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ON BOUNDED SOLUTIONS
OF A PROBLEM OF R. SCHILLING

JANUSZ MORAWIEC

Abstract. It is proved that if
0<g<(1- V24 Va3,

then the zero function is the only solution f:R — R of (1) satisfying (2) and
bounded in a neighbourhood of at least one point of the set (3).

The paper concerns bounded solutions f:R — R of the functional equa-
tion

1
(1) fow) = 2@ = 1)+ fl + 1) +2f(2)]
such that v
(2) : flz)=0 for |z|>Q
where ¢ is a fixed number from the open interval (0,1) and
=1
,Q T 1= q

In what follows any solution f:R — R of (1) satisfying (2) will be called
a solution of Schilling’s problem. In the present paper we are interested in
bounded solutions of Schilling’s problem. The first theorem in this direction
was obtained by K.Baron in [1]. This theorem reads as follows:
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Ifqe (0,\/5—— 1], then the zero function is the only solution of Schilling’s
problem which is bounded in a neighbourhood of the origin.
This paper generalizes the above theorem in two directions. Namely, the

interval (0,v/2— 1] is replaced by the larger one (0,1 — —33—2 + %] and instead
of the boundedness in a neighbourhood of the origin we have boundedness

in a neighbourhood of at least one point of the set
(3) {ezqi: n € NU {0,400}, 86{-—1,1}}.
i=1

(To simplify formulas we adopt the convention Z?=1 a; = 0 for all real
sequences (a; : ¢ € N).) In other words, we shall prove the following.

THEOREM. If

3
4
LV
3
then the zero function is the only solution of Schilling’s problem which is

bounded in a neighbourhood of at least one point of the set (3).

(4) 0<g<

O r—
<[
[ ™)

The proof of this theorem is based on two lemmas. However, we start
with the following simple remarks.

REMARK 1. If f is a solution of Schilling’s problem then so is the function
g:R — R defined by the formula g(:v) = f(—=z).

REMARK 2. Assume that f is a solution of Schilling’s problem.

(i) Ifq # L, then f(Q) = 0. If g = 1, then £(Q) = 0 iff f(¢Q) = 0.

(i) If ¢ < 1, then f(0) = 0.

PROOF. It is enough to put in (1): z = @/¢, * = Q and = = 0, respec-
tively, and to use condition (2). O

LEMMA 1. Assume g € (0,%). If a solution of Schilling’s problem van-
ishes either on the interval (—q,0) or on the interval (0,q), then it vanishes
everywhere.

PrOOF. Let f be a solution of Schilling’s problem vanishing on the in-
terval [0,q). We shall prove that f vanishes on the interval [0,Q). Define a
sequence of sets (A, : n € N) by the formula

A =1[0, > ¢").
’ i=1
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Fix a positive integer n and suppose that f vanishes on the set A,,. We shall
show that f vanishes also on the set A,41. To this end fix an 2 € A, 41\ Ap.
Putting z = z¢/q into (1) and taking into account that z — 1 € A,, whereas
r+1>z>1>0 we get

(5) f(z0) = th;[f(w — 1)+ f(z + 1)+ 2f(2)] = 0.

Consequently, f vanishes on the set {J,_, A, which equals to [0,Q). This
and Remark 2 (i) show that f vanishes on [0, +00). Hence and from (1) we
infer that f vanishes everywhere.

The case of the interval (—q,0) reduces to the previous one by using

Remark 1. a

LEMMA 2. Assume q € (0,3). If f is a solution of Schilling’s problem,
then

(6) f (q"‘+"w + 8§qi> = (%)n (-;;I)Mn flz)

forallz € (Q—1,1-Q), forall ¢ € {—1, 1}, and for all non-negative integers
m and n.

Proor. Fix an 29 € (Q — 1,1 — Q). First we shall show that

™) s = (3) fleo)

for all non-negative integers m. Of course (7) holds for m = 0. Suppose that
(7) holds for an m. Putting z = g™z, into (1) and using (2) and (7) we have

F(g™ o) =$[f(w — 1)+ f(z +1) +2f(z)] = %f(w)

- (%) " o).

