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ON NON-NEGATIVE SOLUTIONS
OF A CONVOLUTION EQUATION

WiIToLD JARCZYK

Abstract. Some properties of non-negative measurable solutions of equa-
tion (1) are studied. The obtained results are stronger versions of those from
(6] and their proofs are shorter and simpler.

Given a semigroup (S5, +), a solution ¢ : § — R of the Cauchy equation

(z +y) = (z)p(y)

and a measure v on a set E C S integrate (if possible) the above equality
with respect to y. Then

/ o(z + )du(y) = o(z) / o(¥)dv(y)
E E

for every z € S. Thus, assuming that the number ¢ = [ ¢(y)dv(y) is positive
o\

and finite and putting p = %I/, we come to the equation

1) o) = [ ole +9)duty).

E

This equation originates from probability, especially from the theory of
renewal processes and was intensively studied by many-authors starting from
G. Choquet and J. Deny [2] in 1960. There is a lot of results giving the form
of non—negative solutions of equation (1) in various classes of functions and
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under various assumptions imposed on the semigroup S and the measure
p (cf. [10] and the references therein, also (8] for the infinite-dimensional
case).

In [6], trying to find another way of solving equation (1), the author of
the present paper proved a result describing a convexity property of its non-
-negative solutions in a pretty general, purely algebraic setting. This is only
a step in the procedure but demands weaker assumptions concerning the
semigroup and the solution as usual. :

The aim of this paper is to give shorter and simpler proofs of more general
versions of the results presented in [6]. The main one (Theorem 1) is an
integral counterpart of the following result (see [5, Theorem 1.1]). Its special
case was proved by K. Baron and the author in [1].

Denote by ey, ... ,e; the canonical zero—one basis of the k—dimensional
Euclidean real space. Let Py,..., Py be sets of integers satisfying the con-
ditions

(2) Pi+1CP, i=1,...,k,
and put P =Py x ... X Py.

THEOREM. Let Ay,..., Ay be positive reals and let ¢ : P — R be a
non-negative solution of the equation

k
(3) p(n) =Y Aip(n +e;).
i=1

" Then
‘ ¢(n)? < p(n — m)p(n + m) ’
for every vectors n € P and m € Z* such that n -m,n+meP.

The Theorem turned out to be very useful in sc,),]ving quite a lot of prob-
lems not only in the theory of functional equations (for some of them see [4]
and [5, Chapters II and IV]). In the present paper we are gomg to make use
of it to prove Theorem 1.

' Let (S, +) be an Abelian semigroup. Given a non-void set A C 5 denote
by S(A) the semigroup (with the neutral element denoted by ) generated
by A:

S(A):{n1a1+...+nkak: nEN(';, a1,...,qk€A, kEN}.ﬁ

Fix a non-void set £ C S and assume that the semigfoup S(L) is can-
cellative, i.e. v
z+z=y+2z implies z=y
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for every x,y,z € S(E). Due to a theorem of O. Ore [9] (see also [3, Section
1.10] or {7, Theorem 4.5.2]) it is known that there exists a group (G(E),+)
such that (S(F),+) is a subsemigroup of (G(F),+) and

G(E)= S(E) - S(E).

Moreover, the group (G(FE), +) is Abelian which follows almost immediately
from the commutativity of S(FE). .
Let 9 be a o-algebra of subsets of E and let g : 9 — [0, 00] be a afinite
measure. Given a positive integer p denote by IM®? and u®? the o-products
of p copies of M and p, respectively.
Fix a set X C G(F) satisfying the condition

(4) . X+EcCX.

In what follows if n € Z* then [n| will stand for the number ny +...4ny.

THEOREM 1. Let ¢ : X — R be a non-negative solution of equatmu (1)
and assume that the function

(5) E'Ja(e],...,cp)r—mp(a:1+61+...+e,,)

is M®P—measurable for every 2 € X and p € N,
If k is a positive integer and Uy,... ,U; € M are pairwise disjoint non-
-void sets then

) 2
( / elz+ 4 + ---+t|u|)d/l'®!n|(tls-~- 7t|ni))

n] ﬂk
Uyt xi.xUg

< / (,9(11, +H+...+ t|n—m|)dlt®|n_m|(t1v oo ’t|n—m|)

yyny—my ny—my
Uptm 7 xex Uy .

