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N O T E O N P O L Y N O M I A L F U N C T I O N S 

ZYGFRYD KOMINEK 

Abstrac t . In the present paper'it is proved that every C-polynomial func­
tion / : X —* Y is a polynomial function, provided C fulfils conditions (1), 
(2) and X and V are divisible commutative groups. 

1. Let (X, +) be a commutative group and let C be a subset of X such 
that 

(1) c + ccc, 

(2) C-C = X. 

Conditions (1) and (2*) mean that C is a subsemigroup óf X such that X is 
generated by C. We will write, for x, y G X, 

(3) x < y iff y — x 6 C or y — x. 

R E M A R K 1. Let X be a real linear space endowed with a semilinear to­
pology (cf. [5], [6]), and let C C X be an open subset satisfying (1). Then 
(2) is fulfilled. ' 

In fact, if x £ X and c 6 C , then there exists a positive integer n such 
that ^ i + c'G C , because C is open. Hence x € C — C, by virtue of (1). 

R E M A R K 2. Let X be a real linear space endowed with a semilinear to­
pology. If C is an open cone (i.e. C fulfils (1) and the condition a • C C C 
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for any a > 0) in X such that 0 ^ C , then relation < denned by (3) is a 
partial order in X. 

Let (Y, +) be a commutative group, let / : X —• Y be a function, and let 
h € X be arbitrary. The difference operator A ^ with the span h is defined 
by the equality 

A f c / ( x ) = / ( * + fc) - / (* ) , x € X , 

The superposition of several operators «\ will be denote shortly by 

Afc„...,A. = A A l A f c a - - - A f c l l , n = 1,2,.. . . 

If hi = fi2 = • • = hn = h we will write A£ instead of Ahlt... ,hn • 
For every positive integer n we have ([2], [7]) 

A j J / ( * ) = Ec-1)""* (*)/(* + **)• 

A function / : X —»• Y is called a polynomial function of n-th order iff 
([2], [7]) 

(4) A J + V ( * ) » 0 

for all x, / i e X . If condition (4) is fulfilled for every x € X and h e C , then 
/ is called a C -polynomial function of n-th order. 

The following question arises: is every C-polynomial function of n - t h 
order a polynomial function of n-th order? The purpose of this paper is to 
prove that the answer to this question is "yes". A n analogous problem for 
C-additive functions as well as for Jensen's functions (i.e. the case n = 1) 
has a positive solution ([5], T h . 8.4 and 8.5). 

Let X be a real linear topological space, and assume that C C X fulfils 
(1) and (2). Let D C X be a convex subset of X . A function / : D —* E is 
called C-/-convex iff 

(5) a = ± 2 ) < M±IM 

for every x,y G D such that x — y £ C ot y — x € C (i.e. x and y are 
comparable). A set T belongs to the class A(X,C) iff every C-J-convex 
function / : D —• E , where D is an open and convex subset of X containing 
T, bounded above on T is continuous in D. 
Similarly, a set T C X belongs to the class B(X, C) iff every C-additive 
function / : X -*• E (i.e. f(x + y) = f(x) + f(y) for all comparable x, y e X ) 
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bounded above on T is continuous in X. If X = C = HkN these set classes 
were introduced in a paper of R. Ger and M . Kuczma [3]. If X is a real 
linear topological space and C = X such set classes were studied in [4] and 
[5]. The main result of [4] states that the equality A(X, X) = B(X, X) holds 
true provided that X is a Baire space. 

The equality A(X, C) = B(X,C), in general, is not valid. Of course, we 
always have A(X,C) C B(X,C). Now we shall give an example of a set T 
belonging to B(X,C) such that T £ A(X,C). 

Let H be a Hamel basis of the space of all reals over rationals Q. By 
E+(H) we denote the set of all x G M. \ {0} such that every coefficient 
r a G Q of its Hamel expansion is non-negative. 

