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Prace Naukowe Uniwersytetu Slgskiego nr1399

NOTE ON POLYNOMIAL FUNCTIONS

ZYGFRYD KOMINEK

Abstract. In the present paper it is proved that every C-polynomial func-
tion f: X — Y is a polynomial function, provided C fulfils conditiors (1),
(2) and X and Y are divisible'commutative groups.

1. Let (X,+) be a commutative group and let C be a subset of X such
that

1) c+Ccc,

(2) | C-C=X.

Conditions (1) and (2) mean that C is a subsemigroup of X such that X is
generated by C. We will write, for z,y € X, '

(3) z<y iff y—2z€C or y=z.

REMARK 1. Let X be a real linear space endowed with a semilinear to-
pology (cf. [5], [6]), and let C C X be an open subset satisfying (1). Then
(2) is fulfilled.

In fact, if z € X and ¢ € C, then there exists a positive integer n such
that 1z + ce C, because C is'o'péh; Hence z € C — C, by virtue of (1)..

REMARK 2. Let X be a real linear space endowed with a sermhnear to-
pology If C is an open cone (i.e. C fulﬁls (1) and the condition o~ C C C
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for any a > 0) in X such that 0 ¢ C, then relation < defined by (3) is a
partial order in X. A

Let (Y,+) be a commutative group, let f: X — Y be a function, and let

h € X be arbitrary. The difference operator Aj, with the span h is defined
by the equality

Anf(z) = f(z +h) - f(z), zE€X,
The superposition of several operators A will be denote'shortly by
Abyyihe = BpyApy - Ap,, n=12,....

If hy = hy = ... = hy, = h we will write A} instead of Ap, ... 1,
For every positive integer n we have ([2], [7])

n

B = Y0 )f(w+kh)

k=0

A function f : X — Y is called a polynomial function of n-th order iff
(12, [7)

(4) A f(z) =0

for all z,h € X. If condition (4) is s fulfilled for every z € X and h € C, then
fis ca.lled a C -polynomial function of n—th order. '

The following question arises: is every C—polynomial function of n —th
order a polynomJal function of n~th order? The purpose of this paper is to
prove that the answer to this question is ”"yes”. An analogous problem for
C-additive functions as well as for Jensen’s functions (i.e. the case n = 1)
has a positive solution ([5], Th. 8.4 and 8.5).

Let X be a real linear topological space, and assume that C' C X fulfils
(1) and (2). Let D C X be a convex subset of X. A function f: D — R is
called C-J—convex iff

) PEETIPROLI0

for every z,y € D such that z —y € Cor y—z € C (i.e. z and y are
comparable). A set T belongs to the class A(X,C) iff every C—J-convex
“function f: D — R, where D is an open and convex subset of X conta.mlng
T bounded above on T is continuous in D.

Slmlla,rly, a set T C X belongs to the class B(X,C) iff every C-additive
function f : X — R (i.e. f(z+y)= f(z)+ f(y) for all comparable z,y € X)
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bounded above on T is continuous in X. If X = C = R¥ these set classes
were introduced in a paper of R. Ger and M. Kuczma [3]. If X is a real
linear topological space and C' = X such set classes were studied in [4] and
[5]. The main result of [4] states that the equality A(X, X) = B(X, X) holds
true provided that X is a Baire space.

The equality A(X,C) = B(X,C), in general, is not valid. Of course, we
always have A(X,C) C B(X,C). Now we shall give an example of a set T
belonging to B(X, C) such that T ¢ A(X,C).

Let H be a Hamel basis of the space of all reals over rationals Q. By
Et(H) we denote the set of all z € R \ {0} such that every coefficient
To € Q of its Hamel expansion is non-negative.

EXAMPLE. Let X = R? (with the natural topology) and let C = E+(H)x
E*(H). We define a function f: R? — R by the formula

(@) = Y Raray

where z = 3] Roha, y =Y roha, RayTa € Q, hy € H, are the Hamel
[+ [+
expansions of z and y, respectively. If u = Y Roha, v = 3 Tohe, where
[0 o
ho € H, Ra, To € Q, and, moreover, (z,y) < (u,v) or (u,v) < (z,) in the
sense of definition (3), then

(Ra — Ra)(Fa— 7o) <0 for every a,

and hence

27(EDE D) ¢ fa, )+ (w00,

which means that f is a C—J-convex function. Put
T = (E*(H) x (~E*(H))) U ((-E*(H)) x E*(H)).

Observe that f is bounded above on T (f((z,y)) < 0 for (z,y) € T) and
discontinuous function. Thus T does not belong to the class A(R2, C).

We shall show that every C-additive function bounded above on T is
identically equal to zero. For, let F : R2 — R be a C-additive function
bounded above on T. By Theorem 8.4 in [5] F is additive function and
by the symmetry of T with respect to zero we infer that F is bounded
(bilaterally) on T. Thus there exists a constant M > 0 such that

|F((z,y))I < M for all (z,y)eT.
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For every h € H and each positive integer n the points (nh,0) and (0, —nh)
are elements of T. Therefore

n|F((h,0))| = |F((nh,0))] < M

as well as

n|F((0,h)) = |F((0, —nh))| < M.

