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HULL-CONCAVE SET-VALUED FUNCTIONS

ANTONELLA Fiacca, KAZIMIERZ NIKODEM AND FRANCESCA PAPALINI

Abstract. A set-valued function F is.called hull-concave if
F(tz + (1~ t)y) C co(tF(z) + (1 ~t)F(y))

for all z,y from the domain of F and all t € [0,1]. It is shown that if a
hull-concave set—valued function F is defined on an open convex subset D
of R™ and for every z € D the set clF(z) is convex and bounded, then F is
continuous on D. Some other properties of hull-concave set—valued functions
are also given.

1. Introduction. The aim of this paper is to present, some results on
hull-concave set—valued functions. The concept of hull-concave set-valued
functions was introduced by A. V. Fiacco and J. Kyparisis in their work [3]
devoted to general parametric optimization problems. Such functions are a
natural generalization of concave set—valued functions. In the case of single
valued functions hull-concavity means affinity.

In Section 2 we give some basic properties and a characterization of hull-
-concave set-valued functions with compact values in R".

Section 3 is devoted to the problem of continuity. We prove that if a hull-
-concave set—valued function is defined on an open convex subset of R™ and
the closures of its values are convex and bounded subsets of a topological
vector space, then it is continuous. We also show that hull-midconcave set-
-valued functions defined on a topological vector space (not necessa.rlly finite
dimensional) and bounded on a set with a non-empty interior are continu-
ous. The first result is a generalization of the well known fact stating that
afﬁne functions defined on R™ are continuous; the second one is an analogue
of the classical Bernstein—Doetsch theorem for midconvex functions. The

Received December 13, 1993, ‘
AMS (1991) subject classification: Primary 26B25, 54C60.

4%



212

theorems presented here generalize some earlier results of K. Nikodem (5]
obtained for concave and midconcave set-valued functions (cf. also [1] and
[6]). Similar results for hull-convex set-valued functions were obtained by
A. Fiacca and F. Papalini [2]. However, the method used in this paper is
new and independent of [2).

2. Let X and Y be real vector spaces, D be a convex subset of X and
n(Y’) be the family of all non-empty subsets of Y. Given a set A C Y we
denote by co(A) the convex hull of A. A set-valued function F: D — n(Y)
is said to be:

- concave if

(1) F(tz+(1-t)y) CtF(x)+(1-t)F(y), =z,yeD, te [0, 1];
~ hull-concave if
(2) F(tz+(1-1)y) Cco(tF(z) + (1 - )F(y)), =,y€ D, telo,1};

~ quasiconcave if for every convex set A C Y the upper inverse image
Ft(A)={z € D: F(z)C A} is convex. o

We say that F' is midconcave (hull-midconcave) if it satisfies condition (1)
(condition (2)) with t = 1/2, .

Observe first that a set—valued function F: D — n(Y) is hull-concave if
and only if the set-valued function coF defined by coF(z) = co(F(z)), z €
D, is concave (cf. [3, p. 110]). This follows immediately from the fact that
co(A + B) = co(A)+ co(B) for arbitrary sets A and B. In partjcular, if all
values of F are convex, then F is hull-concave if and only if it is concave.

PROPOSITION 1. Every concave set-valued function is hull-concave and
every hull-concave set-valued function is quasiconcave. o

. PRoOOF. The first statement is obvious; the second follows from the fact
that a set-valued function F : D — n(Y) is quasiconcave if and only if
F(tz + (1 -t)y) C co (F(z) U F(y)) for all z,y € D and ¢ € [0,1]
(cf.[6, Theorem 2.8]). O

Given set-valued functions F and G we denote by F+G, FUG and FNG
the set-valued functions defined by (F+G)(z) = F(z)+G(z), (FUG)(z)=
F(z) U G(z) and (F N G)(z) = F(z) N G(z), respectively. :