E X A M P L E . Let X = I 2 (with the natural topology) and let C = E+(H) x 
E+(H). We define a function / : I 2 1 by the formula 

f((x,y)) = YlRaT°" 
a 

where x = Y^R-aha, y = Y^raha, Ra,ra € Q, ha £ H, are the Hamel 
at a 

expansions of x and y, respectively. If u = Y^Raha, v = J2^aha, where 
a a 

ha G H, Ra, ra € Q, and, moreover, (x,y) < (u,v) or («, v) < (x,y) in the 
sense of definition (3), then 

(Ra — Ra)(^a - ra) < 0 for every a, 

and hence 

2 / ( ( « . y ) + ( * . » ) ) < / ( (x , „)) + / ( ( « , * ) ) , 

which means that / is a C-J-convex function. Put 

T = (E+(H) x ( - £ + ( # ) ) ) U ( ( - £ + ( # ) ) x E+(H)). 

Observe that / is bounded above on T (f((x,y)) < 0 for (x,y) G T) and 
discontinuous function. Thus T does not belong to the class «4(]R 2 ,C). 

We shall show that every C-additive function bounded above on T is 
identically equal to zero. For, let F : M2 —• E be a C-additive function 
bounded above on T. By Theorem 8.4 in [5] F is additive function and 
by the symmetry of T with respect to zero we infer that F is bounded 
(bilaterally) on T. Thus there exists a constant M > 0 such that 

\F((x,y))\<M for all (x,y)eT. 
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For every h £ H and each positive integer n the points (n/i,0) and (0, —nh) 
are elements of T. Therefore 

as well as 

Hence 

n\F((h,0))\ = \F((nh,0))\<M 

n\F((0,h))\ = \F((0,-nh))\<M. 

F((h1,hi)) = 0 for all huh2 G H 

and, consequently, F is identically equal to zero. This implies that T belongs 
to #(m2,c). 

Note that / defined in our example is not ./-convex function (i.e. / does 
not fulfil (5) for all x, y G D). So we have 

R E M A R K 3. There exist C- ./-convex functions which are not J-convex. 

2. The goal of this section is to prove that every C-polynomial function 
/ : X —* Y of n- th order is polynomial function of n-th order, provided C 
fulfils (1) and (2) and (X, +) and (Y, +) are commutative groups admitting 
division by (n + 1)! and (n+xyC C C . The proof of this fact will be based 

on several lemmas. In* the case where X = C = M.N lemmas 1, 2 and 3 
may be found in [7], but in our, more general situation their proofs are quite 
similar. A function F : Xk —»• Y is called fc-additive iff it is additive with 
respect to each variable. Then a function / : X —* Y given by the formula 
f(x) = F(x,... , x), x G X, is called a diagonalization of F. 

L E M M A 1. Let (X, +) and (Y, +) be commutative groups, and let 
F : Xk —* Y be a symmetric k-additive function. If f is a diagonalization 
of F, then for all h i , h p G X and every positive integer p> k we have 

(k\F(hi,...,hk) if p = k 
A f c l t . . . t * , / ( x ) = | 0 . f p > k 

L E M M A 2. Let (X, +) be a commutative group admitting division by 
(p+l)\ and let (Y, +) be a commutative group. Assume that C C X satisfies 
(1) and (2) and (p+iy.C C C. If f : X —• Y is a C-polynomial function of 
p-th order, then 

A f c l I . . .> , + 1 / (aO = 0 
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for every x £ X and h\,... , hp+\ G C. 

L E M M A 3. Let (X, +) and (Y, +) be commutative groups, and let 
Fi : X* —> Y be symmetric and i-additive functions, i = 1,... ,p. If fo G Y 
is a constant and /,• are diagonalizations of F{, i = 1,... ,p, respectively, 
then the function f = fo + fi + .. • + fp is a polynomial function of p-th 
order. 

L E M M A 4. Let (X, +) and (Y,+) be commutative groups, let C C X be 
a set fulfilling (1) and (2). Let a : X —• Y be a C-polynomial function of 
order zero. Then a = const. 

