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O N B O U N D E D SOLUTIONS 

O F A P R O B L E M O F R. S C H I L L I N G 

JANUSZ MORAWIEC 

Abstract. It is proved that if 

0 < q < (1 - V2+ ^4)/3, 

then the zero function is the only solution / : ! —> H of (1) satisfying (2) and 

bounded in a neighbourhood of at least one point of the set (3). 

The paper concerns bounded solutions / : R —• R of the functional equa­
tion 

(1) f(qx). = ^[f(x - 1) + / ( * + 1) + 2/(z)] 

such that 

(2) / (*) = <> for \x |> Q 

where q is a fixed number from the open interval (0,1) and 

In what follows any solution / : R - » R of (1) satisfying (2) will be called 
a solution of Schilling's problem. In the present paper we are interested in 
bounded solutions of Schilling's problem. The first theorem in this direction 
was obtained by K.Baron in [1]. This theorem reads as follows: 
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Ifq £ ( 0 , \ / 2 - l ] , then the zero function is the only solution of Schilling's 
problem which is bounded in a neighbourhood of the origin. 

This paper generalizes the above theorem in two directions. Namely, the 
interval (0, y/2 — 1] is replaced by the larger one (0, \ — + -^] and instead 
of the boundedness in a neighbourhood of the origin we have boundedness 
in a neighbourhood of at least one point of the set 

(3) n € N U { ° ' + o o } ' 

(To simplify formulas we adopt the convention S ° = 1 a, = 0 for all real 
sequences (a,- : i 6 N).) In other words, we shall prove the following. 

T H E O R E M . If 

(4) 0 < g < - - ^ - + ^ , 

then the zero function is the only solution of Schilling's problem which is 
bounded in a neighbourhood of at ieast one point of the set (3). 

The proof of this theorem is based on two lemmas. However, we start 
with the following simple remarks. 

R E M A R K 1. If f is a solution of Schilling's problem then so is the function 
g:K —> R defined by the formula g(x) = f(—x). 

R E M A R K 2. Assume that f is a solution of Schilling's problem. 
(i) If q ć I , then f(Q) = 0.Ifq=\, then f(Q) = 0 iff f(qQ) = 0. 
(ii) If q < \ , then /(0) = 0. 

P R O O F . It is enough to put in (1): x = Q/q, x — Q and x = 0, respec­
tively, and to use condition (2). • 

L E M M A 1. Assume q G ( 0 , | ) . If a solution of Schilling's problem van­
ishes either on the interval (—q>,0) or on the interval (0,q), then it vanishes 
everywhere. 

P R O O F . Let / be a solution of Schilling's problem vanishing on the in­
terval [0,q). We shall prove that / vanishes on the interval [0,Q). Define a 
sequence of sets (An : n 6 N ) by the formula 

* » = [ o , f > * ) . 
i=i 
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Fix a positive integer n and suppose that / vanishes on the set An. We shall 
show that / vanishes also on the set An+\ • To this end fix an xo € 4 n + i \ i n ­
putting x = xo/q into (1) and taking into account that x — 1 € An, whereas 
x + 1 > x > 1 > Q we get 

(5) f{x0) = Uf{x - 1) + f(x + 1) + 2/(x)] = 0. 
4q 

Consequently, / vanishes on the set which equals to [0,Q). This 
and Remark 2 (i) show that / vanishes on [0,+oo). Hence and from (1) we 
infer that / vanishes everywhere. 

The case of the interval (—q, 0) reduces to the previous one by using 
Remark 1. • 

L E M M A 2. Assume q e (0, y). If f is a solution of Schilling's problem, 
then 

(«) f(^m+,tiĄ=®'(*r"m 

for nil x 6 (Q — 1, l — Q), for all e € {—1,1}, and for all non-negative integers 
m and n. 

P R O O F . Fix an xo € (Q — 1,1 — Q)- First we shall show that 

(7) f(qmxo)= ( ^ ) m / ( * o ) 

for all non-negative integers m. Of course (7) holds for m = 0. Suppose that 
(7) holds for an m. Putting x = qmxo into (1) and using (2) and (7) we have 

/(»m+1*o)=hn* - i ) + / ( x + i ) + 2 / ( i ) i = 

= (^)"+'/(*«)• 
This proves that (7) holds for all non-negative integers m. 