PROPOSITION 2. If set-valued functions F,G : D — n(Y) are hull-
-concave, then F + G and F U G are hull-concave. :
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PRrOOF. Let z,y € D and t'€>[0, 1]. By assumption we get

(F + @)tz + (1 - )y) C co(tF(z) + (1- )F(y))
+ o (tG(z) + (1 -1)G(y))
= co({(F(z) + G(2)) + (1 = )(F(y) + G(v)))-

~ Similarly,

(FUG)(tz + (1 = t)y) C co(tF(z) + (1 - )F(y))
U co(tG(z) + (1 - t)G(y))
C co(H(F(z) UG(z)) + (1 = t)(F(y) U G(v)))-

O

REMARK 1. The set—valued function FFNG need not be hull-concave even
if F and G are concave. For instance, the set-valued functions F,G : {0,1] —
n(R) defined by F(z) = [0,z], G(z) =[0,1 - z], = € [0, l], are concave but
F N G is not hull-concave. :

The next theorem characterizes hull-cancave set—valued functions w1th
compact values in R*. We denote by ¢(R") the family of all compact non-
-empty subsets of R™, and by cc(R") the family of all convex compact non-
-empty subsets of R™. The set of all extreme points of A is denoted by ExtA.

THEOREM 1. A set-valued function F : D — ¢(R™) is hull-concave if and
only if there exists a concave set—valued function G : D — cc(R") such that

(3) Ext G(z) C F(z) C G(z), z€D.

PROOF. Assume that F is hull-concave and put G = coF. Then G is
concave and F(z) C G(z), = € D. Moreover, Ext G(z) C F(z) because
extreme points of the convex hull of a set belong to this set (cf.[4, Theorem
11.2.2)).

Now, assume that F satisfies (3) with a concave set-valued function G.
Then, using the fact that co(ExtA) = A for every compact convex set A C
R" (cf.[4,Theorem 11.2.1]), we get

F(tz + (1 - t)y) C G(tz + (1 - t)y) C 1G(z) + (1 - 1)G(y)
=t co(Ext G(z)) + (1 — t) co(Ext G(y))
C t co(F(z)) + (1 - 1) co(F(y))
= co(tF(z) + (1 - t)F(y)).

This shows that F is hull-concave. O
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~ REMARK 2. The above theorem not only characterizes hull-concave set-
-valued functions but also gives a simple method of construction of such
functions. For example, if f : D — R is concave, g : D — R is convex and
f(z) £ g(z), z € D, then the set—valued function G : D — cc(R) defined
by G(z) = [f(z),9(z)], = € D, is concave and Ext G(z) = {f(), g(z)}.
* Therefore every set-valued function F: D — c(R) such that

{f(2),9(2)} C F(z) C [f(=), 9(z)], =z €D,

is hull-concave.

3. In this section X and Y denote topological vector spaces (satisfying
the Tg separation axiom). Recall that a set—valued function F : X — n(Y) is
‘called upper semicontinuous (usc) at a point zo (lower semicontinuous (lsc)
at z¢) if for every neighbourhood W of zero in Y there exists a neighbourhood
U of zero in X such that

F(z) C F(zo)+ W (F(zo) C F(z)+ W)  forevery z€xo+ U

F'is continuous at a point if it is usc and lsc at this point.

Let b(Y') denote the family of all bounded (in topological sense) and non-
-empty subsets of Y. It is known that every concave set-valued function
F : D — b(Y), where D is an open convex subset of R”, is continuous ([5,
Corollary 2J; cf. also [1,Theorem 5.5] and [6, Theorem 4.7]). For hull-concave
set—valued functions analogous result (without any additional assumptions)
is not true. For instance, the set-valued function F : R — c(R) defined by

0,1], =zeQ,
Fe) = {{0,1}, z €R\Q,

is hull-concave (by Theorem 1) but it is not continuous at any point. How-
aver, we have the following result.

