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DIFFERENTIABLE SOLUTIONS OF FUNCTIONAL
EQUATIONS IN BANACH SPACES

MACIEJ SABLIK

Abstract. We deal with the functional equation

P(F(z)) = 9(z, ¥(z))
where functions F and g are given, defined in open subsets of Banach spaces
and taking values in Banach spaces as well. We prove theorems on the exist-
tence and uniqueness of solutions of the equation in classes of differentiable
functions. As corollaries we get some results on the conjugacy of diffeomor-
phisms. Analogous results have been known in the finite dimensional case
only.

Introduction. The aim of the present paper is to investigate existence
and sometimes also uniqueness of local solutions of the functional equation

of the first order
e(F(z)) = g(z, p(z)),

where given functions F' and g are defined in open subsets of some Banach
spaces and take values in Banach spaces, too. :

An inspiration for our work comes from at least two sources. Observe that
a particular case of the above written equation is the so called conjugacy

equation
p(F(z)) = G(p(2)),

which, especially when G is linear, plays an important role in the theory of
differential equations. When one deals with a dynamic system then solving
this equation leads to linearization of the problem. Linearization is discussed
in numerous papers under the assumption that given functions are defined
in Euclidean spaces. Since we are interested here in looking for solutions

Received revised October 16, 1992.
AMS (1991) subject classification: Primary 39B52. Secondary 47H17.

2 — Annales...



18

in }ugher regularlty classes let us mention Ph. Hartman [6], S. Sternberg
[27] and [28] and M. Kuczma [19]. These authors solve the linearization
" equation when the hnear operator is a contraction or, more genera]ly, yvhen
itisa hyperbohc mappmg with the spectrum not mtersectlng the unit circle.

"The present paper also contains results of such a type. However, the given
mappings are defined now in spaces of mﬁmte dimension. Thus theorems

“proved below extend mentioned above (cf. also Remarks 1.1 and 1.2 and
comments after Theorem 3.3). Let us recall that a theorem on continuous
linearization of a hyperbohc defeomorphlsm of a Banach space into itself
is known as Grobman——Ha.rtman theorem and is quoted for instance in Z.
Nitecki’s book [24] (Theorem 2.2).

Another reason to write this paper comes from a natural temptatlon to
generahze some earher results from the theory of functional equations. Many
authors mvestlgated existence and uniqueness of dlﬁ'erentlable solutions of

. equatlons “of the first order. In partlcular let us mention the papers “of B.
- Choczewski [3], J. Matkowsk1 [22] and [23] and the book of M. Kuczma, [18]

“(Chapter IV).

Our Theorem 1.2 is a generalization of a result contained in [3] to the
case of some Banach spaces. Moreover, this theorem says more about the
asymptot1c properties of solutions at the fixed point of F'. Let us note that
J. Matkowski’s theorems from [12] and [13] have weaker assumptions (m—th
derivatives of g need not be prsch1tz1an with respect to the second varlable)
"but on the other hand their statements are valid in R and existence of open
‘relatlvely compact s6ts plays a crucial role in proofs It is interesting that to
prove umqueness of solutions we need not requlre that derlvatlves of g are
‘Lipschitzian (cf. Theorem 1.3).

Also Theorems 2 1 and 2. 2 concermng the dependence of solutions on an

(Chapter IV) to the infinite dimensional case.

As the situation changes when we go from on_e dimensional case to mul-
tidimensional one it seems to be more adequate to compare our results with
those obtained by Belitskii {2] or Kutko [9]- [17], cf. also [1] and [8]. Some
of the results stated by the former authors are genera.hzed here — not only
because the space is more general but also because so are some mappings
(cf Remarks 1.1 and 1.2 and comments after Theorem 3.3).

The paper contains four sections. The ﬁrst one includes basic notions and
some technical lemmas and theorems They g1ve formulae for higher order
“derivatives of comp031te functions in Banach § spaces, describe the poss1b111ty
“of extending a function from a nelghbourhood of 0 onto the whole space with
regulanty properties preserved Also possibility of introducing equivalent
norms so6 that the norms of operators are close to their spectral radlus is
dealt with.
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We use standard notation in our paper. In particular derivatives are
denoted as in real case, we use the same symbol || || for norms in different
Banach spaces since it does not lead to any confusion. Similarly 0 stands for
zero in different spaces but it is always clear what we mean.

I would like to dedicate this paper to memory of Professor Marek Kuczma
(1935-1991) whose inspirating and motivating remarks made this paper be
written.

§ 0. We shall first recall or prove some results that will be useful in the
sequel. In what follows the differentiability of mappings will be understood in
the sense of Fréchet (see e.g. [4]). If X,Y are Banach spaces, U a nonempty
open subset of X and f: U — Y is k-times differentiable then we use the
- symbol f(¥)(z) for the k~th derivative of the mapping f at the point z and
f®)(@)(h, ..., ki) denotes the value of f(¥)(z) on the vector (hy,... ki) €
Xk, C™(U,Y) will mean the family of all mappings f : U — Y which are
m~times continuously differentiable. We write L¥(X,Y) for the set of all
k-linear forms from X into Y.

If U and V are nonempty open subsets of Banach spaces X and Y respec-

tively, Z is a Banach space and g € C¥(U x V, Z) then for (z,9) € U x V

the symbol gg{,)yk_,(m,y) means a partial derivative (j—times with respect

to the first and k — j-times with respect to the second variable). All such

partial derivatives are equal independently of the order of differentiation.
~In the set Z™ of all n—tuples of integers define the following relation of

partial order: if @ = (ay,...,a,) and b = (by,...,b,) belong to Z™ then

a<bera;<b; forevery i€{l,... yn}.
Denote by Z% all n—tuples of positive integers and for b = (by,...,b,) € Z™

put bl:=by!...b,! and |b] ;= by + ... + b,.
L. E. Fraenkel in [5] preved the following.

- LEMMA 0.1 Let X,Y,Z be Banach spaces, U and V nonempty open
subsets of X and Y, respectively. Let f € C™(U,V) and g € C™(V, Z) for
. some m € N. Then u:=go f € C™U,Z) and for every k € {1,...,m},
z €U and h = (hy,.. hk)eX" we have

| uF () : ) | :
| ; ,
(01 =33 Z(n!b!)-‘gw(f(x))(f“ﬂ(z)(h,(l),.v..,h,,u,li),

=1 |b|=k o
. f("")(a:)(ha(k-b,.“), oo hagiy)

2%
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where b = (b, ... ,b,) are from Z% and ), means the sum over all permu-
-4
tations o of the set {1,... ,k}.

The next lemma can be proved by induction requiring only some skill in
computation of derivatives (cf. [18], Chapter IV).

LEMMA 0.2 Let U and V be nonempty open subsets of Banach spaces
X and Y respectively, let Z be a Banach space, g € C™(U x V,Z), ¢ €
C™(U,V) for an m € N. Then for every k € {1,...,m}, z € U and
h = (h1,..-,hi) € X* we have '

0.2) 9( () B @)k =g'y (2, ¢(2)) 0 F) (2)h + Pi(z, p(), ¢ (z))h

+Ri(2, 9(2), -, 67 (@))h.
Here
Py (=, (P(x)a (p'(:l:)h = gk(z, ‘P(x))h
and

k .
Pi(z,0(2), @' @Dh =Y S g%y (2, 0(2)) 0 AL, (2)h,
j=0 c¢;
where A;?cj(a:) are cartesian products of idx(k — j — times) and ¢'(z)

(7 - times) and Y, denotes the sum over (’;) such products.
cj
Further, for every € U, Ri(z,¢(z),...,0o* " V(z)) € L¥(X,Z) can be
represented as a finite sum of terms of the form

C(03) g0 s (me2)oBY  s(z), ref2...,k-1},

with S; = X or §; =Y forj € {1,...,7} and B§, s (z) being cartesian
products of idx, ¢'(z),...,e* 1 (z) containing at least one derivative of
@ at z of order at least two. )

COROLLARY 0:1 Under the assumptions of Lemma 0.2, if moreoverV =Y
and g(z,-) € L(Y, Z) for every x € U then for every k € {1,... ,m}, z €U
and h = (hl’,“' ,hi) € X* we have

k
(0.4) 9Ce( NP =D D gl (2,0 (2)hg HhgT,
j=0 o;*
where o; is a choice of j numbers from the set {1,...,k}, coordinates of

h{;j € X7 are the coordinates of h corresponding to this choice and coordi-
“nates of hﬁj‘j € X*=J are the remaining coordinates of h.
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We also have

COROLLARY 0.2. Let X and Y be Banach spaces, K the scalar field of Y
and U a nonempty open subset of X. If p € C™(U,Y), a € C™(U,K) then
forevery k€ {1,...,m}, z €U, h=(h,...,hs) € X*

k
(0.5) (a()p(N P (z)h = Z Y (@ (@) il (2)h3,)

. ki
where o, ha,- ,

h&~3 have the same meaning as in Corollary 0.2.
Since we will often use equivalent norms in what follows we need the

following

LEMMA 0.3. Let U be a nonempty open subset of a Banach space X and
let Y be a Banach space. Then for any mapping ¢ : U — Y the class of its
regularity and the values of derivatives do not depend on equivalent norms.
Moreover, if || || and || ||} are equivalent norms inX, || |} and || ||} are
‘equivalent norms in Y and ¢ € C™(U,Y) then there exist d > 0 and D > 0
such that

d sup {[l¢™(@)ll1 : = € U} < sup {[lp"™(2)|lz : = € U}
<D sup {¢™(z)|h : 2 € U},

where || ||;, 1= 1,2, are norms in L™(X,Y) generated by | ||’ and || |I},
1= 1.2,

We omit here an immediate proof of this lemma.