99(17 +h+...+ t|n+m|)d/lf®|n+ml(t1v R t|n+m|)

nymy ngtmy
U, X xUy ‘

for every z € X and vectors n € N5 and m € Z* sych thatn~m, n+m €
NL

PRrooF. Fix a point z € X, a positive integer k, and pairwise disjoint non-
-void sets Uy, ..., Uy € 9. First assume additionally that U;U...uU, = E.
For évery n € N§ put '

1/)(11) = / ez + 1 + ...+t|n|)du®|nl(t1,... ,t|n|).

" i
Uyl x...xUg
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Since ¢ is non—negative it follows from (1) that .
¥(n) < p(z), neNg.

Therefore the values of ¥ are finite and, evidently, non-negative. Morcover,
due to the commutativity of S and by (1), we have

k
Z?/’(n + e;)

k
= Z / Pl +ti+..o 4+t + t|n|+1)d#®(|n|+1)
=1

UMt x..xUk xU;

(tl yree 7t|n|, t|n|+1)

k
= / . /(,9(:1: + bt 4 ..+ b + t)dp(t) dp®™(tq, ..., tin|)
i=1 U; )

m1 nk
Ut x...xU,

= / (/ P+t +...+ by +t)du(t)> dp®™ (21, ...y tm)
Ut x...xUZ* '

i

QO((E +tH+...+ t|n|)dﬂ®|"|(t1, e ,t|“|) = ’(/)(l’l)

LD} B
Uyt x...xU,

for every n € N§. So in this case the assertion immediately follows from the
Theorem where we take P = N§.

In the case where Uy U...U U, # E it is enough to put Uy = E \
(U; U...U U;) and apply the part just proved of the theorem to the sets
Us,...,Uk,Ursr and the vectors (nyq,...,nk,0) and (mq,...,mg,0). O

Now we are interested in the situation where the semigroup S has a suit-
ably rich topological structure.

REMARK 1. Assume that (5,+) is an Abelian topological semigroup,
F treated as a topological subspace of § has a countable base and u is a
o-finite Borel measure on E.

Since E has a countable base it follows that for every p € N the o-
-algebra of Borel subsets of E? coincides with the o—product of p copies of
the o—-algebra of Borel subsets of E. Therefore, if ¢ : X — R is such that the
function E 3 e — ¢(z + €) is Borel measurable then function (5) is product
Borel measurable for every p € N.
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. In Theorem 2 we shall assume that the set £ is additively independent.
- This means that if k,! are positive integers, z1,... ,Zx, Y1,...,y1 € E and
Zy+...+ 2, = y1+...+y then k£ =l and there is a permutation 7 of the set
{1,...,k} such that y; = z.(; for each i € {1,...,k}. Clearly the additive
independence of E implies the cancellativity of the semigroup S(E).

EXAMPLE ([6]).  Fix a non-void set T and consider the set § = RT
endowed with the usual addition. The set E consisting of all the functions
e: T —2Z, teT,given by

1 for wu=t,
e,(u)_{o for uweT\({t}

is aﬂditively independent. Moreover,

S(E)y={z € NJ: theset {teT: z(t)#0} is finite}
and

G(E)={z €ZT: theset {teT: z(t)#£0} is finite}.

In particular, if T = {1,... ,k}, where k € N, then S(E) = N§ and G(E) =
z*

Under the assumptions imposed in Remark 1 on S, E, and p we are going
to prove the following result. Here supp g stands for the support of the

measure pu, i.e. the set of all points each neighbourhood of which has a
positive measure p. Observe that, in view of (4),

X + S(supp p) C X.

THEOREM 2. ‘Assume that the set E is additively independent and each
pomt of supp p has a neighbourhood of finite u measure. Let ¢ : X — R
be a non-negative solution of equation (1) such that the function E > e
@(x + €) is Borel measurable for every z € X.