Hence
F((h],h2)) =0 forall hl,h2 eH

and, consequently, F is identically equal to zero. This implies that 7" belongs
to B(R?,C).

Note that f defined in our example is not J-convex function (i.e. f does
not fulfil (5) for all z,y € D). So we have

REMARK 3. There exist C— J—convex functions which are not J—convex.

2. The goal of this section is to prove that every C'-polynomial function
f : X = Y of n-th order is polynomial function of n-th order, provided C
fulfils (1) and (2) and (X, +) and (Y, +) are commutative groups admitting
division by (n + 1)! and Z'n-|1-_1)!c C C. The proof of this fact will be based
on several lemmas. Im the case where X = C = RY lemmas 1, 2 and 3
may be found in [7], but in our, more general situation their proofs are quite
similar. A function F : X*¥ — Y is called k-additive iff it is additive with

respect to each variable. Then a function f: X — Y given by the formula
f(z) = F(=,...,z), z € X,is called a diagonalization of F.

LEMMA 1. Let (X,+) and (Y,+) be commutative groups, and let
F: X* > Y be a symmetric k—additive function. If f is a diagonalization
of F, then for all hy,...,h, € X and every positive integer p > k we have

K'F(hy,...,h if =k
Apy,... 1, f(T) = { (P K e

if p>k.

LEMMA 2. Let (X,+) be a commutative group admitting division by
(p+1)! and let (Y, +) be a commutative group. Assume that C C X satisfies
(1) and (2) and mﬁC CC.Iff:X —Y isaC-polynomial function of
p-th order, then

Apy,. oy f(2) =
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for every z € X and hy,... ,hp41 € C.

LeEmMMA 3. Let (X,+) and (Y,+) be commutative groups, and let
F;: X' > 'Y be symmetric and i-additive functions, i=1,... ,p. If fo €Y
is a constant and f; are diagonalizations of F;, i = 1,...,p, respectively,
then the function f = fo+ fi + ...+ f, is a polynomial function of p-th
order. ' :

LEMMA 4. Let (X,+4) and (Y,+) be commutative groups, let C C X be
a set fulfilling (1) and (2). Let a : X — Y be a C-polynomial function of
order zero. Then a = const.

PRrROOF. Assumptions on a mean that Aza(z) =0forz € X and h € C.
Thus

(6) a(z+h)=a(z), z€X, heC.
Therefore for all u,v € C we have
a(u) = a(v + v) = a(v + u) = a(v)

which means that a|c = const.
Take an ¢ € X and let u,v € C be such that (see (2)) 2 = u — v. On
account of (6) .
a(z) = a(u — v) = a(u).

So, a is a constant function on X. O

CoROLLARY. Let (X,+) be a commutative group admitting division by
(n 4+ 1)), let (Y,+) be a commutative group, and let C C X be s set ful-
filling (1), (2) and condition (n+1)'C C C. Moreover, let f : X - Y be a

C-polynomial function of n—th order. For arbitrary fixed hl, hn€C a
function a : X — Y given by

a’(z) = Ahl,...,h,.f(x) =0, T € X,

is constant on X.

Proor. By virtue of Lemma 2

Apa(z) = Ay, 5, 1 f(2) =

for every € X and h € C. By Lemma 4 a is a constant function on X. O
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LEMMA 5. Let (X,+) and (Y,+) be com nutative groups, let C C X
be a set fulfilling (1) and (2). Let G : CP — Y be a p-additive function.
Then there exists a unique p-additive function G : XP - Y such that
@(hl,... shp) = G(h1,... ,hy) for every hy,... ,h, € C. Moreover, if G is
symmetric, then so is also G.

Proor. By induction on p we shall prove that if G : CF — Y is a

p-additive function on CP, then there exists a unique p-additive extension
G : XP =Y of G onto XP. This extensic is given by

1
A _ 14 ..+7 J
(7) Gz, smp) = Y, (D) HeGl,.. ulr),
jli"'!jp=0
where uf,...,u%,u},... ,ul € C are such that z; = v} —u}, i=1,...,p

(cf. (2)).

