ON A FUNCTIONAL EQUATION

Andrzej Smajdor

$$
\begin{aligned}
& \text { Abstract. The functional equation } \\
& \qquad \varphi(x+y)+\psi(x)+\psi(y)=\psi(x+y)+\varphi(x)+\varphi(y)
\end{aligned}
$$

is studied for set-valued functions.

All topological spaces are assumed to satisfy Hausdorff separation axiom. Throughout the paper the symbols \mathbf{Q} and \mathbf{N} denotes the sets of all rational numbers and positive integers, respectively.

Let X be a linear space over the field \mathbb{Q} and S be a \mathbf{Q}-convex cone with zero in X, i.e. if $x \in S$ and $\lambda \in[0, \infty) \cap Q$, then $\lambda x \in S$ and if $x, y \in S$, then $x+y \in S$.

Recall that $0 \in$ core U, where $U \subset X$, if for every $x \in X$ there is $\varepsilon>0$ such that $\lambda x \in U$ for all $\lambda \in \mathbb{Q} \cap(-\varepsilon, \varepsilon)$.

Let $U \subset X$ be a \mathbb{Q}-convex set such that $0 \in$ core U. By $c(Y)$ we denote the family of all non-empty compact subsets of a real topological vector space Y and by $\mathrm{cc}(Y)$ we denote the family of all convex members of $\mathrm{c}(Y)$.

Consider a set-valued function (abbreviated to s.v. function in the sequel) $F: U \cap S \rightarrow \mathbf{c}(Y)$ such that

$$
\begin{equation*}
F\left(\frac{x+y}{2}\right)=\frac{F(x)+F(y)}{2} \tag{1}
\end{equation*}
$$

for all $x, y \in U \cap S$. These functions will be called Jensen ones. It is known that values $F(x)$ of F belong to the family $\operatorname{cc}(Y)$ (see [2, Remark 3.1]).

Let "~" denote the Rådstrőm's equivalence relation between pairs of members of $\operatorname{cc}(Y)$ defined by the formula

$$
(A, B) \sim(C, D) \Leftrightarrow A+D=B+C .
$$

For any pair $(A, B),[A, B]$ denotes its equivalence class. All equivalence classes form a real linear space \tilde{Y} with addition defined by the rule

$$
[A, B]+[C, D]=[A+C, B+D]
$$

and scalar multiplication

$$
\lambda[A, B]=[\lambda A, \lambda B]
$$

for $\lambda \geq 0$ and

$$
\lambda[A, B]=[-\lambda B,-\lambda A]
$$

for $\lambda<0$, (cf. [3]).
Now, let $F: U \cap S \rightarrow \mathbf{c}(Y)$ be a solution of Jensen equation (1) and let

$$
\begin{equation*}
f_{0}(x)=[F(x), F(0)] \tag{2}
\end{equation*}
$$

for $x \in U \cap S$. Then

$$
\begin{aligned}
f_{0}\left(\frac{x}{2}\right) & =\left[F\left(\frac{x+0}{2}\right), F(0)\right]=\left[\frac{F(x)+F(0)}{2}, F(0)\right] \\
& =\frac{1}{2}[F(x)+F(0), 2 F(0)]=\frac{1}{2}[F(x), F(0)]=\frac{1}{2} f_{0}(x)
\end{aligned}
$$

for $x \in U \cap S$. Hence, one has

$$
\begin{aligned}
f_{0}(x+y) & =2 f_{0}\left(\frac{x+y}{2}\right)=2\left[F\left(\frac{x+y}{2}\right), F(0)\right]=2\left[\frac{F(x)+F(y)}{2}, F(0)\right] \\
& =[F(x)+F(y), F(0)+F(0)] \\
& =[F(x), F(0)]+[F(y), F(0)]=f_{0}(x)+f_{0}(y)
\end{aligned}
$$

for all $x, y \in U \cap S$ such that $x+y \in U \cap S$. Similarly as in [1] the function f_{0} can be extended to an additive function f on the whole S. The function $f: S \rightarrow \tilde{Y}$ has to have a representation

