>(n) < <p(x), n e NQ\ 

Therefore the values of ip are finite and, evidently, non-negative. Moreover, 
due to the commutativity of S and by (1), we have 

fc 

2>(n + e0 
t=i 

k 

= £ J <p(x + h + ..,+ tH + <|„|+I)^0(|n|+1) 

1 = 1 Up x...xUp xUi 

(<!,... , <|n|+l ) 

/ [Y,jrtX + h +--- + *|n| + 0 < M 0 J d/*®W(«l>--- ,<|u|) 

/ ( / v ( * + * l + . . . + * |n |+*) r fM0l rf/*®W(«l.---1'|n|) 

t/,n ix...xi/;* \ E / 

y V>(a: + t 1 + . . . + t | n | ) r f / i® H ( ' i . - - -»« |n | ) = ^ ( n ) 
l/" łx...xŁ/ t" f c 

for every n € NQ . So in this case the assertion immediately follows from the 
Theorem where we take P = NQ. 

In the case where U\ U . . . U Uk ^ E it is enough to put Uk+\ = E \ 
(Ui U . . . U Uk) and apply the part just proved of the theorem to the sets 
U\,... , Uk, Uk+\ and the vectors ( n i , . . . , n k , 0 ) and ( m i , . . . ,mfc,0). • 

Now we are interested in the situation where the semigroup S has a suit­
ably rich topological structure. 

R E M A R K 1. Assume that (5,+) is an Abelian topological semigroup, 
E treated as a topological subspace of S has a countable base and \i is a 
<r-finite Borel measure on E. 

Since E has a countable base it follows that for every p G N the a-
-algebra of Borel subsets of Ep coincides with the a-product of p copies of 
the <7-algebra of Borel subsets of E. Therefore, if <p : X —*• K is such that the 
function £ 3 e i - > <p(x + e) is Borel measurable then function (5) is product 
Borel measurable for every p € N. 
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In Theorem 2 we shall assume that the set E is additively independent. 
This means that if k,l are positive integers, x\,... Vi, • • • 5 Vi € E and 
x\ + . . . + Xk = 2/i + • • • + Vi then k = I and there is a permutation % of the set 
{ 1 , . . . ,k} such that yi = x ^ for each i £ {\,... ,k}. Clearly the additive 
independence of E implies the cancellativity of the semigroup S(E). 

E X A M P L E ([6]). Fix a non-void set T and consider the set 5 = RT 

endowed with the usual addition. The set E consisting of all the functions 
et :T^Z, t 6 T, given by 

J' 1 for u = t, 
e ' ( u ) = \ 0 for ueT\{t} 

is additively independent. Moreover, 

S(E) = {a; € NQ : the set {t£T : x(t) ^ 0} is finite} 

and 
G(E) = {x £ ZT : the set {t G T : x(t) f 0} is finite}. 

In particular, if T = { 1 , . . . , jfc}, where i c N , then S(E) = NQ and G(E) = 
Zk. 

Under the assumptions imposed in Remark 1 on 5, E, and n we are going 
to prove the following result. Here supp p stands for the support of the 
measure / J , i.e. the set of all points each neighbourhood of which has a 
positive measure fi. Observe that, in view of (4), 

X + 5(supp n) C A'. 

THEOREM 2. Assume that the set E Is additively independent and each 
point of supp p. has a neighbourhood of finite p. measure. Let <p : X —» R 
be a non-negative solution of equation (1) such that the function E 3 e •-» 
<p(x + e) is Borel measurable for every x G A ' . 

Ifx^X then 

(6) ip(x + v)2 < (p(x + u)<p{x + w) 

for every u,v,w G 5(supp p) such that x + u, x + v, x + w are points of 
continuity of <p and 2v = u +w. 

P R O O F . Fix x G X and points «, v,w G 5(supp p) such that 2v = u + w 
and <p is continuous at x + u, x + v, and x + w. Then 

k k k 
• « = u = ^ 9 « 5 t , and w^^riSi 
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for some k G N , pairwise different s\,... ,sk G supp (.1 and p , q , r G Ng. 
Since 

i*t 
«=i J=I 

it follows from the additive independence of E that 

(7) 2<7; = p,- + r „ t = l , . . . , f c . 