This proves that (7) holds for all non-negative integers m.

Fix now a non-negative integer n and suppose that (6) is satisfied for all
z€(Q~-1,1-@Q),forall € € {—1,1}, and for all non-negative integers m.
Putting = = ¢™+"z¢ + £ }__, ¢' + ¢ into (1) and applying (2) and (6) with
T = xo we obtain

n+1 7
f (qm+n+1x0 +ey qi) =f(qz) = -:—q[f(m = 1)+ f(z + 1) + 2f(2)]

i=1

e ()

The proof is completed. ]

™
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Now we pass to the proof of the main theorem.

PROOF OF THE THEOREM. It follows from (4) that q<1/2

Fix n € NU{0,+00} and € € {—1, 1} such that a solution f of Schilling’s
problem is bounded in a neighbourhood of £ 31, 4. We may (and we do)
assume that n is finite.

If |2} < 1 - Q is fixed, then the left-hand-side of (6) is bounded with
respect to m whereas lim,, o (1/2¢)™t" = 400. This shows that

(8) f(z)=0 for |z|<1-0Q.

Consider two cases:

) 3-v5

(i) 1< —

and

" 3-V5 1 V2 VA ‘
<= - =4 —.

(if) 2 <9373 173

In the case (i) we have ¢ < 1 — Q which jointly with (8) and Lémma 1
gives f = 0. : '

So we assume now that (ii) holds. First we notice that putting z = 1 — Q
into (1) and applying (8), Remarks 1 and 2(i) and (2) we get

0= f(a(1= @) = FU(-Q)+ /(2= Q)+2/(1- Q) = 3-7(1 - Q).
Hence, from (8) and Remark 1 we obtain

©) fz)=0 for |z|<1-Q.

Fix an zo € [¢Q,q(2 — Q)]. Putting ¢ = z¢/q into (1) and usiﬁg (9),
(2) and Remark 2 we have (5). Similarly (cf. Remark 1), f(z) = 0 for
z € [-¢(2 - @), —qQ]. Consequently,

(10) f(z)=0 whenever ¢Q <|z |< ¢(2 - Q).
Now we fix an zo € [g - ¢°(2 - Q),¢*(2 — Q)]. Putting = = z¢/q into (1),
taking into account the inequality ¢Q < 1—¢(2 — Q) and applying (10) and

(2) we obtain (5) once again. Similarly f(z) =0 for z € [-¢%(2 - Q), —¢ +
7*(2 - Q)] and so

(11)  f(z)=0  whenever ¢-¢’(2-Q)<|z|<¢(2-Q).
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As the function 33 =32 + 31— I increases and vanishes at (1-Y2+ \3/3,)/3,
we have :

(12) J 1-¢2-Q)<1-Q.
Relations (9), (12) and (11) give
(13) f()=0 for |2|<¢*(2-0Q).

Now let us fix an z9 € [1 — (2~ Q), 1 — ¢Q]. Putting 2 = 29 — 1 into (D)
and using (13), (2) and (10) we have

(1) 0= Jlg2) = [z = )+ fla+ 1)+ 2/(0)] = - f(z0)
q dq
So we obtain

(15) fle)=0 whenever | —¢(2-Q)< a2 <1 -¢Q.

Since (cf. (12)) ¢+ ¢*Q < 1-¢Q and 1 = ¢(2~ Q) < (2 -Q), (15) ])rovés
that

(16) flr)=0 whenever r/(ZQQ)SJ:Sq+q2Q.

Finally assume that 1 — @ < 29 < ¢Q. Putting z = 29 + 1 into (1) and
using (16) and (2) we see that (14) holds. Hence

Jlz)=0 whenever | -Q <z < ¢Q,
which jointly with (9) and (10) gives
flz)=10 whenever 0< 2z <¢(2-Q).

In particular, since ¢ < q(2 — Q), f vanishes on the interval (0,q9). This
jointly with Lemma 1 completes the proof. O
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