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H U L L - C O N C A V E S E T - V A L U E D F U N C T I O N S 

A N T O N E L L A F I A C C A , KAZIMIERZ NIKODEM AND FRANCESCA PAPALINI 

Abstract. A set-valued function F is.called hull-concave if 

F(tx + (1 - t)y) C co(tF(i) + (1 - t)F(y)) 

for all x,y from the domain of F and all f € [0,1]. It is shown that if a 
hull-concave set-valued function F is defined on an open convex subset D 
of W and for every i € D the set clF(x) is convex and bounded, then F is 
continuous on D. Some other properties of hull-concave set-valued functions 
are also given. 

1. Introduction. The aim of this paper is to present, some results on 
hull-concave set-valued functions. The concept of hull-concave set-valued 
functions was introduced by A . V . Fiacco and J . Kyparisis in their work [3] 
devoted to general parametric optimization problems. Such functions are a 
natural generalization of concave set-valued functions. In the case of single 
valued functions hull-concavity means affinity. 

In Section 2 we give some basic properties and a characterization of hull-
-concave set-valued functions with compact values in R n . 

Section 3 is devoted to the problem of continuity. We prove that if a hull-
-concave set-valued function is defined on an open convex subset of R n and 
the closures of its values are convex and bounded subsets of a topological 
vector space, then it is continuous. We also show that hull-irudjponcave set-
-valued functions defined on a topological vector space (not necessarily finite 
dimensional) and bounded on a set with a non-empty interior are continu­
ous. The first result is a generalization of the well known fact stating that 
affine functions defined on R n are continuous; the second one is an analogue 
of the classical Bernstein-Doetsch theorem for midconvex functions. The 
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theorems presented here generalize some earlier results of K . Nikodem [5] 
obtained for concave and midconcave set-valued functions (cf. also [1] and 
[6]). Similar results for hull-convex set-valued functions were obtained by 
A . Fiacca and F. Papalini [2]. However, the method used in this paper is 
new and independent of [2]. 

2. Let X and Y be real vector spaces, D be a convex subset of X and 
n(F) be the family of all non-empty subsets of Y. Given a set A C Y we 
denote by co{A) the convex hull of A. A set-valued function F : D —> n(K) 
is said to be: 

- concave if 

(1) F(tx + (l-t)y)CtF(x) + (l-t)F(y), x,y € £>, t £ [0,1]; 

- hull-concave if 

(2) F(tx + {l-t)y)Cco{tF{x) + (l-t)F(y)), x,y e D, t € [0,1}; 

- quasiconcave if for every convex set A C Y the upper inverse image 
F+(A) = {x e D : F(x) C A} is convex. 

We say that F is midconcave (hull-midconcave) if it satisfies condition (1) 
(condition (2)) with t=l/2. 

Observe first that a set-valued function F : D —>• n(Y) is hull-concave if 
and only if the set-valued function coF denned by coF(x) — co(F(x)), x € 
D, is concave (cf. [3, p. 110]). This follows immediately from the'fact that 
co(A + B) = co(A)+ co(B) for arbitrary sets A and B. In particular, i f all 
values of F are convex, then F is hull-concave if and only if it is concave. 

PROPOSITION 1. Every concave set-valued function is hull-concave and 
every hull-concave set-valued function is quasiconcave. 

P R O O F . The first statement is obvious; the second follows from the fact 
that a set-valued function F : D —> n(Y) is quasiconcave if and only if 
F(tx + (1 - t)y) C co (F(x) U F(y)) for all x,y e D and i € [0,1] 
(cf.[6, Theorem 2.8]). • 

Given set-valued functions F and G we denote by F + G, FUG and FOG 
the set-valued functions defined by {F+G)(x) = F(x) + G(x), (FuG)(x)- = 
F(x) U G{x) and (F n G)(x) = F{x) n G{x), respectively. 