Our method of solving functional equations in the sequel will require
possibility of extending mappings from a neighbourhood of 0 onto the whole
space in such a way that the extension be as regular as the original mapping.
The procedure is similar to that used in [6] (Chapter IX). There, however,
the problem was solved in the case of finite dimensional spaces.

We shall prove an "extension lemma” for the class of Banach spaces sat-
isfying the following condition

(C) There exists a functional ¢ € C*°(X,R) such that

(i) V V. A€l 2 q=) 2 12",

NeN C21 zeX

(i) V. A A UdP@) < Dll=IIN5),

D>0 1<k<N z€X

(i) N @ =0).

k>N
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. REMARK 0.1. (iii). 1mp11es by the mean va.lue theorem that ¢qM: X >
N (X R)is a constant mappmg

ExampLEs 1. Every rea.l Hilbert space with the square of the norm as g
sa.txsﬁes (C) )

2. Let pE N. Every space L2”(Q E,u) of real functxons mtegrable with

,,,,,

i2r of real sequences summable W1th 2p—th power

REMARK 0 2. In v1ew of Lemma 0. 3 it is clear that replacmg a norm m

: (C) and multlplymg functlonal q good” for the ongma,l norm by a suitable

- "constant we get a functional ”good” for the new norm.

. Before stating next lemma let us quote the followmg version of the inverse
functlon theorem (cf. [7] [24])

PROPOSITION 0.1. Let X,Y be Banach spaces, L € L(X,Y) a bijection
aud lety: X S Y bea L1psc1utz mappmg w1th prschztz constant Llp (1/)) <
LY. Then L+ is a bijection and (L¥¢)~" is a Lipschitz mapping
~with Lip ((L - +4)71) < Y(ILY7 ="Lip (¥)).

N ow we shall prove the fo]lowmg

I

LEMMA 0.4. Let X and Y be Banach spaces and Iet X satisty (C). Let
U be an open nelghbourhood of e X.IfF € C"‘(U Y) and F(O) = 0 then
for « ever_y £ > 0 there exists a §' > 0 such that for évery § € (0,6') there
- eXIStS a functxon Fs: € C’"‘(X Y) with the followmg propert1es ‘

©08) \/ (loll < 6B > Foule) = FG@) el > 6% Fiulo) = F(0)s;

" R>0

(0.7) N UIF ()] < IIF'(O)II +¢),

z€X

VoA '/\<uz||<6:s

L>0 1<r<m z€X

”(Fs e~ F’(O))("(w)ll <L Z«’"'II(F F '(0))(”(w)ll) :

_1-0

(0.8)
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(0.9) if F'(0) isa bijection then for ¢ small enough F . is a bijection, too

and té\X(II(FEQ (@) < (IF'©0)= = ¢)).

Proor. For z € U we can write F(z) = F’(O)z + ¢(z), where
e € C™U,Y), p(0) =0 €Y, ¢'(0)=0¢€ L(X,Y). Let g,c and N be
as in (C) and put R := 1/C*N. Moreover, let Q := ¢(). Let a € C°(R,R)
be’such a function that

1, Jtl< R,
a(t) = {0, It > 1/C.

Denote by My := sup{la(")(t)| teR, ke{0,...,m}}. Fixane > 0
and choose §' > 0 in such a way that ||z|| < <6 =z €U and

(010) sup{lle(2)] : llzll < &'} < e/(1QIIMo + 1)
and .
(0.11) sup{|F™) (@) = F ()] fof] < 87} < +o0

For a § < 6’ and = € X put

(z) = o(q(z)/C6M)p(z), |lell < &,
I lell > 6.

It is easy to see that then Fse:=F'(0)+ @5, € Cm(X Y) and fulﬁls (0. 6).
Further, if ||z|| < é and h € X then (cf. Corollary 0.2)

Fl5.e(z)h =F'(0)h + (a'(Q(z)/ CsMY(1/C6N)q (z)h)p(z) |
+ a(g(z)/C8N )¢/(2)h '

Wh_iCh impliés by t.he cho‘ice of §', (C), the mean-value theorem and (0.10)

1F5,e(2) = F'(0)|] <Mo(1/C™)||QI6N " sup{]|¢'(2)]| : |]2] < 8} - &
+ sup{Jl¢'(2)| : [l2]] < 5} <e, ‘

and (0.7) follows.
‘ Observe that by the mean—value theorem for :c, y € X we have

les,e(@) = esc(w)ll < sup{llese(2)ll: 2 € X Hiz ~ gl ,
L= SUP{||F5 o(2) - F’(O)ll z€ X}o -yl < ellz ~ yll, 1
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so the constant Lip (¢s,.) < €. If F'(0) is a bijection and ¢ < ||F'(0)~1||~?
then we may use Proposition 0.1 to get (0.9).

In order to prove (0.8) define 8 : X — R by B(z) = a(q(z)/CéN). Using
Corollary 0.2 we obtain for r € {1,... ,m} and h = (hy,... ,h,) € X7, if
llzll <6,

1(Fs,c = F'(0) (@Al = el @)kl = - 3 (8" (@)hi 7)) (a)hi, |-

3=0 0",'

Hence
012 k@< Y (D)@ e @l

Now, from Lemma 0.1 we obtain for all n € N, h = (hy,...,h,) € X™ and
z € X such that ||z]| < é

B (2)h
=i > 2 (k)T (B (g(2)/CoN))/CHENK () ()R,
k_l ,“:zl‘_":’ (;)hfi* )
whence
18 (@) .
(0.13) gzn: 3 nlk)H(CEN)F Moll¢O (@) - .. - 14 ().
k=1 |b|=n

Condition (iii) in (C) implies that on the right hand side of the above inequal-
ity only those summands do not vanish for which b; < N, ¢ € {1,...,k}.
Putting Iy = {1,..., N} and using (C) we derive from (0.13)

B @N <Y S e nl(bk) 1 (CEN) = My D*6VE—"
k=1 |bl=n
whence

0.14)  [1B™ (@)l < | D (Mon!/k!)(D/C)* (Z bez'g,(b!)_l)] /8"
k=1

|bl=n
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Denote the expression in square brackets by M, and put
L := max{(}) M,—;; j € {0,...,7}}.”
We see that (0.12) and (0.14) 1mply (0.8) which ends the proof. 0

Although looking for local solutions of the functional equations, we will
use a method of finding fixed points of some operators defined on subspaces
of the space of bounded functions from X into Y. To define the operators
properly we will need extensions of some functions defined in a neighbour-
hood of 0 € X XY onto a cylinder in X X Y containing X. The extensions
should preserve regularity of the original functions. This is why we prove
the following extension lemma.

LEMMA 0.5. Let X andY be Banach spaces and let X satisfy (C) Let U
and V be open nnghbourhoods of origins in X and Y, respectively. Furthet, .
let G € C™(U x V,Y) fc. a positive integer m and suppose that G(0,0) =
and G'x(0,0) = 0. Then for every € > 0 there exist §' > 0 and o' > 0 such
that for every § € (0,6') there is a mapping Gs. € C™"(X X {y €Y : ||y| <
0'},Y) with the following properties

0.15 V [zl < 6-RAllyll < @' = Gselz,9) = Glz,9)) A
. R>0

(Hlzll 26 A llyll < o = Gs.e(x,y) = G¥(0,0)y)]

sup{[|(Gs.)'y (2, y) — G¥(0,0)]).:

(0.16) (z,9)e X x{yeY |yl <o'}} <e,

017)  sup{ll(Gse)x(@ o)l : (my) e X x (ye YV : [yl <&} <o,

VoA Asgxllisl<s nlsli<e'=

K>0 1<r<m
(0.18) 1652z, 3) - G5 (0,0)" ()|

<K Y (G (a,9) - Gy (0,00 M),

j=0

V. A AUel<énlsll<e=

$>0 1<r<m zex
| y€Y

(0.19) 1(Gs.0) %} (=, ) = G (0, 5) ()|

ssza<f-">xlc:"’(z 9 - G (0,90 @)).

3=0
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Moreover, if there exists a p € (0, ¢] such that

V A A (sli<sen gl<e=

(0.20) L1>0 zeU y,gey
1G™) (z,y) — G (2, y)|| < Lilly - )

then

VA Adsli<enlmli<es

Ly>0 z€U y,5eY

21 : m my, = i
(0.21) 1652 (2,9) - G2 (2, 7)) < Lally - 7Y &
j=1

+67™ sup{||Gy (2, y)|l : ll=ll < &, lyll < o'}).