$$
\begin{equation*}
f(x)=[\varphi(x), \psi(x)] \tag{3}
\end{equation*}
$$

where $\varphi: S \rightarrow \operatorname{cc}(Y), \psi: S \rightarrow \operatorname{cc}(Y)$. The additivity of f yields

$$
\begin{equation*}
\varphi(x+y)+\psi(x)+\psi(y)=\psi(x+y)+\varphi(x)+\varphi(y) \tag{4}
\end{equation*}
$$

for all $x, y \in S$. The main goal of the note is to study equation (4).
We will need the following lemmas.
Lemma 1 ([3, Lemma 1]). Assume that A, B, C are subsets of Y such that $A+C \subset B+C$. If B is closed and convex and C is bounded and non-empty, then $A \subset B$.

Lemma 2. There exists a base $E \subset S$ of the linear subspace $S-S$ of X over \mathbb{Q}.

Proof. The linear subspace $S-S$ of X over \mathbb{Q} has a base

$$
\left\{x_{i}-y_{i}: \quad i \in I\right\},
$$

where $x_{i}, y_{i} \in S, i \in I$. Therefore

$$
\operatorname{Lin}_{\mathbb{Q}}\left(\left\{x_{i}: \quad i \in I\right\} \cup\left\{y_{i}: \quad i \in I\right\}\right)=S-S .
$$

There exists a minimal set

$$
E \subset\left\{x_{i}: \quad i \in I\right\} \cup\left\{y_{i}: i \in I\right\}
$$

for which

$$
\operatorname{Lin}_{\mathbb{Q}} E=S-S .
$$

Lemma 3. Let $D \subset X$ be a \mathbb{Q}-convex set containing the origin. If $F, G, H: D \rightarrow \mathbf{c c}(Y)$ are s.v. functions such that

$$
F(x+y)=G(x)+H(y)
$$

for all $x, y \in D$ for which $x+y \in D$, then F, G and H are Jensen s.v. functions on D.

The proof of the above lemma runs like that of Lemma 4 in [4] (there X is a real linear space and D is convex in X).

Suppose that functions $\varphi: S \rightarrow \mathrm{cc}(Y)$ and $\psi: S \rightarrow \mathrm{cc}(Y)$ fulfil equation (4). Putting $x=y=0$ in (4) we obtain

$$
\varphi(0)+\psi(0)+\psi(0)=\psi(0)+\varphi(0)+\varphi(0) .
$$

Lemma 1 allows us to get

$$
\varphi(0)=\psi(0)
$$

Using Lemma 1 , we get by induction the equality

$$
\begin{align*}
& \varphi\left(x_{1}+\ldots+x_{n}\right)+\psi\left(x_{1}\right)+\ldots+\psi\left(x_{n}\right) \tag{5}\\
&=\psi\left(x_{1}+\ldots+x_{n}\right)+\varphi\left(x_{1}\right)+\ldots+\varphi\left(x_{n}\right)
\end{align*}
$$

for all $x_{1}, \ldots, x_{n} \in S$. Setting $x_{1}=x_{2}=\ldots=x_{n}=x$ for $x \in S$ we have

$$
\begin{equation*}
\varphi(n x)+n \psi(x)=\psi(n x)+n \varphi(x) \tag{6}
\end{equation*}
$$

for each $n \in \mathbf{N}$. Replacing x in (6) by $\frac{x}{n}$ we obtain

$$
\varphi(x)+n \psi\left(\frac{x}{n}\right)=\psi(x)+n \varphi\left(\frac{x}{n}\right)
$$

whence

$$
\begin{equation*}
\frac{1}{n} \varphi(x)+\psi\left(\frac{x}{n}\right)=\frac{1}{n} \psi(x)+\varphi\left(\frac{x}{n}\right) \tag{7}
\end{equation*}
$$

Similarly, setting $m x, m \in \mathbf{N}$, instead of x in (7), we get

$$
\frac{1}{n} \varphi(m x)+\psi\left(\frac{m}{n} x\right)=\frac{1}{n} \psi(m x)+\varphi\left(\frac{m}{n} x\right)
$$