P R O O F . Assumptions on a mean that A/,a(a;) = 0 for x € X and h € C. 
Thus 

(6) a(x + h) = a(x), x e X, h£C. 

Therefore for all u, v (E C we have 

a(u) = a(u + v) = a(v + u) = a(v) 

which means that a\c — const. 
Take an x 6 X and let .u,v € C be such that (see (2)) x = u — v. On 

account of (6) 

a(x) = a(u — v) = a(u). 

So, a is a constant function on X. • 

C O R O L L A R Y . Let (X, +) be a commutative group admitting division by 
(n + 1)!, let (Y, +) be a commutative group, and let C C X be s set ful­
filling (1), (2) and condition („^^ C C C . Moreover, let f : X —>• Y be a 
C-polynomial function of n-th order. For arbitrary fixed hi,... , hn G C a 
function a : X —»• Y given by 

a{x) = Ahl ,...,/,„ f{x) = 0, xeX, 

is constant on X. 

P R O O F . By virtue of Lemma 2 

Aha(x) = Aki hn,hf(x) = 0 

for every x G X and h G C. By Lemma 4 a is a constant function on X. • 
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L E M M A 5. Let (X, +) and (Y, +) be com nutative groups, let C C X 
be a set fulfilling (1) and (2). Let G : Cp —• Y be a p-additive function. 
Then there exists a unique p-additive function G : Xp —> Y such that 
G ( h \ , h p ) = G(h\,... ,hp) for every h\,... ,hp G C. Moreover, if G is 
symmetric, then so is also G. 

P R O O F . By induction on p we shall prove that if G : Cp —*• Y is a 
p-additive function on Cp', then there exists a unique p-additive extension 
G : Xp —• Y of G onto Xp. This extension is given by 

(7) G(Xl,...,Xp)= XJ 
j l , . . . ,jp=0 

where « ? , . . . , t ip ,u\ , . . . ,up G C are such that x,- = u° — uJ, i = 1,.. . ,p 
(cf. (2)). 

For p = 1 this is the contents of a theorem from [1] (cf. also [7, Theorem 
18.2.1, p.471]). Now assume this to be true for a p > 1, and let G : C p + 1 —»• 
Y be a (p + l)-additive function on Cp+1. For every fixed h G C the 
function G(h\,... , / i p , / i ) is p-additive on Cp. By the induction hypothesis 
G ( - , . . . ,-,^) can be uniquely extended onto X to a p-additive function 
G : Xp —> Y , and the extension is given by 

i 

(8) G(xu...,xp,h)= £ (- l)^+-+^G(«i 1 , . . . , t tj ' , fc) , 
i i , - - .iP=o 

where «5, •. • , "p, u\,... , up G C are such that x,- = u° — u], i = 1,.. . ,p. It 
follows from (8) that for every fixed x\,... ,xp £ X the function G as a func­
tion of h is additive on C. By the case p = 1 of our Lemma G ( x l 5 . . . , x p , •) 
can be uniquely extended onto X to an additive function G : X —> Y ; the 
extension is given by 

G ( x i , . . . , x p , X p + i ) 

= G ( x j , . . . ,xp;u°p+1)-G(x!,... , x p , u p + 1 ) 

= x ; ( - i ) i ' + i G ( * i ł . . . ł « P ł « t e , ) ł 

where t tp + i , wp + i G C are such that x p + 1 = u^+1 — u p + 1 . 
The function G considered as a function G : X p + 1 —» Y of all the variables 

X i , . . . , x p + i is the desired unique (p+l)-additive extension of G onto X p + 1 . 
Formula (7) for p + 1 results from (8) and (9). 
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The statement about symmetry is a direct consequence of (7). • 

T H E O R E M . Let (X, +) and (Y, +) be commutative groups admitting di­
vision by {n + 1)!. Assume that C C X fulfils (1), (2) and the condition 
(n+i)! C C C . If f '• X Y is a C-polynomial function of n-th order, then 
it is a polynomial function of n-th order. 