PROPOSITION 2. If set-valued functions F,G : D -»• n(K) are hull-
-concave, then F+G and FUG are hull-concave. 
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P R O O F . Let x, y € D and t £ [0,1). By assumption we get 

(F + G)(tx + (1 - t)y) C co(tF(x) + (1 -

+ co(«G(a:) + ( l - * ) G ( » ) ) 
= co(<(F(z) + G(x)) + (1 - <)(F(j/) + 

Similarly, 

(FuG)(tx + (l-t)y) C co(tF(x) + (1 -

U co(tG(aO + ( l -t)G(y)) 
C co U G(z)) + (1 - O^O) U G(y))) . 

• 

R E M A R K 1. The set-valued function Ff)G need not be hull-concave even 
if F and G are concave. For instance, the set-valued functions F, G : [0,1] —> 
n(R) defined by F(x) = [Q,x], G{x) = [0,1 - x], x £ [0,1], are concave but 
F n G is not hull-concave. 

The next theorem characterizes hull-cancave set-valued functions with 
compact values in R n . We denote by c(R n ) the family of all compact non-
-empty subsets of R ' \ and by cc(R n ) the family of all convex compact non-
-empty subsets of R n . The set of all extreme points of A is denoted by Ext A . 

T H E O R E M 1. A set-valued function F : D -> c (R n ) is hull-concave if and 
only if there exists a concave set-valued function G : D -* cc(R n ) such that 

(3) Ext G(x) C F(x) C G(x), x e D. 

P R O O F . Assume that F is hull-concave and put G = coF. Then G is 
concave and F(x) C G(x), x £ D. Moreover, Ext G(x) C F(x) because 
extreme points of the convex hull of a set belong to this set (ćf.[4, Theorem 
11.2.2]). 

Now, assume that F satisfies (3) with a concave set-valued function G. 
Then, using the fact that co(Ext^l) = A for every compact convex set A C 
R n (cf.[4,Theorem 11.2.1]), we get 

F(tx + (1 - t)y) C G(tx + (1 - t)y) C tG(x) + (1 - t)G(y) 

= t co(Ext G(x)) + (1 - t) co(Ext G(y)) 

C *co(F(x)) + ( l - t ) co(F(y)) 

= co(tF(x) + (l-t)F(y)). 

This shows that F is hull-concave. • 
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R E M A R K 2. The above theorem not only characterizes hull-concave set-
-valued functions but also gives a simple method of construction of such 
functions. For example, if / : D —• R is concave, g : D —• R is convex and 
f(x) < d(x), x £ D, then the set-valued function G : D —• cc(R) defined 
by G(x) = [f(x),g(x)], x £ D , is concave and Ext G{x) — {f(x), g(x)}. 
Therefore every set-valued function F : D —> c(R) such that 

{f(x),g(x)} C F(x) C [f(x), g(x)], x € D, 

is hull-concave. 

3. In this section X and Y denote topological vector spaces (satisfying 
the To separation axiom). Recall that a set-valued function F : X -» n(V) is 
"called upper setnicontinuous (use) at a point xo (lower semicontinuous (Isc) 
at xo) if for every neighbourhood W of zero in Y there exists a neighbourhood 
U of zero in X such that 

F(x) C F(x0) + W (F(x0) C F(z ) + W) for every x e x0 + U. 

F is continuous at a point if it is use and lsc at this point. 
Let h(Y) denote the family of all bounded (in topological sense) and non-

-empty subsets of Y. It is known that every concave set-valued function 
F : D —> b (K) , where D is an open convex subset of R" , is continuous ([5, 
Corollary 2]; cf. also [1,Theorem 5.5] and [6, Theorem 4.7]). For hull-concave 
set-valued functions analogous result (without any additional assumptions) 
is not true. For instance, the set-valued function F : R —• c(R) defined by 

f [0,1], * € Q , 
{ X ) \ { 0 , 1 } , i G R \ Q , 

is hull-concave (by Theorem 1) but it is not continuous at any point. How­
ever, we have the following result. 