In view of (6) this implies that

$$
\begin{aligned}
\varphi\left(\frac{m}{n} x\right) & +\frac{1}{n} \psi(m x)+\frac{m}{n} \psi(x) \\
& =\psi\left(\frac{m}{n} x\right)+\frac{1}{n} \varphi(m x)+\frac{m}{n} \psi(x)=\psi\left(\frac{m}{n} x\right)+\frac{1}{n}[\varphi(m x)+m \psi(x)] \\
& =\psi\left(\frac{m}{n} x\right)+\frac{1}{n}[\psi(m x)+m \varphi(x)]=\psi\left(\frac{m}{n} x\right)+\frac{1}{n} \psi(m x)+\frac{m}{n} \varphi(x)
\end{aligned}
$$

hence by Lemma 1

$$
\begin{equation*}
\varphi\left(\frac{m}{n} x\right)+\frac{m}{n} \psi(x)=\psi\left(\frac{m}{n} x\right)+\frac{m}{n} \varphi(x) \tag{8}
\end{equation*}
$$

On account of Lemma 2, there exists a base $E \subset S$ of subspace $S-S$ over Q. Write

$$
S_{0}=\left\{\sum_{i=1}^{n} \lambda_{i} e_{i}: \quad e_{i} \in E, \quad \lambda_{i} \in \mathbb{Q} \cap[0, \infty) \quad \text { for } \quad i=1,2, \ldots, n, n \in \mathbb{N}\right\}
$$

and define

$$
\tilde{\varphi}(y)=\sum_{i=1}^{n} \lambda_{i} \varphi\left(e_{i}\right), \tilde{\psi}(y)=\sum_{i=1}^{n} \lambda_{i} \psi\left(e_{i}\right)
$$

whenever

$$
y=\sum_{i=1}^{n} \lambda_{i} e_{i} \in S_{0} .
$$

It is clear that $\tilde{\varphi}, \tilde{\psi}: S_{0} \rightarrow \operatorname{cc}(Y)$ are additive. Each $x \in S \backslash\{0\}$ can be represented in the form

$$
\begin{equation*}
x=y-z \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
y=\sum_{i=1}^{n} \lambda_{i} e_{i} \in S_{0}, \quad z=\sum_{i=1}^{n} \mu_{i} e_{i} \in S_{0} \tag{10}
\end{equation*}
$$

with $\lambda_{i}, \mu_{i} \geq 0$ and $\lambda_{i} \cdot \mu_{i}=0$ for $i=1, \ldots, n$. This representation is unique. In view of (5) and (10) we have

$$
\varphi(y)+\sum_{i=1}^{n} \psi\left(\lambda_{i} e_{i}\right)=\psi(y)+\sum_{i=1}^{n} \varphi\left(\lambda_{i} e_{i}\right),
$$

whence

$$
\begin{aligned}
\varphi(y)+\sum_{i=1}^{n} \psi\left(\lambda_{i} e_{i}\right)+\tilde{\psi}(y) & =\psi(y)+\sum_{i=1}^{n}\left[\varphi\left(\lambda_{i} e_{i}\right)+\lambda_{i} \psi\left(e_{i}\right)\right] \\
& =\psi(y)+\sum_{i=1}^{n} \psi\left(\lambda_{i} e_{i}\right)+\tilde{\varphi}(y)
\end{aligned}
$$

by (8). Now, Lemma 1 yields

$$
\begin{equation*}
\psi(y)+\tilde{\varphi}(y)=\varphi(y)+\tilde{\psi}(y) . \tag{11}
\end{equation*}
$$

Similar consideration leads to

$$
\begin{equation*}
\varphi(z)+\tilde{\psi}(z)=\psi(z)+\tilde{\varphi}(z) . \tag{12}
\end{equation*}
$$

Conditions (4) and(9) imply the equality

$$
\begin{equation*}
\varphi(y)+\psi(x)+\psi(z)=\psi(y)+\varphi(x)+\varphi(z) . \tag{13}
\end{equation*}
$$