For every / G N choose pairwise disjoint neighbourhoods V\j,... , Vkj of the 
points 5 ] , . . . , sk such that 

(8a) + + . . . + * l p | ) - v ( x + tt)| < y , (*i,• • • ,<|P|) € K ( p , / ) , 

(8b) |y>(* + «i + ... + tM)-<p(z + v)\ < ((, * | q | ) € % 0 -

and 

i \in(r -4- f- -i- J- / i 11 — in(r. 4- <̂  
/ 

(8c) |y>(* + ' i + . . . + t | r | ) - ^(a; + w)| < }, (*,,... , * M ) € K ( r , / ) , 

where 

V{n,l)=V»}x...xVft, n<EN*. 

Since s i , . . . ,sjt € supp /* we can additionally assume that 

0 < n(Viti) < oo, i = l , . . . , f c , / G N . 

Thus / i® ' p l (V(p , /)), / i ® | q | ( V ( q , /)), and /4®l rl(V(r, /)) are finite and positive 
numbers for each / G N . 

For every / G N , by virtue of Theorem 1, Remark 1 and condition (7), we 
have 

U®|q | ( l / (q , / ) ) . 
V V(ą,l) 

j ip(x+tl+... + tM)dfl®W(U , • • • , *|q|) 

(9) * ^ | p | ( V ( P t / ) ) / « x + t* + - + « | p | ) ^ | p | ( ' i . - . « l P l ) 
"(p,0 

J <p(x + U + ... + t H ) d / x ® l r l ( f l ł . . . , t | P |). 

V(P ,0 
1 

/ i®H(V(r , / ) ) 
V(r,0 
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If / G N then, using (8a), we obtain 

/ ł ® | p | ( K ( p , / ) ) / * ( x + t i +--- + < |p | ) r f A*® | p | (« i , - - , * | P | ) + u 
V(P ,0 

V ' p ' ( K ( p , / ) ) / l ^ a f + ' » + - - - + 'lp|)--V< a ! + « ' ) l r f / * 8 l p l ( ' i . - . « | p | ) 
"(p.0 

<7 ' 

whence 

£ ~ ;*«IPI(VXP,/)) / ^ x + ' i + - - + ' i p | ) r f M ® | p | ( ' i , . . - , < i p i ) = v(* + «)-
V(p.O 

Similarly, by (8b) and (8c), 

V(q,() 

and 

& / t ® H ( K ( r , / ) ) / + ' i + • • • + *|r |)d/*® , r , (*i ,• • • ,*|r|) = ¥>(* + *>)• 
V(r,/) 

Consequently, on account of (9), we get inequality (6). • 

R E M A R K 2. It follows from the proof of Theorem 2 that if either u = 0 
or w = 9 then the conclusion holds true without the assumption of the 
continuity of <p at x + u or x -f w, respectively (that is at x). Moreover, for 
the validity of the theorem it is enough to know that the points s\,... ,Sk 
used in the representations of u,v, and w have neighbourhoods of finite 
measure 

R E M A R K 3. Fix a positive integer k, sets P i , . . . , / \ . C Z satisfying the 
conditions (2) and put P = P\ x . . . x /\-. The set E = { e 1 ( . . . ,et} is an 
additively independent subset of the group R f c ; moreover, S(E) = Nq and 
G(E) = Zk (cf. the Example). 

Let A\,... Ak be positive reals and consider the measure /t defined on 2E 

by the formula 

Kiei}) = Ai, i = l , . . . , k . 
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Clearly S(supp /x) = S(E) = N^. 
Take a non-negative solution <p : P —• K of equation (3) and fix vectors 

n G P and m G Zk such that n - m, n + m G P. The vector x, defined by 

Xi = min{?ij - m, , + nii}, i = 1,... , k, 

is an element of P. Moreover, putting u = n - m — x, v = n — x, and 
w = n + m — x, we get u,v,w G NQ = 5(supp /t) and 2v = u + w . 
Consequently, by virtue of Theorem 2, 

V?(x + v) 2 < <̂ (x + u)(p{x + w), 

i.e. 
f(n)2 ^ v ( n — m)y?(n + m). 

Therefore the Theorem can be deduced from Theorem 2. 