Proor. Let q,Q, R,a and M, be the same as in the proof of the preceding
lemma. Fix ¢ > 0 and choose ¢’ and ¢’ in such a way that the following
relation holds. :

el <6" A [lyll < o =
(0.22) Gy (2,9) — G¥(0,0)]| + |G (=, y)ll
<min{e,e/2Mo||Q|l,¢/Mo||Ql| + 1}

and

023) A si=sup{IGO(z, )l : |zl < &, [yl < o'} < +oo.
1<r<m

Put for § € (0,6"), all z € X and y € Y such that ||y|| < o

(2,7) = o(q(z)/C6N)r(z,9), |lall < &,
V5,e\T,Y) = 0, ”27”26,

where v := G — G’y(0,0): It is easy to see that G5 : X x {y € Y : |ly|| <
o'} = Y given by Gs.(z,y) = Gy(0,0)y + vs,.(z, y) satisfies (0.15); (0.16)
and (0.17) are also obvious because by (0.22)

1(Gs)y(2,9) — Gy (0,0)] <lala(@)/8¥C) Iy (z, )l
<Gy (z,y) - Gy(0,0)| <
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and
1(Gs,e)x (z: 9)ll = (76.)x (=, 0|
<le(g(z)/CE~M) QNN (CEN) v (=, )l
+ (2, 9l < MolIQUE™" sup{llv'(2, 9)ll : llll < &', [lyll £ &'}
+ vk (2, 9l < (Mol|Q1] + 1) sup{|lyy (=, )|
+lvx (@9l llell <& Allyll <o} <e

if [lz]] < 8 and flgl| < '

An analogous computation as in the proof of Lemma 0.4 gives (0.18). To
obtain (0.19) note that putting F,(z) := G(z,y) for a fixed y (with ||y|| <
0') we define a function F, which satisfies all assumptions of Lemma 0.4.
Moreover, for z € U and r € {1,...,m} we have F,ST)(:I:) = Gf,g(:v,y).
From (6.22) it results that é’ defined there is small enough for the inequality
(0.10) to hold for F,. We may then apply Lemma 0.4 for § < §’ which gives
(0.19).

Let us proceed to the proof of the last statement. To this aim put for
(z,y) € X XY such that ||z|| < 6, |jy]| < ¢'

Bz, y) = o(q(z)/CE™). ‘
Then for all r € {1,...,m} and (h,t) = ((h1,t1),... ,(hrytr)) € (X xXY)T

we have
BT (z,y)(h,t) = a(g(-)/CEN) ) (2)h.

Applying Corollary 0.2 we get for all z € X and y,7 € Y such that |jz|| <
lyll < o and |[7]l < e

IG5 (2, y) — GY (=, 9)|
=l}vs "‘)(rc y) — 7‘""("6 ]l

<Z( )Ilﬂ‘"‘ (2, )G (2, 5) - GV (2, 7|
<16 (z,9) ~ G (2, D)l + lly ~ 7l '

XZ( ) m—38 " sup{[(GP)y (z, )] < lal) < 8, [l < 0}
m-1 ) | ‘

<L(1+ > & 4 6 sup{||G (2, 9) < |zl < 6, lyl] < o}y ~ 7l

j=1

' ——Lz(z 557 4 67 sup{[|GY (2, )| : |zl < &, [yl < e}ly -7l

Jj=1
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where M, are defined as. in the proof of the preceding lemma and
Ly := max{L,, ma,x{(’;.‘)Mm..jsj : je{1,...,m}}} (cf. (0.23)). a

Second part of our introductory remarks contains some facts on linear
operators we shall use in the next chapter.

For a given operator A € L(X, X), where X is a Banach space, denote
by sp(A) the spectrum of A, and by r,(A) the spectral radius of A (equal
to nlgr;o |A*[|*/"; in complex Banach spaces we have r,(A) = sup |sp (A4))]).
Note also that the value of the spectral radius does not depend on equivalent
norms in X. :

" Suppose now that X is a real Banach spaces. Then it can be embedded
into a complex Banach space Z = X + iX with the norm defined by

Y

Iz + iyll = sup{(lz*(2)* + le*(@)")* = 2" € X*, ||| < 1},

where X* denotes the dual space of X. It can be easily shown that A ¢
L(X, X) is a bijection if and only if the operator A : Z — Z defined by

(0.24) A(z + iy) = Az + 1Ay
is a bijection. Moreover we have for every n € N
(0.25) Al < 1A% < 20147

and also Z_l(z +iy) = A" lz +iA7ly forkevery z+iy € Z if A is invertible.
Let us prove the following

LEMMA 0.6. Let X be a real Banach space and let A € L(X,X) be
a bijection. Then X can be displayed into a direct sum of spaces X; and
X, invariant under A if and only if Z = X + 1X can be displayed into a
direct sum of spaces Z; and Z, invariant under A defined by (0.24) and the
following relations hold

(0.26) rs(A|X1) = r5(A]Z;) and r,((A|X2)7Y) = ro((A]Z5)7Y).

Proor. To prove the ”if” part put Z; = X; +1X; and Z; = X3 + iXs.
. Both spaces are obviously invariant under A. From the definition of r,
and (0.25) we obtain the first equality in (0.26). The second one follows
by replecing A and A by A~! and A i (0.26). On the other hand let
Z be a direct sum of Z;, j = 1,2. Then there exist real Banach spaces
X;, - =1,2,such that Z; = X; +iX;, j=1,2. It is not difficult to check
that X is a direct sum of X;, j=1,2. o .
A .
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The next lemma will enable us to change the norm in X so that the
induced operator norm of a given A € L(X,X) is close to r4(A).

LeMMa 0.7. (cf. [21]). Let || || be a norm in X and let A € L(X,X) be
a bijection. Then for every € > 0 there exists a norm || || equivalent to || ||
and such that

||Alle £ 7s(A)+ ¢ and ||A_1||S < rs(A‘l) +e.

(Here ||A||c and ||A™Y||c denote the operator norms of A and A~! induced
by |l Il)
Now let us quote after F. Riesz and B. Sz. — Nagy [26]

THEOREM 0.1. Let Z be a complex Banach space and let A € L(Z, Z).
Moreover, suppose that sp (A) = S1 U S; and dist (51,52) > 0if §; # 0,
t = 1,2. Then Z can be displayed into a direct sum of subspaces Z;, i = 1,2,
invariant under A and such that sp (A|Z;) = S;, i=1,2.

From the above theorem and preceding lemmas follows

THEOREM 0.2. Let X be a real Banach space with the norm || || and let
A € L(X,X) be a bijection. Suppose that sp (A) = 51U S,, where A is
given by (0.24) and dist (S1,952) > 0if S; # 0, ¢ = 1,2. Then for every
€ > 0 there exists a norm || || in X equivalent to || || and there is a display
of X into a direct sum of subspaces X; and X, invariant under A and such
that

(0.27) |A] X1||le < sup|Si|+¢

and
(0.28) I(A1X2) 7Yl < (inf]Ss|—€)7 .

(Here on the left hand sides of the above inequalities are the norms of suitable
operators induced by || ||¢).

Proor. In view of Theorem 0.1 and Lemma 0.6 we can display X
into a direct sum of subspaces X; and X, invariant under A and such
that r,(A|X1) = r,(AlZl) = sup|S1] and 7,((A|X3)™!) = rs((4]|Z2)7!) =
inf | S5|~1, where Z;, i =1,2, are as in Theorem 0.1.

Using Lemma 0.7 for €1 = mm{s ¢/[inf | S2|(inf | S| — €)]} we obtain the
existence of norms || ||; in X;, %= 1,2, which are equivalent to norms || ||| X;
respectively and such that (0.27) and (0.28) hold with || || replaced by || ||;
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in (0.27) and by || ||2 in (0.28). Define for z = z; + 2 € X a norm || || on
putting ||z|le = ||z1llx + ||z2]l2. Then || || is a norm equivalent to || || and
such that the required inequalities hold. a

REMARK 0.3. Lemma 0.6 and Theorem 0.2 remain valid of course if they
are stated for complex Banach spaces — it is sufficient to observe that X = Z
and A = 4 in this case.

In the final part of this chapter we shall mention some properties of hy-
perbolic mappings. Let X be a Banach space. By X we denote X if it is
complex and X + ¢X if X is real. Similarly for A € L(X X) the symbol A
means A if X is complex and A if X is real.

For the following definitions cf. {7] and [24].

DEFINITION 0.1. If X is a Banach space then a bijection A € L(X, X) is
called a hyperbolic mapping if sp (A) does not intersect the unit circle.

DEFINITION 0.2. Let U be'a neighbourhood of 0 in a Banach space X
and let F': U — X be a diffecomorphism onto F(U). We say that 0 is a
hyperbolic fixed point of F if
(1) F0)=0,

(ii)  F'(0) is a hyperbolic mapping.

REMARK 0.4. Theorem 0.2 implies that if A is a hyperbolic mapping in
a Banach space X normed with || || then there exist a display of X into a
direct sum X; + X, of two subspaces invariant under A and a norm || ||,
equivalent to || || and such that norms of A; = A|X; and A; = (4|X3)~!
induced by || ||, are both less than 1. Conversely, if we assume that such a
display and a norm exist for a linear bijection A then A is hyperbolic (cf.
[7] and [24]).

Let us conclude the present section with the following

REMARK 0.5 If A is a hyperbolic mappmg and [ denotes the 1dent1ty
mapping then I-A is a bijection.

§ 1. In what follows we will deal with the functional equation

(1) . p(F(z)) = g(z, (z))-

Let U be an opeén neighbourhood of 0 in a Banach space X and let V' be an
open subset of a Banach space Y. We assume the following hypotheses

(H,1) F € C™(U,X) foranm € N, F(0) =0 and F'(0) is a bijection.
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H.2) ge C™(U x V,Y).
We will consider the question of existence and uniqueness of solutions of

(1.1)in class C™ or its subclasses. Let us start with

DEeriNITION 1.1. Every mapping o € C*°(X,Y) which satisfies

(900 ° F() - g(;’ (,00()))(1')(0) = 0’ LS {0’ seey m}’

(1.2) r
¢0)=0, r>m,

will be called a formal solution of (1.1).