Now adding (11), (12) and (13) we obtain

$$
\begin{aligned}
& \psi(y)+\tilde{\varphi}(y)+\varphi(z)+\tilde{\psi}(z)+\varphi(y)+\psi(x)+\psi(z) \\
& \quad=\varphi(y)+\tilde{\psi}(y)+\psi(z)+\tilde{\varphi}(z)+\psi(y)+\varphi(x)+\varphi(z)
\end{aligned}
$$

whence, again by Lemma 1 , the equality

$$
\begin{equation*}
\psi(x)+\tilde{\varphi}(y)+\tilde{\psi}(z)=\varphi(x)+\tilde{\psi}(y)+\tilde{\varphi}(z) \tag{14}
\end{equation*}
$$

holds.
Conversely, suppose that $S_{0} \subset S$ is a subcone (over \mathbb{Q}) of $S, \varphi, \psi: S \rightarrow$ $\operatorname{cc}(Y), S \subset S_{0}-S_{0}$ and $\tilde{\varphi}, \tilde{\psi}: S_{0} \rightarrow \operatorname{cc}(Y)$ are additive such that (14) is fulfilled. Taking $x=y-z \in C, \bar{x}=\bar{y}-\bar{z} \in C$ for $y, z, \bar{y}, \bar{z} \in S_{0}$, by (14) we get

$$
\begin{aligned}
\varphi(x+\bar{x})+\tilde{\psi}(y+\bar{y})+\tilde{\varphi}(z+\bar{z}) & =\psi(x+\bar{x})+\tilde{\varphi}(y+\bar{y})+\tilde{\psi}(z+\bar{z}), \\
\psi(x)+\tilde{\varphi}(y)+\tilde{\psi}(z) & =\varphi(x)+\tilde{\psi}(y)+\tilde{\varphi}(z), \\
\psi(\bar{x})+\tilde{\varphi}(\bar{y})+\tilde{\psi}(\bar{z}) & =\varphi(\bar{x})+\tilde{\psi}(\bar{y})+\tilde{\varphi}(\bar{z}) .
\end{aligned}
$$

Adding up those equalities and using Lemma 1 we obtain

$$
\varphi(x+\bar{x})+\psi(x)+\psi(\bar{x})=\psi(x+\bar{x})+\varphi(x)+\varphi(\bar{x}) .
$$

Above considerations allow us to establish the following result.
Theorem 1. Let S be a \mathbb{Q}-convex cone containing the origin in a linear space X over \mathbb{Q} and let Y. be a real topological vector space Y. S.v. functions $\varphi, \psi: S \rightarrow \mathrm{cc}(Y)$ fulfil equation (4) if and only if there exists a subcone (over (Q) S_{0} of S and additive s.v.functions $\tilde{\varphi}: S_{0} \rightarrow \mathrm{cc}(Y)$ and $\tilde{\psi}: C_{0} \rightarrow \mathrm{cc}(Y)$ such that $S \subset S_{0}-S_{0}$ and (14) holds whenever $x=y-z \in S, y, z \in S_{0}$.

Theorem 1 can be used to prove the following one.
Theorem 2. A s.v. function $F: S \cap U \rightarrow c(Y)$ fulfits the Jensen functional equation if and only if all values of F are conwex and there exist a subcone S_{0} of S and additive s.v. functions $\tilde{\varphi}, \tilde{\psi}: S_{0} \rightarrow \operatorname{cc}(Y)$ such that $S \subset S_{0}-S_{0}$ and

$$
\begin{equation*}
F(x)+\tilde{\varphi}(z)+\tilde{\psi}(y)=F(0)+\tilde{\varphi}(y)+\tilde{\psi}(z) \tag{15}
\end{equation*}
$$

whenever $y, z \in S_{0}$ and $x=y-z \in S \cap U$.