For p = 1 this is the contents of a theorem from [1] (cf. also [7, Theorem
18.2.1, p.471]). Now assume this to be true for a p > 1, and let G : CP*! —
Y be a (p + 1)-additive function on CP*l. For every fixed h € C the
function G(hi,... ,hp, k) is p-additive on CP. By the induction hypothesis
G( ,++-3°,h) can be uniquely extended onto X to a p-additive function
G: X P Y, and the extension is given by

(8) G(z1,... y&p, h) = E (=)t G(ud, ooyl R,

J1see,Jp=0
where uf,...,u%,u},... ,ul € C aresuch that z; = -}, i=1,...,p. It
follows from (8) that for every fixed z1,...,2, € X the function G as a func-
tion of h is additive on C. By the case p = 1 of our Lemma G(z1,... ,zZp,")

can be uniquely extended onto X to an additive function G:X — Y; the
extension is given by

G(T1,.+v yZp, Tpt1)
©) =G(z1,... ,a:,,;ug+1)—G(a:1,... ,a:p,u},_l_l)
1
> (~1)G(zy, .. 2, ulrihy,
Jp41=0

where ug . ;, p+1 € C are such that 2,4, = up+1 p+1

The function G considered as a function G : XP+! — Y of all the variables
Z1,... ,Tpt1 is the desired unique (p+1)-additive extension of G onto X Pt
Formula (7) for p + 1 results from (8) and (9).
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The statement about symmetry is a direct consequence of (7). O

TuEOREM. Let (X,+) and (Y,+) be commutative groups admitting di-
vision by (n + 1)l Assume that C C X fulfils (1), (2) and the condition
WC cC.Iff:X—=Yisa C—polynomzal ﬁmctlou of n—th order, then
it is a polynomial function of n—th order.

PROOF. By induétion with respect to n we shall prove that every C—po-
lynomial function of n—th order has the form

(10) f=fh+h+...+ fa

where fy is a constant, and f; : X — Y are diagonalizations of i-additive
and symmetric functions F; : X* - Y, i=1,...,n, respectively. It follows
by Lemma 4 that (10) holds true for n = 0. Assume that for arbitrary
C-polynomial function g : X — Y of order p—1, 1< p < n, there exist
symmetric and i-additive functions F; : X — Y, t=1,...,p—1,and a
constant fp such that

(11) g=h+h+4+nq,

where f; are diagonalizations of F;, i=1,...,p~ 1, respectively.
Let f: X =Y be a C—polynomial function of p-th order and put

1
(12) Foryes2p) = 5i(Ben, O 21003, € X.

We shall show that G = F|c» fulfils the assumptions of Lemma 5. Since
the operators A, and A, commute (cf. [7, Lemma 15.1.2, p. 367]), G is
symmetric. Fix ani € {1,...,p} and hiy... hiz l,h,,h,,hH_l, hy € C.
Then

G(hiy..o yhiey, by + h,',h,'+1, ces ,hp)

= G(h1. s hict hishiga, .., hy)
= G(hy, ... hict, Ry higay e s hyp)

1
=E[(Ah17--' 1hi—11hi+zi ,h.‘+1 yooe ,h‘, f)(O)

- (Ahla--' 1hl'—1 yhl' 1hl'+l yere 7hpf)(0)
- (Ahl,...,h;_l,-lf.-,h.-“,... ,h,,f)(o)]

:I%![(Ahl,... ic1hig1ye.. ’hP((AhH—E‘ f)(O)
— (A F)(0) = (A7, H(0))] .

1 .
=]T!(Ah1"" shim1,higa e hp b ,7{‘ f)(O) = 07
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in view of Lemma 2. This means that G is p-additive. On account of Lemma
5 there exists a unique p—additive and symmetric function G : X? — Y such
that Glcr = G. Let f, be a diagonalization of G and put

(13) 9(2) = f() - folz), @€ X.

By Lemma 3, f, is a polynomial function of p%th order. Hence g is a
C-polynomial function of p-th order. For arbitrary fixed hq,...,h, € C
we define a function a : X — Y by the formula

a(z) = (Apy,... 1, f)(z), zE€X.

We observe that is C—polynomial function of 0-th order. According to Corol-
lary a is a constant function on X. Hence, in particular,

(14) (Ahly.ﬂ*vhpg)(z) = (Ahly-nyhpg)(o)’ T E X'
It follows from (13), (12), the equality Flcr = G = @Icp and Lemma, 1 that

(Ahy,...r, 9)(0) =(Any,... 1, F)(0) = (Apy,... 1, f)(0)
=p!F(h1, .o ,hp) - p'G(hl, ey hp) = O,

which proves in view of (14) that g is a C—polynomial function of order p—1.
Thus g may be written in the form (11). Now (10) (with p instead of n)
follows from (12). To end the proof it is enough to apply Lemma 3. O

REMARK 4. Professor Roman Ger has pointed out that the main result
of the paper can be obtained using the methods presented in his papers;
Functional equations with a restricted domain, Rend. del Sem. Mat e Fis.
di Milano XLVII (1977) 175-184, On some functional equations with a re--
stricted domain I, II, Fundamenta Math. LXXXIX (1975) 131-149 and
XCVIII (1978) 249-272 and also Conditional Cauchy Equations (a common
paper with J. Dhombres), Glasnik Mat. 19 (33) (1978) 39-62. We belicve
that the proof given here, although fairly long, may present an interest of
its own.
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