REMARK 1.1. If a sequence (Ag,A1,... ,Am) € Y X L(X,Y) X ... x
L™(X,Y) is a solution of (1.2) then g : X — Y given for z € X by

eo(2) = Y (1N 44(s;... ,2)
j=0

actually is a formal solution of (1.1). On the other hand, solvability of (1.2)
is a necessary condition for (1.1) to have a solution defined and of class C™
in a neighbourhood of 0 in X, i. e. a local solution of class C™.

‘For any fixed solution g of (1.1) put Gy, := g4(0,%0(0)). The present
part of our paper deals with the case

Sp(—é—;:) =5US%; and
(A) $1 #0 = sup || < inf | sp(FO))|™,
S3 # 0 = sup| sp(F'(0))|™ < inf |5y,
(cf. (0.24)). Using Theorem 0.2 for G, and Y we can display Y into a sum
of subspaces Y;,Y; invariant under G, and introduce a norm || ||; which

is equivalent to the original norm in Y and such that the induced operator
norms of G, |Y; satisfy

(1.3.1) 1GeolYalls < (inf | sp(F7(0))))™
and
(1.3.2) 1(GolY2) M1 < (sup| sp (F'(0))])™™.

In the case where S; = § we have by (0.25) r,(G,) = sup|S;|, 7 #¢,and by .
Lemma 0.7 we may introduce in Y an equivalent norm || ||; such that (1.3.j)
holds with Y; =Y (observe that §; = 0 implies that G, is a bijection and
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then r,(G)) = (inf|S2[)~"). In what follows we shall deal with the case

8i #0, i=1,2, but the remaining case is much simpler and can be easily

deduced by neglectmg one of the spaces appearmg in the reasoning below.
Using Lemma 0.7 for X and F'(0) (which is a bijection in view of (H.1))

we may introduce in X an equivalent norm (denote it simply by || ||) such
that (cf. (1.3.), i =1,2)

(1.4.1) Gy Valln < [IF'(0)~H] 7™,

(1.4.2) [(Gol¥2) "l < [IF'(0)]I 7™

From now on assume that X and Y are narmed with || || and || ||; respectively,
so that (1.3.i) and (1.4.i), ¢ = 1,2, hold.

If U denotes the family of all open nelghbourhoods of 0 € X then for
U € Y define the set Ay by

Ay ={p e C™U,Y): ¢D0)=0, je{0,...,m},
sup{||¢™ (z)|| : = € U} < +o0}.

It is clear that Ay is a Banach space for every U € U with the norm given by
lelly = sup{llet™(2)||: = €U}, ¢ € Au. Put A := U{Av: U € U}.

As we have noticed Y is a direct sum of Y;, i = 1,2. Thus projections
pr; ¢ Y — Y; are of class C® and it can easily be shown that for every U ¢ Y
the space Ay is a direct sum of the spaces Ai; = {9 € Ay : ¢(X) C Y;}.
‘Moreover, the norm || || defined for ¢ = 1 + 2 € Au by |l¢ll = llerllv +
¢zl is equivalent to || ||u-

For a fixed formal solution ¢g of (1.1) define the operator T : C™(X,Y) —
C™(U,Y) putting for ¢ € C™(X,Y)

T(p)=poF —Gyop

We shall consider also operators T, mapping Ax into itself and given for
¢ =1+ € Ax by

Ts,(0) = (010 (F)5,e) ™" = Gop 0 1) + (02 0 Fs.c — Gy 0 02),

where Fs. and (F~1);s. are extensions of F and F~1, respectively, defined
as in Lemma 0.4. Thus in particular for every ¢ > 0, suitably chosen § =
8(e) > 0, ¢ € Ax and z from a neighbourhood of 0 € X we have T'(p)(z) =
Ts,(¢)(z). Assume that G, is a bijection. Our | purpose now is to snow that
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for ¢ and § sufficiently small T, are bijections of Ax onto itself. To this
aim write T, in the following form

Tﬁ,t(()o) = (I - R&,s) ° (‘Pl o ((F_1)6,e)_1 + @20 F&,e),

where [ is the identity operator and R is given by

Rs,e() = Goo 0010 (F 7 )se + Gy 0 2 0 (Foe) ™

In view of Remark 0.5 and Lemma 0.4 it is sufficient to show that Rsc are
hyperbolic operators for small £ and §. This will follow from Remark 0.4.
First let us show that Rs|A%, ¢ = 1,2, are bijective for small ¢ and §.
They are invertible since so are G, Fs, and (F~1)s . for small £ and §. By
Lemma 0.1 we have for r € {1,...,m}, z € X and h = (hy,... ,h,) € X"
and ¢ € A} :

(Rs,6(#))7()h
=Gy 0 [P ((F™)se(2))(F Y5, (2), .., (F71Y5..(2))
r—1
(15) +> 2 Z(b'n') LM ((F1)5(2))(F~HE (<),

n=1 |b|=r o

S (PO @)h,
and in particular |
(Rse(e))(0) =0, re{0,...,m}.
Further, (1.5) implies for r = m
1R5,(2)™ (@) < G0 Yalalle™ (F)s,e()I| - I(FY 5 ()™

+Z Y. () mlljet (- l)ae(x)HHII(F D52 @]

n=1 [bl]=m

(1.6)

" Take 6 so small that (cf. (1.4.1))
1Go VAl (ICF' ()7 + €)™ < 1

and denote 7, = [|F'(0)™!|| +¢ for the sake of brevity. On account of Lemma
0.4 we have for all z € X.

(1.7) IEY' 5 o(2)I] < 7

3 — Annales...
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Observe that each summand on the right hand side in (1.6), except for the
first one, contains at least one factor of the form |(F1! )g{g(a:)ll,

J 2 2. According to the definition of (F~1!)s. given in Lemma 0.4 this
factor vanishes if ||z|| > . Thus, because of (1.7), we may write

sup{[|(Rse())™ (@)l : = € X} < |GVl (T llellx + Ls),

where
m—1

Ls=_ Y (bt) ' m!sup{|le™((F)s.e(2))

n=1 |bl=m
JLIEHE @ : (ol < 8.
=1

From the mean value theorem and (1.7) we obtain for all 2 € X and
n€{l,...,m-1}
™ (F~)s,e())Il < sup{lle™ ()|l : |y
< NE)se(@)BIE)s,e ()™
<llellx(meli=ll)™ ™

whence

(18)  sup{lle™((F se(@))ll: llzll < 8} < llellx(med)™ ™.

In view of the condition (0.8) from Lemma 0.4 and the mean value theorem
we have for 7 € {2,... ,m} and ||z|| < §

IEHEE@I LY IE = )28~
=LY IF D@6 + |1F7(0) - F©0)@)ll6~"

=2

HIE () = FO7 6 < LY (F)(z)||69"
j=2

+sup{i(F~)" Wl =yl < =)}zl + &)ll=(16~

Hence we obtain for r € {2,...,m} and ||z|]| < §

T

IFEHD @< S8

i=2
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where Cy = L max{sup{(F~))(@)||: ||lzl| < 6}: 7€ {2,...,m}}, which
implies
(1.9) sup{|(F~)2(@)l| = llall < 6} < €28

with a suitably chosen constant C;. Now we are able to estimate L5 using
(1.8) and (1.9)

m-—1
Ls < E Z (b))~ m!||g|| xpI 6™ M yPn O TP 2R P

n=1 |b|=m

m

<Cs 36" P lglx,

n=1

where Cj3 is a constant and p,, denotes the number of "ones” in the sequence
(b1,...,by). Of course p, < nforn € {1,... ,m—1}since by +...+b, = m.
Hence a real number D exists such that

(1.10) o Ls < Déllel|x,

and therefore

sup{ll(Rs,c())™ ()l : 2 € X} < (G o Vallin" + DE)llol|x.-

Choosing € and 4 sufficiently small we get

(1.11) 1 Rs,e(#)llx < gs.ellepllx
for a g5 € (0,1) and

(1.12) e = |GooVall I F'(0)HI™ < 1.

(5,e}l—rf%0,0) %,

This proves in particular that Rs. are contractions of A for § and ¢ suffi-
ciently small. Similarly as above we can obtain surjectivity of Rs¢ | AL In
an analogous way we establish that for § and ¢ sufficiently small R;, | A%{
are bijective and for all p € A%

(1.13) I(Bse) " (9)llx < poellellx
for a ps,c € (0,1) with

(1.14) e = [I(GyoY2) T LI F'(0)]™ < 1.

lim
(6,€)—(0,0) Ps,

3*
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Thus T, are bijections for § and ¢ small enough. Putting rs,. :=
max{gs,e,Ps,c} We obtain

(1.15) ||T5 || <1/ min{1 - 7‘55,7‘55 -1}
in view of the inequalities

I T2 ellx < (T = Rse)Illenllx + llezllx) = I(1 = Rs.e)™2|l - ||l
and

(I = Rs.)ell =( = Rs,e)enllx + (I = Rse)enllx
2le1llx = [IRs,eprllx + | Rse02llx = |l2]lx
>(1=rse)llenllx + (r52 = Dlleallx
>min{l - 75,75 — 1}o]|.

(1.12) and (1.14) imply

1.16 < +o00.
(1.16) o I

Using similar arguments one can show that for § and ¢ sufficiently ‘small
operators T . are self-bijections of the space

C={pe C™(X,Y): ¢0)=0, re{l,...,m-1},
sup{lle™ "D (@)|/llzl| : = € X} < +o0}

endowed with the norm ||¢|lc = sup{|le™~V(z)||/|lz]|: = € X} and

(1.17) 5.0 o) IToz 1l < +oo.