Proof. Suppose that $F: S \cap U \rightarrow c(Y)$ fulfils ${ }^{\circ}(1)$. F must be convex--valued. Relations (2) and (3) yield

$$
\begin{equation*}
F(x)+\psi(x)=F(0)+\varphi(x) \tag{16}
\end{equation*}
$$

for $x \in S \cap U$, where $\varphi, \psi: S \rightarrow \operatorname{cc}(Y)$ fulfils (4). Accoding to Theorem 1 there exists a subcone S_{0} of S with $S \subset S_{0}-S_{0}$ and additive s.v. mappings $\tilde{\varphi}, \tilde{\psi}: S_{0} \rightarrow \dot{c}(Y)$ for which (14) holds. By (16) and (14) and Lemma 1 we have

$$
F(x)+\tilde{\varphi}(z)+\tilde{\psi}(y)=F(0)+\tilde{\varphi}(y)+\tilde{\psi}(z)
$$

which means that (15) holds.
Conversely, suppose that $F: S \cap U \rightarrow \mathrm{cc}(Y)$. There exists a subcone S_{0} of S and additive s.v. mappings $\tilde{\varphi}, \tilde{\psi}: S_{0} \rightarrow \operatorname{cc}(Y)$ for which (15) holds for $y, z \in S_{0}$ whenever $x=y-z \in S \cap U$. Consequently

$$
\begin{aligned}
& F(x)+\tilde{\varphi}(z)+\tilde{\psi}(y)=F(0)+\tilde{\varphi}(y)+\tilde{\psi}(z), \\
& F(\bar{x})+\tilde{\varphi}(\bar{z})+\tilde{\psi}(\bar{y})=F(0)+\tilde{\varphi}(\bar{y})+\tilde{\psi}(\bar{z}),
\end{aligned}
$$

and

$$
2 F(0)+\tilde{\varphi}(y+\bar{y})+\tilde{\psi}(z+\bar{z})=2 F\left(\frac{x+\bar{x}}{2}\right)+\tilde{\varphi}(z+\bar{z})+\tilde{\psi}(y+\bar{y})
$$

whenever $z, \bar{z}, y, \bar{y} \in S_{0}, x=y-z, \bar{x}=\bar{y}-\bar{z}$. The last equality has been obtained setting in (15)

$$
\frac{x+\bar{x}}{2}, \quad \frac{y+\bar{y}}{2}, \quad \frac{z+\bar{z}}{2}
$$

instead of x, y, z, respectively. Now, it suffices to add the last three equalities and apply Lemma 1. Obtained in this way the expression

$$
F(x)+F(\bar{x})=2 F\left(\frac{x+\bar{x}}{2}\right)
$$

for $x, \bar{x} \in S$ completes the proof.
Corollary ([2, Theorem 5.6]). A s.v. function $F: S \rightarrow \mathrm{c}(Y)$ fulfils the Jensen functional equation if and only if there exists an additive set-valued function $A: S \rightarrow \mathrm{cc}(Y)$ such that

$$
F(x)=F(0)+A(x)
$$

for $x \in S$.

Proof. Assume that $F: S \rightarrow \mathrm{c}(Y)$ is a Jensen s.v. function. Let $S_{0}, \tilde{\varphi}, \tilde{\psi}$ be such as in Theorem 2 for $U=X$. Then (15) holds whenever $y, z \in S_{0}$ and $x=y-z \in S$. Let n be an arbitrary positive integer. Replacing y by $n y, z$ by $n z$ and $x=y-z$ by $n x=n y-n z$ in (15) we obtain

$$
\frac{1}{n} F(n x)+\tilde{\varphi}(z)+\tilde{\psi}(y)=\frac{1}{n} F(0)+\tilde{\varphi}(y)+\tilde{\psi}(z) .
$$

This implies that there exists

$$
A(x)=\lim _{n \rightarrow \infty} \frac{1}{n} F(n x)
$$

where the limit is in the Hausdorff metric sense. The s.v. function A is additive and convex compact valued. Moreover,

$$
\tilde{\varphi}(y)+\tilde{\psi}(z)=A(x)+\tilde{\varphi}(z)+\tilde{\psi}(y)
$$

Adding up this equality and (15) and using Lemma 1 we obtain

$$
F(x)=F(0)+A(x)
$$

The converse implication is obvious.
Now we proceed to prove a characterization of a s.v. solution of the Pexider equation.