P R O O F . By induction with respect to n we shall prove that every C-po­
lynomial function of n- th order has the form 

(10) / = / 0 + / l + - . . + /n , 

where fo is a constant, and fi : X —* Y are diagonalizations of i-additive 
and symmetric functions F, : X1 —> Y, i = 1,... , n, respectively. It follows 
by Lemma 4 that (10) holds true for n = 0. Assume that for arbitrary 
C-polynomial function g : X —* Y of order p — 1, 1 < p < n, there exist 
symmetric and i-additive functions F{ : X' —> Y, i = 1,... ,p — 1, and a 
constant /o such that 

(11) . g = fo + h + .-. + fp-i, 

where /,• are diagonalizations of F,-, i = 1,... ,p — 1, respectively. 
Let / : X —*• Y be a C-polynomial function of p-ih order and put 

(12) F(xu... ,xp) = ^(AXu...tXpf)(0), xu...,xp€X. 

We shall show that G = F|CP fulfils the assumptions of Lemma 5. Since 
the operators A„, and A * commute (cf. [7, Lemma 15.1.2, p. 367]), G is 
symmetric. F ix an i € { 1 , . . . ,p} and hi,... ... ,hp 6 C . 
Then 

C ( / i i , . . . , / i t _ i , hi + hi, hi+i,... , hp) 

- G(hi,... ,hi-i,hi,hi+x,... ,hp) 

- G(hi,... ,hi-i,hi,hi+i,... ,hp) 

=

 pll(Ah1,...,hi-1,hi+hi,hi+1,...,hpf)(Q) 

- ( A f c l , . „ j f c . _ 1 ( f c i ) h i + 1 &„/)(()) 

= ^[(Afc1I...,fci_1,fcj+1 fcF((Afcł+fc./)(0) 

- ( A , i / ) ( 0 ) - ( A 7 : i / ) ( 0 ) ) ] 

— pj(^/ii,...,ft,-_i,fci+i,...,ftp)Ai,/ij/)(^) ~ »̂ 
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in view of Lemma 2. This means that G is p-additive. On account of Lemma 
5 there exists a unique p-additive and symmetric function G : XV —• Y such 
that G\CP = G. Let fp be a diagonalization of G and put 

(13) ff(x) = /(*) - / P ( x ) , x € X . 

By Lemma 3, / p is a polynomial function of p-th order. Hence g is a 
C-polynomial function of p-th order. For arbitrary fixed hi,... , hp G C 
we define a function a : X —* Y by the formula 

a(x) = (A/u h , /)(a:), x e X . 

We observe that is C-polynomial function of 0-th order. According to Corol­
lary a is a constant function on X . Hence, in particular, 

(14) (Ahlt...thpg)(x) = (A h l l . . . f f c p S f ) (0 ) , x G X . 

It follows from (13), (12), the equality F\CP = G = G\CP and Lemma 1 that 

( A h l , . . . l h ^ ) ( 0 ) = ( A f c l ) . . . , f c p / ) ( 0 ) - ( A h l , . . . , f c ł / p ) ( 0 ) 
=p\F(hu. ..,hp)- p\G(hu... , hp) = 0, 

which proves in view of (14) that g is a C-polynomial function of order p — 1. 
Thus g may be written in the form (11). Now (10) (with p instead of n) 
follows from (12). To end the proof it is enough to apply Lemma 3. • 

R E M A R K 4. Professor Roman Ger has pointed out that the main result 
of the paper can be obtained using the methods presented in his papers; 
Functional equations with a restricted domain, Rend, del Sem. Mat e Fis. 
di Milano X L V I I (1977) 175-184, On some functional equations with a re­
stricted domain I, II, Fundamenta Math. L X X X I X (1975) 131-149 and 
X C V I I I (1978) 249-272 and also Conditional Cauchy Equations (a common 
paper with J . Dhombres), Glasnik Mat. 19 (33) (1978) 39-62. We believe 
that the proof given here, although fairly long, may present an interest of 
its own. 
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