T H E O R E M 2. Let D be an open convex subset o f R n and Y be a topo­
logical vector space. If a set-valued function F : D —> h(Y) is hull-concave 
and for every x € D the set c\F(x) is convex, then F is continuous on D. 

In the proof of this theorem we use the following two lemmas. 

L E M M A 1. Let A be a subset of a topological vector space Y. Then the 
following conditions are equivalent: 

1. clA is convex; 
2. co(>l) C cL4; 
3. co(A) C A + V for every neighbourhood V of zero in Y. 
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P R O O F . Implications 1 2 =>• 3 2 are obvious. To show that 2 1 
notice first that co(cM) C cl co(.4) for every set A C Y (this follows from 
the fact that cl co(A) is a convex set containing dA). Hence, by 2, we get 
co c\A C c M , which means that c\A is convex. • 

L E M M A 2. Let F : X —»• n{Y) be a given set-valued function. If coF is 
use at a point XQ and clF(xo) is convex, then F is use at xo. If coF is Isc 
at a point xo and c\F(x) is convex for every x in some neighbourhood of x0, 
then F is Isc at XQ. 

P R O O F . Assume that coF is use at xo- Fix a neighbourhood W of zero 
in Y and take a neighbourhood V of zero in Y such that V + V C W. By 
assumption there exists a neighbourhood U of zero in X such that 

coF(x) C coF(xo) + V for all x £ x0 + U. 

Hence, by Lemma 1, we obtain 

F(x) C coF(x) C F{x0) + V + VC F(x0) + W, x £ x0 + U, 

which shows that F is use at xo. The proof of the second statement is 
analogous. • 

R E M A R K 3. It is known (and easy to check) that if Y is a locally convex 
topological vector space, then the continuity of F : X —• n(V) at a point 
implies the continuity of coF at this point. 

PROOF OF T H E O R E M 2. The set-valued function coF is concave and 
its values are bounded. Indeed, by Lemma 1 coF(a;) C clF(x) , and clF(a;) 
is bounded because F (x ) is bounded. Therefore, by the result of K . Niko­
dem ([5, Corollary 2]), coF is continuous on D. Hence, by Lemma 2, F is 
continuous on D. • 

Hull-concave set-valued functions defined on an infinite-dimensional spa­
ce need not be continuous even if their values are convex; hull-midconcave 
set-valued functions may be discontinuous even if they are defined on a real 
interval and their values are convex. However, the following analogue of the 
Bernstein-Doetsch theorem holds true. Recall that F is said to be bounded 
on a set A C X if there exists a bounded set B C Y such that F{x) C B for 
every x £ A., 

T H E O R E M 3. Let X and Y be topological vector spaces and D be an 
open convex subset of A ' . Assume that F : D —<• h(Y) is a hull-midconcave 
set-valued function and c lF(x) is convex for every x £ D. If F is bounded 
on a set A C D with a non-empty interior, then it is continuous on D. 
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P R O O F . By assumption there exists a bounded set B C Y such that 
F(x) C B for every x G A. Consider the set-valued function coF. Using 
Lemma 1 we get 

coF(x) C clF(x) C c\B, x € A, 

which means that coF is bounded on A. Moreover, coF is midconcave and 
its values are bounded and convex. Therefore coF is continuous on D (cf. 
[5, Theorem 2]). Consequently, by Lemma 2, F is continuous on D. • 

The next theorem gives another condition implying the continuity of hull-
-midconcave set-valued functions. 

T H E O R E M 4. Let X be a topological vector space, D be an open convex 
subset of X and Y be a locally convex topological vector space. Assume 
that F : D —» b(K) is a hull-midconcave set-valued function and c lF(x) is 
convex for every x € D. If F is use at a point XQ € D, then it is continuous 
on D. 

P R O O F . The set-valued function coF is midconcave and its values are 
bounded and convex. Moreover, coF is use at xo (cf. Remark 3). Therefore 
coF is continuous on D (cf. [6, Theorem 4.2, for K = {0}] or [1, Corollary I, 
for A' = {0}]). By Lemma 2 F is continuous on D. • 
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