Taking into account (1.16) and (1.17) we may choose M < +00, &; > 0 and
41 > 0 in such a way that

(118)  sup{max{|T; 2|, IT2 e} : 6< 61, € <ex} < M.

It is obvious that Ax C C by the mean value theorem.
Define also

B={pe C™ Y (X,Y):¢D(0) = 0,r € {1,...,m~ 1}, Lip(¢{™ V)
< 400},
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‘We have of course Ax C B. Note also that if ¢ € Ax then ||¢|lc < ||¢llx-
We will say that a ¢ : X — Y is a local solution of (1.1) if ¢|U satisfies (1.1)
for a neighbourhood of 0 € X.

After these remarks let us formulate the following

THEOREM 1.1. Let U be an open neighbourhood of 0 in a Banach space
X satisfying (C) and let V' be an open nonempty subset of a Banach space
Y and assume that (H.1) and (H.2) are fulfilled. If ¢ is a formal solution
of (1.1) such that (A) holds then (1.1) has a local solution ¥ € B + ¢q. If

moreover g satisfies

(1.19) lg™ (2, 3) = g™ (2, 9)]| < Llly - 7]

for an L < 400 and all z € U and y,7 belonging to ne1ghbourhood of o (0)
then (1.1) has a local solution ¥ € Ax + ¢o.

PROOF. Let g be a formal solution of (1.1) for which (A) holds. It follows
from the definition that ¢o(0) € V. Hence by continuity of ¢y there exist
¢ > 0and d > 0 such that V' + @o(U') C V for V! = K(0,d) C V and U’ =
K(0,c) C U. Thus for (z,y) € U' x V' we can define G € C™(U' x V',Y)
by -

G(z,y) = 9(2,y + wo(z)) — 9(2,p0(x)) — Gwoy

Define also 7 € C™(U’,Y) putting for z € U’

7(2) = g(=, po(2)) = o (F(z)).

Suppose now that for some § > 0, ¢ > 0 and o' > 0, Ts,. is a modification
of T defined above and 75, € C”"(X Y), Gs¢ € C’"‘(X x K(0,0"),Y) are
extensions of 7 and G respectively, as described in Lemmas 0.4 and 0. 5
Con51der the equation

(1.20) T5,e(9)(2) = Gs.e(2, (2)) = 75,6(x)

for z € X and ¢ : X — K(0,¢'). It is easy to observe that if ¢ is a solution
of (1.20) then ¢ + ¢o is a local solution of (1.1). Thus our proof is reduced
to finding a solution of (1.20) belonging to B or Ay, respectively.

Let € € (0,min{eq, /2M + 1}) and &; € (0,6;) (cf. (1.18)) be such that
Ts,, is at the same time a continuous bijection of C onto C and Ax onto
Ax. Further, as by the definition of g all derivatives of 7 vanish at 0 we
may choose by Lemma 0.4 a §3 € (0,6,) and an L; > 0 such that

sup{[|r"™(z)||: |lz|| < 83} < e/m.



38

and (cf. (0.8))

(1.21) ITs,elle < ITssellx < Lae.
Observe that

(1.22) G(z,00=0 for z€U' and G¥(0, 0)

This implies that

(1.23) G (z,0) = 0

fér z €U and r € {1,...,m}. Moreover, by Lemma 0.2 we have for every
o€ Cr(U, V) |

(1.24) G(,o(-))P0)=0, i€{0,...,7},

if (0)=0 i€ {0,...,r}.
Let R = MLie/(1- 2M£) and let 6’ > 0 and ¢’ > 0 be as in Lemma 0.5.
Choose a §4 € (0,min{é’,61}) in such a way that R6"~ =1 < min{1, '/84}.
Then, if ¢ € C and ||¢|lc < R, it follows by the mean value theorem that
le(2)]] < min{éy, o'} for all ||z|| < &4." Since G is of class C™ and because
of (1.23) we may take 84 so small that for r € {0,... ,m}, j€{0,...,r}
25)  sup{IGyems (9l llall < 81, Iyl < 84} = N < +oo,
and

(1.26)  sup{lIGE2 (e, 9 : llzll €8s, Nyl < 84} <e.

Let Gy, be a modification of G described in Lemma 0.5. Taking into
account (0.16) and (1.22) we get

(1.27) sup{[|(Gs, )y (z:9)l: z€ X, [yl <o} <e.

In view of (1.20) we get

(1.28) Gs, () (0)=0, re{0,...,m~1}

for every ¢ € C, ||¢|lc < R. Using several times the mean value theorem,
Lemma 0.5, (1. 25) (1.26), (1.27) and the fact that G5, «(z,y) = 0 for ||z|| >
64, one can show (we omit here the detailed, not difficult computation) that
there exists a constant C such that for every p € C, if ||<p||c < R then .

(1.29) | ||G64,s(',‘P('))”c <(e+ C§4)R-
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Similar arguments lead to the inequality

(1.30) 1Gs4,e( () = Goye(, B()lle < (e + Cr80)llp — #lic

for a constant Cy and all ¢, € C, for which ||¢|| < R and ||9|| < R. Taking,
if necessary, £ and é4 smaller we can assume that

(131) ¢dy < e and M(5 + C164) <1
Similarly we can obtain that (cf. (1.24))

(132)  Goeloo()) € Ax and [|Gopel, ol llx < 26R

for every ¢ € Ax with ||¢||x < R.

Put § = min{é,,83,8,}. Then Ts,e,75,. and G have all the properties
listed above. In particular, solving (1.20) in C is equivalent to finding fixed
points of the map §: Kr={p €C: |¢|c < R} = C defined by

(1.33) 5(p) = T3, (rs.e) + T; 2 (G(> (1))
for p€C, |l¢llc < R. On account of (1.18), (1.21), (1.29), and (1.31)
1S@Me < NT5e N rselle + 17521 - I1Gs,(> o())lle < M(Lie +2¢R) = R.

This implies that S(Kgr) C Kg since from the definition of 75, and (1.24)
it follows that S(¢)"((0) = 0 for r € {0,... ,m — 1}. But Kg is a complete
metric space with the metric induced by || - [|c. Moreover, from (1.30) and
(1.31) we easily infer that S is a contraction, hence there is a unique p€ Kg
such that §(%) = @. From the Banach contraction theorem it follows in
particular that nango 1& — @nllc = 0, where (¢n)nen is defined by

Yo = 07 Pnt1 = S((Pn)’ neNU {0}

By (1.32) we get o, € AxNKgr, neNU {0}. Now, fix z,y € X, =z #v.
Then for every n € N U {0} we have
llz = gl HIE ™D () - ()|l < flel| 7 E ™V (=)
~ V(@) - Iz - )=
+lgl~HNE™ D () - D @) -z - )l |y
+llz =yl 7 16"V (=) - D (y)))
<& = enliclie = gl (el + llyll)y + llonllx
<N = enllcllz = I (Il + ll3ll) + R
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Hence, letting n — +o0o we obtain for all z,y € X, z # y,

llz = ylI7 NE™ D () - D)l < B.

Thus Lip ((™~1) < R, which means in particular that & € B. For
l|z[| < 6/2 we have 75,.(z) = 7(2), T5,(%)(z) = T(¥)(z), Gs.lz,d(2)) =
G(z,P(z)). This means that § + g satisfies (1.1) for ||z|| < 6/2.

Now let us suppose that g satisfies (1.19) fory,5€ {z € Y : ||z—¢0(0)]| <
o}. Then, using Lemma 0.2 and the mean value theorem we can obtain that
there exist 7 > 0 and L' < 400 such that

16T (z,y) = 6™ (=, 7)l| < L'lly ~ 7

whenever ||z|| < 7, ||ly]l < nand [|7]| £ . Using Lemma 0.5 we conclude that
for sufficiently small § and ¢ a modification G5, of G satisfies (0.21). This
makes it possible to show that § defined by (1.33) actually is a contraction
of Ax N Kg (using (0.21) we are able to obtain (1.30) for || ||x). Thus in
this case & = 5(3) € Ax and @ + o is a local solution of (1.1) in Ax. O

In some cases we can omit a somehow restricting condition (C') imposed
on the space X. It was used above to extend functions onto the whole space
X in the same class of regularity, which in turn made the use of Banach
theorem possible. The same can be realized if we assume for instance that
F or F~1is a topological contraction. First let us prove

THEOREM 1.2. Let (H.1) and (H.2) be fulfilled and assume that for some
20

(1.34) I(E) ™ (@) = (FTH™(0)f = O(l|=l1®), =~ 0.

Moreover, assume that there is a neighbourhood W of 0 € X such that for
every neighbourhood V. C W of 0 € X there exists a neighbourhood V! C V
of 0 € X such that F~1(V') C V. Let @ be a formal solution of (1.1) such
that

(1.35) sup| sp (Gyo)| < inf | sp (F'(0))|™+”

and

(1.36) (19 (z,4)~ g™ (0,2o(O))l| = O(llall® +119lI°), (2,) = (0,0(0)).

Let g satisfy (1.19) for z € U and y,y from a neigﬂbourhood of ¢o(0). Then
there is exactly one local solution® ¢ € Ajoc + o Which satisfies

(1.37) ™ (2) = ™ (0)| = O(llz|1®), =~ o.

Lj.e. every solution of {1.1) with given properties has to coincide with ¢ on a neigh-
bourhood of 0.
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PRrOOF. In view of (1.35) and Lemma 0.7 we may assume without loss
of generality that norms in X and Y are such that the generated operator
norms fulfil

(1.38) G0l - ICETY (O™ < 1.