Fix now a non-negative integer n and suppose that (6) is satisfied for all 
1,1 — Q), for all £ € {—1,1}, and for all non-negative integers m. 

Putting x = qm+nxo + £ S?=i 9* + £ m t o (1) a n ( ' a PPly» n g (2) and (6) with 
x = xo we obtain 

/ (qm+"+*x0 + e =/(?*) = - 1) + / ( * + 1) + 2/(x)] 

1 / 1 \ n + 1 / 1 \ m + n + 1 

« ) = ( 5 ) (s) /(*«). 
The proof is completed. • 

7' 
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Now we pass to the proof of the main theorem. 

P R O O F OF T H E T H E O R E M . It follows from (4) that q < 1/2. 
Fix n € N U {0, + 0 0 } and e € {-1, 1} such that a solution / of Schilling's 

problem is bounded in a neighbourhood of s 'l'- W° l n a v l a m ' w o ( ' ° ) 
assume that n is finite. 

If |x | < 1 - Q is fixed, then the left-hand-side of (6) is bounded with 
respect to m whereas l i m m _ o o ( l / 2 ( / ) m + n = + 0 0 . This shows that 

(8) f(x) = 0 for I x |< 1 - Q. 

Consider two cases: 

(1) * < — a " 

and 

3 - ^ 5 ^ 1 ^ 2 ^4 

In the case (i) we have q < 1 — Q which jointly with (8) and Lemma 1 
gives / = 0. 

So we assume now that (ii) holds. First we notice that putting x = 1 — Q 
into (1) and applying (8), Remarks 1 and 2(i) and (2) we get 

0 = / ( 9 ( l - Q ) ) = - ^ [ / ( - Q ) + / ( 2 - Q ) + 2 / ( l - Q ) ] = ^ / ( l - Q ) . 

Hence, from (8) and Remark 1 we obtain 

(9) / (*) = 0 for \x\<l-Q. 

Fix an #o € [qQ,q(2 — Q)]. Putting x = xo/q into (1) and using (9), 
(2) and Remark 2 we have (5). Similarly (cf. Remark 1), f(x) = 0 for 
x € [-9(2 - Q), -qQ]- Consequently, 

(10) f(x) = 0 whenever qQ <| x \< q(2 - Q). 

Now we fix an x0 6 [q - q2(2 - Q), q2(2 - Q)}. Putting x = x0/q into (1), 
taking into account the inequality qQ < 1 - q{2 - Q) and applying (10) and 
(2) we obtain (5) once again. Similarly f(x) = 0 for x G [-q2(2 - Q), -q + 
q2{2 - Q)] and so 

(11) / ( z ) = 0 whenever q-q2(2-Q) <| x |< q2{2-Q). 
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As the function — '.itr +'AI— 1 increases and vanishes at (1 — \^2+ \f4)/.i, 
wo have 

(12) <l-<r{2-Q)<\-Q. 

Relations (9), (12) and (11) give 

(13) / (*) = 0 for \x\<<f(2-Q). 

Now let us. fix an XQ € [1 - q(2 - Q), 1 - qQ}. Putting x = .To — 1 into (1) 
and using (13), (2) and (10) we have 

(14) 0 = f(qx) = Uf(x - 1) + f(x + 1) + 2f(x)] = - f / ( * „ ) . 
Aq 4q 

So we obtain 

(15) / ( x ) = 0 whenever 1 - q(2 - Q) < x < I - qQ. 

Since (cf. (l'2))q + q2Q < 1 - qQ and 1 - q{2 - Q) < q(2 - Q), (15) proves 
that 

(16) /(./) = 0 whenever r/(2 - Q) < x < q + q2Q. 

Finally assume that 1 — Q < XQ < qQ. Putting x — .x-o + 1 into (1) and 
using (16) and (2) we see that (14) holds. Hence 

/(./•) = 0 whenever 1 - Q < x < qQ, 

which jointly with (9) and (10) gives 

f{x) = 0 whenever 0 < a; < <y(2 - Q). 

In particular, since q < q(2 - Q), f vanishes on the interval (0,q). This 
jointly with Lemma 1 completes the proof. • 
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