The final result deals with the equation 

(10) r/>(y) = J iP(f(t,y))dv(t) 

T 

more general than equation (1). Its proof does not differ essentially from 
that one of [6, Corollary 1]. 

Given sets Y and T and a function / : T x Y —>• Y we shall write / ( 

instead of f(t, •) for any t G T. 

THEOREM 3. Let 21 and 9t be cr-algebras of subsets of sets Y and T, 
respectively, and let v : 91 —• [0, oo] be a a-fmite measure. Assume that 
f : T x Y —• Y is such a function that 

(U) f. o ft = ft o f„ s,t£T, 

and the function 

Tp 3 (* , , . . . , tp) ~ o . . . o fip(y) 

is 91®P - 21 - measurable for every y G Y and p G N . 
Let ij) : Y —» R be a, non-negative 21 -measurable solution of equation (10). 

If A; is a positive integer and V i , . . . , V* G 91 are pairwise disjoint non-void 
sets then 

( y o . . . o ( i r ) )d^® i n | (< i , . - • . 2 

< J o . . . o / « , „ . . , ( » ) ) ^ - m l ( < „ . . . , * j „ _ m | ) 

K 1 " 1 _ m i x . . . x V ) t

n * - m k 
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for every y C. Y and vectors n G NQ and m G Zk such that n — m, 
n + m G Nś". 

P R O O F . Define the group S and the set E as in the Example and let .V be 
the set of all functions mapping T into No vanishing outside a finite subset 
of T. Clearly A' C G(E) and X + E C A ' . Since the function F : T -* E, 
given by F(l) = et, is a Injection, the formula 

,i(A) = u(F-\A)) 

defines a CT—finite measure /J on the <r-algebra 9JI = {A C E : F~*(A) G 9t}. 

Fix a y G V . For each x G A' there is only a finite number of t's, say 
t\,... G 7\ such that x(t.) ^ 0. Then x(t]),... ,x(ł() G N , so we may 
take into account the iterates f ^ t l \ . . . , / ^ ' ' ' . Put 

V(a:) = ^ ( y ? ' , , o . . . o 

(In the case / = 0 this means that <p(x) = i>(y).) The function <p : X —* K is 
non-negative and the function 

E» B ( e ( 1 ) , . . . , e ( p ) ) i - <p(x + + . . . + e ( p ) ) 

is OT®P - measurable for every x G A' and p G N . 
Now fix an x £ X and let G T be all t's for which a-(ź) ^ 0. 

Making use of the definition of tp and equalities (10) and (11) we obtain 

= J*{tfh)o...of««>oft(y))ditt) 

T 

= J <p(x + et)dv{t) = J ip(x + c)dp(e). 
T E 

Thus we have proved that tp satisfies equation (1). 
Fix a positive integer k, pairwise disjoint non-void sets V j , . . . , Vj. G W 

and vectors n e N j and m G Z f c such that n - m, n + m G N ^ . Then, by 
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vi Je 

[ / 
\F(Vi)»l X...X 

Theorem 1, 

, y 
J W f , o . . . o / ł | m l ( y ) ) ^ ® H ( < , , . . . • , « , „ , ) 

y i -x . -xv;* / 

, v 
J ^(e < l +. . . + e , | n | ) ^ ® H ( i 1 , . . . , < | l l | ) 

y ; i x . . . x v ; » / 
2 

V 
^ ( 5 l + . . . - r 5 | n | ) d / i ® l n l ( 5 l , . . . , a w ) 

•.xF(V t)'k 

< / + • • • + * | n - » | ) r f / * ® | n - m , ( « l , " • , « | n - m | ) 

F ( V i ) n i - m i x . . .xF(V t )"k- m * 

i + . . . + * | B + m | ) r f / i ® | , , + m | ( « l , • • • , *|u+m|) 

F ( V i ) B i + m i x . . .xF(V i f e )"* + m * 

J W « , « . . . o / , „ . . . , ( » ) ) ^ l - » l ( 4 l f . . . ,*,„_„„) 
v ; i - " , ' x . . . x v ; * _ n * 

/ W « 1 o . . . o / , | M ^ | ( y ) ) d , / « l - + - l ( « 1 , . . . , t , B + m | ) 

V , " 1 + m i x . . .xV t "* + m * 

which completes the proof. • 
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