Denote by Aw,r the set {p € Aw : sup{||z||~?||¢"™)(z)||: = € W} < R}.
Aw,r endowed with the metric d(¢p,%) = sup{||z]|~?||¢(™(z) — p(™)(2)]| :
z € W} is a complete metric space for all W € Y and R > 0. Let R > 0
be given and let a neighbourhood W C U of 0 € X be such that (¢ + ) o
F~1(W) C V, for every ¢ € Aw,r (by the mean value theorem such a choice
of W is possible). Then we can define an operator S on Aw, g putting

(1.39) S(p) = 9(, (¢ + @o)(-)) o F~! = ip.

We will show that for some R and suitably chosen W the operator § is a
contraction of Aw,g. First note that for every ¢ € Aw,gandr € {0,...,m}.

(1.40) ($(e)(0) = 0.

Indeed, S(¢)(0) = g(0,90(0)) — ¢6(0) = 0 since ¢y is a formal solution of
(1.1). Suppose that (1.40) holds for 7 € {0,... ,k — 1} where & < m. Then
(5(¢) o F)B(0) = (9(-, (0 + ¢)()) — o 0 F)(¥)(0) = 0 by the definition of
0, Lemma 0.2 and because derivatives of ¢ vanish at 0. On the other hand,
using Lemma 0.1 for S(¢) o F' and the induction hypothesis we obtain

0= (5(¢) 0 F)B)(0) = (S(p))P(0)(F'(0),... , F'(0)).

which ends the induction in vicw of the invertibility of F’(0).
Let ¢; € (0,1) and p > 0 be such that (cf. (1.38))
(1.41)

sup{llg'y (z, ¥)ll : llzll < er, |lyll < @} - sup{I(F~")' (@)™*P : ||z|| < e}
<O < 1.

From Lemmas 0.1 and 0.2 it follows that for ¢ € Aw,g if only p(F~1(z)) +
@o(F~1(z)) € V then we may write )

Il1=2 115 ()™ (=)l
<Nell=llg'y (F1(=), (¢ + wo)(F~' ()|
NE @I ™ (F) @)
+ 1=~ Pl F @Dl ™ D(FE N @)) + Ae).
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Here P is a polynomial in m — 1 variables with coefficients being products of
norms of partial derivatives if g taken at (F~1(z), (¢ + @o)(F~(z))) and
derivatives of F~1 taken at z, and A(z) is the norm of the sum of remaining
terms which do not depend on any derivative (") (F~1(z)), r € {1,...,m}.
Now, the regularity of given functions, (1.36) and assumptions on ¢ imply
that ¢; and g may be chosen in such a way that for every ¢ < c;, every
V' C{z € X: |z|| < ¢} such that F~}(V') C V', every = € V' and every
¢ € Ayr,r provided [|(¢ + @o)(F~(z)) — ¢o(0)|| < ¢, we will have

(1.42) 2115 (¢)™ ()| < ©R + Mi1cRP(R) + M,

where M; a constant which does not depend on R and P(R) is a polynomial.
If we take R > Ml/l—@, say R = M]/I—O—@l for @, € (0,1-9), then
taking c sufficiently small we can make sure that ©R+¢M; P(R)R+M; < R.
Moreover, ¢ may be chosen in such a way that ||(¢+¢e)(F~}(z))—w0(0)|| < o
if z € V' and ¢ € Ay g/, what follows from the mean value theorem. Thus
taking-upper bound of the left hand side of (1.42) we obtain S(Av: g) C
.Avl’ R'-

It is also possible to show that S actually is a contraction of Ay g if
Vic{zeX: |z||<c}, FTY(V')C V' and c is small enough. We would
like to omit here a somehow tedious computation of this fact and underline
only that it is a consequence of (1.41), (1.19) and the mean value theorem.
Thus S has a fixed point ¢ in Ay g. Of course ¥ = ¢+ is a local solution
of (1.1) which satisfies (1.37). If ¢; = ¢ + o is another such solution, then
there is a neighbourhood of zero V" C V' such that ¢; € Ay~ g. Moreover,
we can assume that 5 is a contraction of Ay» r. Hence S has a unique fixed
point in Ay« g which implies 1|V = ¢|V". , ' a

Condition (1.19) has been used above to make possible the aplication
of Banach theorem. However, it turns out that we can obtain uniqueness
without assuming (1.19). In fact we have

THEOREM 1.3. Let all assumptions of Theorem 1.2 be fulfilled except
that g satisfies (1.19). Then there is at most one solution ¢ € Ajoc + o of

(1.1) fulfilling (1.37).

PROOF. Suppose that ¢;, i = 1,2, are two local solutions of (1.1) fulfilling
(1.37). Introducing equivalent norms if necessary we can fix £ > 0 so that

143)  qi= (Gl + P @) + &)™ < 1.

Let §; and p; be such positive numbers that

(1.44) lg'y (2, DI < G0l + ¢,
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and
(1.45) IF~1 (@)l < (I1F'(0) 7 + &)ll=l,

if ||z|| < 6 and ||yl} < 01- Taking into account the continuity of ¢;, i = 1,2,
let 63 > 0 be such that

(1.46) lpi(2) — @i(O)l] = llpi(2) — po(O)l} < @1, 2=1,2,

if ||z|] < 6;. Moreover (1.37) implies the existence of positive numbers C
and 43 such that

(1.47) " llea(®) = pa(@)] € Cllz| P

if ||lz]] < 63. Put § := min{61, 6,83} and take a neighbourhood of zero
V C{z € X: ||z < 6} such that F~(V) C V. Then for z € V we obtain,
using (1.43) - (1.47) and induction

ler(z) — @2()ll
=l9(F~}(2), ¢1(F7'(2))) — 9(F(2), @2(F~"(2)))]
<(IGell + 5)|‘|<91‘(F_1(“’)) — o2 (F~H ()|
<o S (IG gl +€)llen (F~"(2)) = 2 F ()|
<(IGwll + e)"C((N1F'(0) 7| + &) {l||)™+*
=¢"C||z||™+*

for every n € N. Hence ¢1(z) = ¢2() for every z € V, which ends the
proof. : O

From Theorem 1.2 wé infer_

CoroLLARY 1.1. Let F fulfil assumptions of Theorem 1.2. If
~sup| sp (F'(0))] < sup| sp (F7(0))|™+*
then for every formal solutzon cpo of the equatlon

(1.48) o(F(z)) = F'(0)p(z)
there exists a umque solution ¢ € Ajoc + o of tlus equatmn which satisfies
(1.37).

PrOOF. Put Y = X and define g: X XY — Y by g(z,y) = F'(0)y for
(z,y) e X x Y. Then we have all assumptlons of Theorem 1.2 satisfied by
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glU XV, with V =Y = X, since G, = F'(0} for every formal solution ¢
of (1.48). O

REMARK 1.1. Observe that local invertibility of F implies that (1.48) is
equivalent in neighbourhood of 0 to the equation

(1.49) P(F~(2)) = F'(0) ™ ¢(a).

Denoting f = F~! and § = F'(0)~! we can observe that if X is finite dimen-
sional then assumptions of M. Kuczma’s Theorem 2 from [19] are the same
as the above Corollary (except for those which guarantee the existence of a
formal solution of (1.49)). Thus our Corollary extends Kuczma’s result on
arbitrary Banach spaces. In the same sense Theorem 1.1 extends Belitskii’s
Corollary 2 from [2].

Suppose now that F' and I are diffeomorphisms defined in a neighbour-
hood of their common fixed point 0 € X and that F'(0) and H'(0) are
bijections of X onto itself. Let us recall that F and H are said to be conju-
gate in class C™ if there exists a local diffeomorphism ¢ of class C™ solving
the equation

(1.50) ¢(F(z)) = H(p(z)).

F and H are said to be formally conjugate if there exists a formal solution
o of (1.50) with ¢o(0) = 0 and ¢'y(0) being bijective. It is not difficult to
check that formal conjugacy of F and H implies sp (F'(0)) = sp (H'(0)).
Now we able to derive from Theorem 1.1 the following

CoRrOLLARY 1.2. Let F and H be local diffeomorphisms which are defined
and of class C™ in a neighbourhood of 0 in a Banach space X satisfying
(C). Assume that F and H are formally conjugate, (A) is fulfilled with
Gy, = F'(0) and Lip (H(™) < +00. Then F and H are conjugate in class
Cm

- Proor. It is sufficient to observe that (1.50) is a particular case of (1.1).
Namely, if we put g(z,y) = H(y) for (z,y) € U x V we see that G, =
H'(0) and hence sp (G,) = sp (F'(0)) for every formal conjugacy ¢g. All
assumptions of Theorem 1.1 can now be easily verified and existence of a
solution of (1.50) follows. As its first derivative at 0 equals ® 0(0) we infer
that the solution is a local diffeomorphism. a

REMARK 1.2. The above Corollary 1.2 becomes Corollary 1 from [2] in
the case of finite dimensional spaces.



45

Consider the equation

(151) o(2) = bz, o f(2)),

If f is locally invertible then (1.51) is locally equivalent to (1.1) with F = f~!
and g given by g(z,y) = h(f~1(z),y). Equation (1.51) was dealt with by B.
Choczewski in [3] (cf. also monographies [18] and [20]) without invertibility
assumption but only for functions defined on the real line. If f/(0) # 0 then
theorems on existence and uniqueness of solutions of (1.51) proved in the
above mentioned paper follow from our Theorem 1.2. Choczewski’s theorem
was later improved by J. Matkowski (cf. [22] and [23]) who used however
compactness of neighbourhoods in finite dimensional spaces to prove his
results.