THEOREM 2. Let D be an open convex subset of R* and Y be a topo-
logical vector space. If a set-valued function F : D — b(Y) is hull-concave
and for every x € D the set clF(z) is convex, then F is continuous on D.

In the proof of this theorem we use the following two lemmas.

LEMMA 1. Let A be a subset of a topological vector space Y. Then the
following conditions are equivalent:

1. clA is convex;

2. co(A) C clA;

3. co(A) C A+ V for every neighbourhood V. of zero in Y .
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ProoF. Implications 1 = 2 = 3 => 2 are obvious. To show that 2 = 1
notice first that co(clA) C cl co(A) for every set A C Y (this follows from
the fact that cl co(A) is a convex set containing clA). Hence, by 2, we get
co clA C clA, which means that clA is convex. O

LEMMA 2. Let F: X — n(Y) be a given set-valued function. If coF is
usc at a point ¢ and clF(z¢) is convex, then F is usc at zg. If coF is Isc
at a point z¢ and clF(z) is convex for every x in some neighbourhood of zo,
then F is Isc at xg.

PROOF. Assume that coF is usc at zg. Fix a neighbourhood W of zero
in Y and take a neighbourhood V of zero in Y such that V +V C W. By
assumption there exists a neighbourhood U of zero in X such that

coF(z) C coF(zo)+V forall z€zo+U.
Hence, by Lemma 1, we obtain
F(2) C coF(z) C F(zo)+V +V C F(zo)+ W, z€z0+U,

which shows that F is usc at 2. The proof of the second statement is
analogous. 0O

REMARK 3. It is known (and easy to check) that if ¥ is a locally convex
topological vector space, then the continuity of F : X — n(Y) at a point
implies the continuity of coF" at this point.

Proor oF THEOREM 2. The set—valued function coF' is concave and
its values are bounded. Indeed, by Lemma 1 coF(z) C clF(z), and clF(z)
is bounded because F(z) is bounded. Therefore, by the result of K. Niko-
dem ([5, Corollary 2]), coF is continuous on D. Hence, by Lemma 2, F' is
continuous on D. _ O

Hull-concave set-valued functions defined on an infinite-dimensional spa-
ce need not be continuous even if their values are convex; hull-midconcave
set—valued functions may be discontinuous even if they are defined on a real
interval and their values are convex. However, the following analogue of the
Bernstein-Doetsch theorem holds true. Recall that F is said to be bounded
on a set A C X if there exists a bounded set B C Y such that F(z) C B for
every ¢ € A.,

THEOREM 3. Let X and Y be topological vector spaces and D be an
open convex subset of X. Assume that F : D — b(Y) is a hull-midconcave
set—valued function and clF(z) is convex for every x € D. If F is hounded
on a set A C D with a non-empty interior, then it is continuous on D.
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PrOOF. By assumption there exists a bounded set B C Y such that

F(z) C B for every z € A. Consider the set—valued function coF. Using
Lemma 1 we get

coF(z) C cdF(z)C cB, ze€ A,

which means that coF is bounded on A. Moreover, coF is midconcave and
its values are bounded and convex. Therefore coF*is continuous on D (cf.
[5, Theorem 2]). Consequently, by Lemma 2, F is continuous on D. O

The next theorem gives another condition 1mplymg the continuity-of 'hull—
-midconcave set-valued functions.

THEOREM 4. Let X be a topological vector space, D be an ‘open convex
subset of X and Y be a locally convex topological vector space. Assume
that F : D — b(Y) is a hull-midconcave set-valued function and clF(z) is

convex for every x € D. If F is usc at a point zo € D, then it is continuous
on D.

ProoFr. The set-valued function coF is midconcave and its values are
bounded and convex. Moreover, coF is usc at zo (cf. Remark 3). Therefore
coF is continuous on D (cf. [6, Theorem 4.2, for K = {0} or [1 Corollary I,
for K = {0}]). By Lemma 2 F is continuous on D. O
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