Theorem 3. S.v. functions $F, G, H: S \cap U \rightarrow \mathbf{c c}(Y)$ fulfil the Pexider functional equation

$$
\begin{equation*}
F(x+y)=G(x)+H(y) \tag{17}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
F(0)=G(0)+H(0) \tag{18}
\end{equation*}
$$

and there exists a subcone S_{0} of S with $S \subset S_{0}-S_{0}$ and additive s.v. functions $\tilde{\varphi}, \tilde{\psi}: S_{0} \rightarrow \mathrm{cc}(Y)$ such that

$$
\begin{equation*}
F(x)+\tilde{\varphi}(z)+\tilde{\psi}(y)=F(0)+\tilde{\varphi}(y)+\tilde{\psi}(z) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
G(x)+\tilde{\varphi}(z)+\tilde{\psi}(y)=G(0)+\tilde{\varphi}(y)+\tilde{\psi}(z) \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
I(x)+\tilde{\varphi}(z)+\tilde{\psi}(y)=\Pi(0)+\tilde{\varphi}(y)+\tilde{\psi}(z) \tag{21}
\end{equation*}
$$

whenever $z, y \in S_{0}$ and $x=y-z \in S \cap U$.

Proof. Suppose that $F, G, H: S \cap U \rightarrow c c(Y)$ are solutions of (17). By Lemma 3 these functions have to fulfil equation (1). Now, Theorem 2 states that there exist a subcone S_{0} of S and additive s.v. functions $\tilde{\varphi}, \tilde{\psi}: S_{0} \rightarrow$ $\mathrm{cc}(Y)$ such that (19) holds. Condition (18) is obvious. To prove (20) put $y=0$ in (17). The equality

$$
F(x)=G(x)+H(0),
$$

conditions (18) and (19) imply that

$$
G(x)+H(0)+\tilde{\varphi}(z)+\tilde{\psi}(y)=G(0)+H(0)+\tilde{\varphi}(y)+\tilde{\psi}(z)
$$

Now (20) for $y, z \in S_{0}$ follows from Lemma 1. Equality (21) can be obtained in the same way.

Conversely, assume that $F, G, H: S \cap U \rightarrow \mathrm{cc}(Y)$ fulfil (18) and additive s.v. functions $\tilde{\varphi}, \tilde{\psi}: S_{0} \rightarrow \operatorname{cc}(Y)$ fulfil (19), (20) and (21), where S_{0} is a subcone of S. Then we have

$$
\begin{aligned}
F(x+\bar{x})+\tilde{\varphi}(z+\bar{z})+\tilde{\psi}(y+\bar{y}) & =F(0)+\tilde{\varphi}(y+\bar{y})+\tilde{\psi}(z+\bar{z}) \\
G(0)+\tilde{\varphi}(y)+\tilde{\psi}(z) & =G(x)+\tilde{\varphi}(z)+\tilde{\psi}(y) \\
H(0)+\tilde{\varphi}(\bar{y})+\tilde{\psi}(\bar{z}) & =H(\bar{x})+\tilde{\varphi}(\bar{z})+\tilde{\psi}(\bar{y})
\end{aligned}
$$

whenever $y, \bar{y}, z, \bar{z} \in S_{0}$ and $x=y-z \in S \cap U, \bar{x}=\bar{y}-\bar{z} \in S \cap U$ with $x+\bar{x} \in U$. To get

$$
F(x+\bar{x})=G(x)+H(\bar{x})
$$

for $x, \bar{x} \in S \cap U$ with $x+\bar{x} \in U$, it is enough to add up the last three equalities and to apply Lemma 1.
K. Nikodem's theorem ([2, Theorem 5.7]) on the form of solutions of (17) can be derived from Theorem 3 (only on a ©-convex cone) by similar considerations as in the proof of the Corollary.

References

[1] J. Dhombres, R. Ger, Conditional Cauchy equation, Glasnik Mat. Ser. Ill 13 (1978), 39-62.
[2] K. Nikodem, K-Convex and K-Concave set-valued functions, Zeszyty Naukowe Politechniki Lódzkiej 559, 1989.
[3] H. Rädström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[4] W. Smajdor, On Jensen and Pexider functional equations, Opuscula Math. 14 (1994), 169-178.

Institute of Mathematics
Pedagogical University
Podchorázych 2
Pl-30-084 Kraków, Poland