§ 2. Let us now pass to theorems concerned with non—uniqueness of
solutions of (1.1). Further on we shall assume that

(2.1) sup| sp (F'(0))] < 1.
Let us prove first

THEOREM 2.1 Let (H.1), (H.2) and (2.1) be fulfilled. Then there exists
a neighbourhood W of 0 € X such that for every function
o € C™(cl W\ Int F(cl W),Y)
which satisfies for every r € {0,... ,m} and y € F(cl W\ W)

(22) (%0 = 9(%0()) 0 FH)(y) = 07

exactly one function exists in C™(cl W \ {0},Y) which solves (1.1) and its
restriction to cl W\ Int F(cl W) is equal to . v

ProoF. From (2.1) we infer that taking, if necessary, an equivalent norm
in X we may assume that [|[F'(0)|| < © < 1. Hence we may choose R > 0
and ¢ € (0,1) in such a way that ||z|| < R implies || F(z)|| < ¢||z||. Moreover,
R can be such that F' is a diffeomorphism in a ball containing W := {z €
X : ||lz|| £ R}. Define (Wy,)nen, by Wo = W and W,, = F*(Wj) for n € N.
Define also a sequence (Vi,)nen, by Vo = cdd Wy \ cl W, V,, = F*(V,) for
n € N. It is clear that

U Va= d Wo\{0}

n€Ny

%i.e. derivatives 1/18'), r € {0,...,m} are continuous on the boundary of cI W)\ Int
F(cl W) and satisfy (2.2).
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Let 1o be as in our assumptions and define ¢, : V,, = Y putting
Yu(2) = g(F7(2), Yur(F'(2))) for z € Vi

Let ¢ : c W\ {0} — Y be defined by 9|V,, = ¥, n € Ng. 4 is
well defined since F is diffeomorphic in W and thus V,, N Va1 = 0 for
n € N. Moreover, 9 solves (1.1) in ¢l W \ {0}. To show the regularity of
¥ observe that F(Int Wy) = Int V,,. Hence and from the definition od 1

we get p € C™( |J Int V,,,Y) in view of the regularity of 1y. Now, fix a
n€Ng

y€S=F{z€X: |z = R})nVi. Then |ly|| < ¢||F~(v)|. Hence a
neighbourhood W' of F~!(y) exists which is disjoint with Wy. F(W')is a
neighbourhood of y and F(W')nW, = F(W')n F(W;) = F(W' nW,) = 0.
Thus, when taking a sequence (y,)nen convergent to y, we may assume that
{yn: neN}CWo\ dW, C VoUV;. Let (Yx, Jnen be a subsequence of
(Yn)nen Which is contained in Vo. Then by (2.2) and continuity of ¢, we
obtain '
i $(ow,) = Jim o)
=%o(y) = 9(F~'(9), %o(F7(3)))
=1(y) = $(y).

On the other hand, if (¥, )nen is a subsequence of (yy),ey contained in V4
then the continuity of given functions and (2.2) imply

nll_{%o 1/1(ym,,) = nlLIIgo Y1(Ym., )
= n]Lr[;o g(F_l(ym,. )’ "/’O(F_1 (ym,. )))
=g(F(y), %o(F'(¥))) = ¥(y).

Hence the continuity of ¢ in S follows. Now, if y + h € V4 then

Y(y + h) — ¥(y) = Yo(y + k) — o(y) = ¥'(y)h + 0(||h||), h — 0;
and if y+ h € V4 then

Y(y + h) =9(y) = b1(y + k) = ¥1(y)
=g(F~(y+ h), Yo(F~(y +h))) — g(F~1(y), %o(F ' (y)))
=(9(s%0(:)) o F~Y(y) + o(||bll), ] — 0,

in view of (2.2). Hence it follows that 9 is of class C' on §. By induction
it is easy to show that 9 is of class C™ on §, and hence on Vy U V;. Using

induction again one obtains that ¥ € C™( |J V,,Y)=C™(W\{0},Y). O
neENg
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The above theorem will be used to show the following one.

THEOREM 2.2. A-ssume (H.1), (H.2) and (2.1). Let ¢y be a formal
solution of (1.1) which satisfies
sup | sp (Gy,)| < inf | sp (F'(0))|™.

Then there exist a neighbourhood W of 0 € X and a positive number dg

such that every function 1y € C™( cl W\ Int F(cl W),Y) which satisfies

(2.2) for all v € {0,... ,m} and y € F(cl W\ W), and such that

(2.3) sup {||$o(z) — %o(0)||: z€ cd W\ Int F(cl W)} < dy

and

oa PR @ - O s dW\ Int P W),
re{l,...,m}} =2 D<+o0

has a unique extension to a solution 1 of (1.1) which is defined and of class
C™ in W and 9((0) = %{(0) for r € {0,... ,m}.

Proor. Introducing, if necessary, equivalent norms in X and Y we may
assume that (1.38) holds with 8 = 0 and ||F'(0)|| < 1 in view of (2.1). Hence
we infer that for all r € {0,... ,m}

(2.5) Gl - IF'(0)HI" < 1.

Let R be as in the proof of Theorem 2.1 and choose 6y < R and dy > 0 in
such a way that for all r € {0,...,m}

(2.6) 'y @l 1P @) TT < g <1
and
(2.7) lg(=, #0(0)) — 9(0,20(0))|| < (1 — g)do

if ||z|| < 6o and ||y — ¢o(0)|| < do. Let D > 0 be arbitrary. For a § < 6, let
Ws={z € X: ||lz|| < 6} and let ¢ € C™(W;\ {0}, Y) be a solution of (1.1)
which satisfies (2.3) and (2.4), such a solution exists in view of Theorem
2.1. From (2.6), (2.7) and the mean value theorem it follows that for all
T € Ws\ Int F(Cl VVa)

P(F (z‘)) — @o(0)||
=llg(z, (<)) = 90, wo(0))l|
<llg(z, () = g(z, o(0))[l + llg(z, 0 (0)) — g(0, o (0))]]
<qllpo(z) — @o(0)|| + (1 — ¢)do < do.
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An easy induction gives for every n € N

lP(E™(2)) — #o(0)]
n-1

(28)  <q"llpo(z) — o ()l + Y _ ¢llg(F"~ (), £0(0)) — 9(0, wo(0))]|
=0

<q"do + (1 - q)~1(1 - q")do = do.

Hence ||¢(z) — ¢0(0)}] < do for all z € W; \ {0}. Moreover, if ¢ > 0 is fixed
then there exist 6’ > 0 and ny € N such that

(2.9) ll9(z, ©0(0)) — 9(0,0(0))I| < ((1 - g)/2)e

if [|2]] < 6’ and for n > ny
(2.10) g"do < €/2.

Thus for all z € F*({x € X : ||z|| < §'}), n > no we have by (2.8), (2.9)
and (2.10)

llp(2) — o(0)I| < g"do + (1 - 07 ((1-9)/2)e =¥,

whence lin}) p(z) = <p0(0). Thus, if ¢ : Ws — Y is defined by 9¥(z) = ¢(z)
r—

for ¢ # 0 and ¥(0) = o(0) then 9 is a solution of (1.1), continuous at 0
and of class C™ in Ws\ {0}. Now, using Lemma 0.1 and Lemma 0.2 we may
write for 7 € {1,... ,m} and z € W;s \ {0}

[ (F(2)) — % O]

2.11)
( <llg'y (2 @) - 1) = 6O - 1F'(2) M| + Se(=),

where 5, : W5 — Ry is a function continuous at 0 for r € {1,...,m} and
lir% Sr(z) = 0, which follows from the assumptions on given functions and
r—

just proved continuity of . Let 6; < §p be such that
(2.12) S(z)<(1-¢)D

if ||z]] < 61 and put W = Ws,. If 1 satisfies assumptions of our theorem
then in view of the above part of the proof it has a unique extension to a
solution 4 : W — Y which is continuous in W and of class C™ in W \ {0}.

The proof of the fact that lin}) P(I(z) = <pf)r)(0) is now a simple repeating
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of the argument used in the proof of continuity of ¢. Of course, now (2.11)
and (2.12) should be used together with regularity of given functions. 0O

The above theorem is a generalization of an analogous result of B. Cho-
czewski (cf. [3], [18] and [20], Chapter 5) to the case of infinite dimensional
spaces.

§ 3. The last section of the present paper is devoted to a case in a sense
"symmetrical” to the one considered in §1 and §2. Namely we will assume
now that absolute values of the spectrum of G,,, belong to an interval and
absolute values of the spectrum of F'(0) are outside this interval.

Let us first quote a theorem on invariant manifolds which is proved in a
more general setting in [7] (cf. also [24]) and its finite dimensional version
is to be found for instance in Ph. Hartman’s book [6] (Chapter IX).

Let X be a Banach space and let 0 be a hyperbolic fixed point of a
diffeomorphism F defined in a neighbourhood of 0 (cf. Definition 0.2). Then
X may be displayed into a direct sum of subspaces invariant under F'(0) (cf.
Remark 0.4). Denote by X;(X3) the direct summand corresponding to the
part of sp (F'(0)) lying inside (outside) the unit eircle. For a d > 0. denote
X(d)={z € X: |z|| £d}, Xi(d)=X(d)NnX;, =12 Now we can
quote the announced theorem.