Ifx € X then

(6) ¢z +v)° < p(z + u)p(z + w)

for every u,v,w € S(supp p) such that z + u, = + v, & + w are points of
continuity of ¢ and 2v = u +w.

Proor. Fix z € X and points u,v,w € S(supp u) such that 2v = u + w
and ¢ is continuous at z + u, z + v, and z + w. Then

, k k : k
w=) pisi, v=) s, and w=)Y s
= i=1 i=1
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for some k € N, pairwise different sy,...,s; € supp p and p.q,r € N}.

Since
k

k
22(1,-3.- = E(])i + 73)s;
i=1

i=1

it follows from the additive independence of E that
(7) 2¢; =pi+ri, i=1,...,k

For every | € N choose pairwise disjoint neighbourhoods V; ,..., V. of the
points $q,...,8, such that

1
(88.) |(,9(Il:+t1 ++tlp|)—99(l'+U)| < 79 (tlv--- ’tlp|)E V(psl)v

1
(8b) je(z+ti4...4+1q) —p(z+v)| < T (t1,...,t)q) € V(q,1),

and

o~ —

(SC) |(,9(:l:+t1 +.+t|r|)—(p($+'W)| <7 (t1,--. vt]r|)€ V(r,l),

where
Vin, )=V} x...x V™, neN.

Since $1,...,Sk € supp u we can additionally assume that

” 0<pu(Vir)<oo, i=1,...,k, [€N.

Thus p®P(V(p,1)), u8lal(V(q,l)),and u®*l(V(r,1)) are finite and positive
numbers for each [ € N. »

For every | € N, by virtue of Theorem 1, Remark 1 and condition (7), we
have

1
1®lal(V(q, 1)) / Q@+t + ... g )dp®l(t, . tq)
V(a,)
' 1
) S LoV (p,D) / ple+t+ ...+ tp)de®Plty, . )
' V(p) :

! ®lr|
W / elz+tr+ .o+ t)dp® (b, st

V{r,l)
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If I € N then, using (8a), we obtain

1
peIPI(V(p, 1))
v(
< 1
~ u8lel(V(p, 1))
v(

<l
l’

/ ple+ty +... 4+ tlpl)(l;t®|p'(t1, cee s tipt) = @(z + u)
Py

[ leat ittt — gl + )] Pt )
p,l

whence

; 1 , Slpl =
ll_l}})lo ;W / Ple+t+...+tp)du®Pl(t, ... tp) = o(z + ).
Vip)

Similarly, by (8b) and (8c),

; 1 ®lal -
Jim PEEZCT)] / P+t +. .+ g )dp® V(... tq) = (2 + v)
Vi(a,l)

and

; I [ Bl = oz
lh—g]om / uP(.’L‘-{-t] ++tlr])d/l' (tl,... ’tlr') = (,O(IL +w).
V(r,l)

Consequently, on account of (9), we get inequality (6). O

REMARK 2. It follows from the proof of Theorem 2 that if either u =
or w = @ then the conclusion holds true without the assumption of the
continuity of ¢ at = 4+ u or « + w, respectively (that is at z). Moreover, for
the validity of the theorem it is enough to know that the points sq1,..., s
used in the representations of u,v, and w have neighbourhoods of finite-
measure .

REMARK 3. Fix a positive integer k, sets P,,... ,P, C Z satisfying the
conditions (2) and put P = P; x ... x P;. Theset E = {ey,... ,er} is an
additively independent subset of the group R¥; moreover, S(E) = N§ and
G(E) = ZF (cf. the Example).

Let Ay, ... Ai be positive reals and consider the measure y defined on 2
by the formula

p{e})=A;, i=1,... k.
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Clearly S(supp p) = S(E) =
Take a non—negative solution ¢ : P — R of equation (3) and fix vectors
n € P and m € Z* such that n — m, n + m € P. The vector x, defined by

z; = min{n; —m;, n; + m;}, i=1,...,k,
is an element of P. Moreover, putting u = n-m-x, v =n-x, and

W =n+m-x, we get u,v,w € N§ = S(supp ) and 2v = u + w.
Consequently, by virtue of Theorem 2,

o+ V) < plx + wp(x + W),
i.e. -
¢(n)* < p(n— m)p(n + m).

Therefore the Theorem can be deduced from Theorem 2.

The final result deals with the equation

(10) b(y) = / B(F(t¥)di(2)

more general than equation (1). Its proof does not differ GSG(‘ntlallV from
that one of [6, Corollary 1].

Given sets Y and T and a function f : T XY — Y we shall %vnte fi
instead of f(t,-) forany te T.

THEOREM 3. Let A and M be o-algebras of subsets of sets Y and T,
respectively, and let v : M — [0,00] be a o—finite measure. Assume that
f:TxY —Y issuch a function that

(11) fsoft=ftof37 3,t€T7

and the function

TP 5 (t1,...,tp) — fry0...0 fi ()
is M®? — A — measurable for every y € Y and p € N.
Let 1 : Y — R be.a non-negative -measurable solution of equation (10).
If k is a positive integer and V;,..., V) € M are pairwise disjoint non—-void
sets then

2
B(fur 00 fun (1)@t .. ,t,,..))

ny "k
Vi T xo.xV,

< / B(fir 0020 fopnny (W)Ut )

| 2L S IS AL

"p(ftl 0...0 ft|n+m| (y))d1/®'n+ml(t1 Yoty t|ll+!n|)

[ARREET IS 2 Ml
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-,

for every y € Y and vectors n € N} and m € Z* such that n - m,
n+m e N§. :

PROOF.: Define the group S and the set E as in the Example and let X be
the set of all functions mapping T into Np vanishing outside a finite subset

- of T. Clearly X C G(F)and X + E C X. Since the function F : T — E,
given by F'(1) = ¢, is a bijection, the forinula

Ay = v(F~'(A))
defines a o—finite measure y on the o-algebra®M = {AC E: F~1(A) e M}.
Fix a y € Y. For each 1: E X theré is only a finite number of t's, say

t1,...,1 € T, such that z(t) # 0. Then a(#;),...,2(¢;) € N, so we may
take into account the iterates fh“’), e fr(l’) Put

p(x) = (1 oo 7 ().

(In the case [ = 0 this means that @(x) = ¥(y).) The function ¢ : X — R is
non-negative and the function

E? 5 (e(]),... ,e(p?) — o(z + ey + e(”))

is MM®P — measurable for every z € X and p € N.

Now fix an @ € X and let ¢;,...,#, € T be all t's for which z(t) # 0.
Making use of the definition of ¢ and equalities (10) and (11) we obtain

o(z) =p(fi" 0.0 [ (y))
/ B 0. 0 29 o f(y))du(t)

- / ol + e)du(t) = / oz + e)dpe).

T E

Thus we have proved that @ satisfies equation (1).

Fix a positive integer k, pairwise disjoint non-void sets V;,...,V, € M
and vectors n € N§ and m € Z* such that n—m, n+ m € N§. Then, by
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Theorem 1,

1/)(ft1 °...0 ft|n|(y))d'/®lnl(tlv .- ." t|n|)

"1 n
Vi ! XL xV

oles, + ...+ e, )OIy, )

"1 "k
Vi 1 X xV,

@(s1 4 ...+ spu)du®l(sy, .., 5pa))
(V1)"1 X...XF(Vi )"k

IA

o(s1+...+ si,,__,,,|)du®'"""|(sl yeee > Sn—m]|)
F(W)r1—m1x . x F(Vi) k= ™k

99(31 +..ot s|"+ml)du®ln+ml(31 IR S|u+m|)
F(W)mitmy s x F(Vy )tk +me

= / $(for © -+ fipy (@)t )

VI T xR T TR

¢(fh 0...0 ft|,.+m| (y))du®|n+m‘(t1’ LR t|n+m|)

AR IS el
which completes the proof. O
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