THEOREM 3.1. There exists a d > 0 such that the functional equation

(3.1) 9((my o F)(u, g(w))) = m2(F(u, g(w))),

where ;, ¢ = 1,2, are projections on X;, i = 1,2, has exactly one solution
g: X1(d) - X, whlch is nonexpansive and such that 9(0) = 0. If, moreover,
F is of class C™ in X (d) then so is g in X1(d) and ¢'(0) = 0.

Note that the last equality in the above theorem may be derived from its
proof but is not contained in the proof of our next theorem. This proof will

be omitted here since it is a simple reproduction of the one given in finite
dimensional case in {6] (Theorem 5.1, Ch. IX).

THEOREM 3.2. If0 is a hyperbolic fixed point of a local diffeomorphism
F then there exist a d > 0 and an invertible mapping R : X(d) — X such
that R(0) = 0, R'(0) is a bijection and

(3.2) Ro F1o R7Y(X,(d)) C X,
and
(3.3) RoFo R} (Xy(d) C X;.

4 - Annales...
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Moreover, if F is of class C™ then so is R.

Now let us proceed to the formulation of the last theorem in our paper.
Assumming that

(3.4) 1¢|sp (F(0)

we will look for local solutions of (1.1) given a formal solution ¢, fulfilling

(sup{lsp (F'(0)| N (0, )})™ < inf |sp (Gp)| < sup (Gopy)|

. (B) : o m
<(inf {lsp (F"(0))| N (1, +00)})™.

In order to _shorten  the statement denote for a fixed ®o,
My := sup |sp (Gy,)ls M, = inf | sp (F'(0))|, Ms:= inf {] sp (F'(0))| N
(1,400)}. We have the followmg ( E(t) means the entire part of ¢ € R)

THEOREM 3.3. Let (H.1), (H.2) and (C) be fulfilled. If ¢, is a formal
solution of (1.1) such that (B) holds and g satisfies' (1.19) with a constant
L for all z € U and y,§ from a neighbourhood of ¢y(0) then there exists
a local solution ¢ of (1.1) which is of class C* where s = E(mln Ms —
In My/ In M3 — In M,)— 1 and for every r € {0,... s}

(3.5) #17(0) = 4{(0).

Proor. Let d > 0 and R € C™(X(d),X) be as in Theorem 3.2. For
z € X(d) write (1.1) in the form

(po RT)(Ro F o R71)(R(z))) = 9(R™}(R(2)), (¢ o R™")(R(x))).

Substituting 2 = R(z) and denoting T = Ro FoR™! and ¥ = ¢ o R~! we
obtain for z € W := R(X(d)) the equation

(3.6) W(T(2)) = g(R‘l(Z) ¥(2))-

It is straightforward matter to check that T € C™(W,X), .sp (T'(0)) =
sp (F'(0)) since R'(0) is a bijection and g o (R~1, 1dv) € C™(W x V, V).
Another simple observation is that 1 := (g 0 R~! is a formal solution of
(3.6) satisfying ;

(go (R7Y, idv))y(0,%0(0)) = g'y(Rf’(O),soo(O)) = Gy,
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Moreover, using Lemmas 0.1 and 0.2 and the inclusion R~} (W) = X(d) C U
we obtain that g o (R}, idy) fulfils (1.19) with a constant L; and for all
z € W and y,7 from a neighbourhood of %4(0) = ¢0(0). Local invariance of
X;, ©=1.2, under T implies in particular

T'0) | Xi = (T|X:)'(0), i=1,2, and T'(0)X:)CXi, i=1,2.

The first equality for ¢ = 1 and the left inequality in (B) allow us to verify
that assumptions of Theorem 1.1, with §; = @, are fulfilled. Therefore a
function ¥ € C™(X1,Y) exists which is a solution of (3.6) in X;NW’, where
W' C W is a neighbourhood of 0 € X. Extend %} to a ¢, € C™(X,Y),
putting for 2 =2, + 2 € X

¥1(2) = ¥1(21) — o(21,0) + $o(2).

In the following we will look for a local solution of (3.6) in the form ¢ = 9, +
19, where 1, is supposed to be defined and of class C'* in a neighbourhood
Wiof0€ X and forall z€ WynX,and r € {0,...,s}

(3.7) N(z) = 0.

By the definition of s, taking into account suitable lemmas from Section
0, we may choose € > 0 in such a way that the inequality

(3.8) (IG ol + )T (0) M} + €)* (T (0)1X2) M + €)™ < 1

holds, after introducing equivalent norms, if necessary. From (3.6) we get
the following equation for ,:

(3.9) $a2(T(2)) = G(2,9(2)).
Here T' and G given by G(z,y) = g(R™(2), y+v1(2)) = ¥1(T(2)) are defined
forzef{zeX: |z <ca}landye{yeY: |y| <d} withe; <1, dy

chosen in such a way that y 4+ ¥,(2) € V. If, moreover, {z € X : ||2] <
c1} C W' then we have for every r € {0,...,m}

(3.10) G5 (z,0)=0

if ||z|] < ¢1 and z € X;, which easily follows from the fact that 1, is a
solution of (3.6) in X; N W'. We have also

(3'11) IY(O’O) = Gvo'

4™
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By (3.10) there exist D > 0 and ¢; € (0,c1] such that for every r €
{0,...,m}

(3.12) IG (2,0)]| < Df|za||™",

if only ||2|| = ||21 +22|| < c2. This is a simple consequence of Taylor theorem.

Diminishing ¢ in (3.8), if necessary, and taking into account Lemmas 0.4
and 0.5 we may choose a & € (0,c;) and define functions Gy, and (T~1)s,.
in such a way that (T~!);. is invertible and T!(X,(6)) C X2, since X3 is
locally invariant under T'. If ||z|] < é then obviously

(T™s.(2) = (T (0)2 + a(a(2)/CE¥ )T () = (T7)'(0)z),
(cf. Lemma 0.4). (0.6) and invariance of X;, i = 1,2, under (T~1)'(0) give
(T_l)g,e(X;) cX;, i1=1,2

This in turn enables us to conclude by the mean value theorem and Lemma
0O4thatforz=21+20€ X '

(3.13) (r2 0 (T71)5,6) ()1} < (WT'(O)1X2) 7| + &)l

since [|(m2 o (T7)s5,6)'(2) = (T'(0)|X2) 7| = llm2((T™1)5,(2) = T'(0)~H)Il <
I(T-1Y5.(2) = (T1Y(0)]| < e, for every z € X.

From the definition of G, it follows in particular that Gs.(2,0) =
a(q(2)/CN)G(z,0) for z € X, whence by (3.10) and Corollary 0.2 we obtain
that T = Gs.(+,0) satisfies (3.7) for all z € X; (we have I'(z) = 0if ||z|| > §).
Using the mean value theorem again we derive the following inequality

T < sup{IT™ (@) : llz]l < 6}|zalI™~

for every z = 21 + z; € X (note that I'|X; = 0). From Lemma 0.6 ((0.19))
and (3.12) we have also for z € X

I @)l < § 8 ™IGF)(2,0)| < SD(m +1).
=0 :

The above inequalities give for K = SD(m + 1) and 2 € X

(3.14) IT (@) < Kllzo|™.
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Let vg' be defined fer G, as in Lemma 0.5. Then by Lemmas 0.1, 0.2, 0.4
and 0.5, (3.12) and since s < m we can assume, taking if necessary a smaller
4, that for every function n € C™(X,Y) satisfying

sup{|ln(2)l| : z€ X}< K
the following inequalities

sup{[|ln(2)|| : z € X} < ¢'
and

sup{[|(Gs,e(-,1(-)) o (T 7)) (2)]| : 2 € X[ < K

hold. Thus we can define inductively a sequence (¢n)nex, by
@0 =0, Ony1=Gse(10n())o (T )5 for neNo.

Induction easily shows that sup{||99(s)(z)|| : z € X} < K for all positive
integers n. It is also clear by Lemma 0.2 and (3.7) that all ¢, vanish with
their derivatives on X;.

"Now take a z € X, ||z|| < 6. Similar argument as in proofs of Theorem
1.1 and 1.2 lead to the following inequalities for n € N '

le'1(2) = 92N <(IG gl + )T (0) ]| + £)°
+ 6A(6) sup{l|¢) (T ™1)5,£(2))
— (TN ¢ Izl < 63
<o S ((IGgll + T (@) + )°
+ 6A@0))" sup{[ITO(T)2.() : ll2ll < 63,

where A : [0, +00) — [0,+00) is a bounded function. Hence by (3.14) and
(3.13) we get

sup{lleit1 (=) = ¥+ ll2ll < 6}
<((IGgoll + )UT' (@) +€)°
+ A (IT'(0)1 X2) ! + )= K ™=

Taking into account (3.8) we infer that for § sufficiently small (p,|{z € X :
[I2ll € 6})nex is a Cauchy sequence with respect to the usual norm in C*({z €
X : |lz|| £ 6},Y). Hence the function 1, defined by ¥2(2) = lim ¢n(2) if

2]l < 6, is of class C* and is solution of (3.9) in a neighbourhood of 0 € X
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by the definition of (¢5)nex, Gs,e and (T"1)sc. Further ¥ = 1) + 1 is
a local solution of (3.6) and finally ¢ = % o R is a local solution of (1.1)
satisfying (3.5). a

The just proved theorem is a generalization of Theorem D from [2] to
the infinite dimensional case and of Theorem 3 from the same paper which
concerns equation (1.50). Our theorem is also more general in the same sense
than Theorem 12.2 from [6], Chapter IX, moreover, it gives an estimation of
s. Observe that s increases to +o0o if m does.
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