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A D I S C R E T E F O R M O F J O R D A N C U R V E T H E O R E M 

W O J C I E C H S U R Ó W K A 

Abstract. The paper includes purely combinatorial proof of a theorem that 
implies the following theorem, stated by Hugo Steinhaus in [6, p.35]: consider 
a chessboard (rectangular, not necessarily square) with some "mined" squares 
on. Assume that the king, while moving in accordance with the chess rules, 
cannot go across the chessboard from the left edge to the right one without 
meeting a mined square. Then the rook can go across the chessboard from 
the upper edge to the lower one moving exclusively on mined squares. All 
proofs of the Steinhaus theorem already published (see [5] and remarks on 
some proofs in [7, p.211]) are incomplete, except the hexagonal variant proved 
by Gale in [1]. 

Steinhaus theorem was thought in [6, p.269] as the lemma in the proof 
of the Brouwer Axed point theorem for the square (cf. Śaśkin [5] and Gale 
[1]). It can also be used as the lemma for the mountain climbing theorem 
of Homma [2] (see Mioduszewski [3]). In this paper the Steinhaus theorem 
is used in the proof of a discrete analogue of the Jordan curve theorem (see 
Stout [8], where different proof is stated; cf. also Rosenfeld [4]). 

1. Preliminaries 

Let mxn = { 0 , 1 , . . . , m — l } x { 0 , 1 , . . . ,n—1} denote the lattice of natural 
numbers, where m, n > 1. By the i-row, where 0 < i < n— 1, we shall mean 
the set { 0 , 1 , . . . , m — 1} X {i}; by the j-column, where 0 < j < m — ' l , we 
shall mean the set {j} x { 0 , 1 , . . . , n - 1}. The boundary Bd(m x n) of the 
lattice is the union of all terminal rows and columns. 

Two elements of the lattice will be called S-adjacent, if they are different 
and their coordinates differ at most by 1. Two elements of the lattice will 
be called 4-adjacent, if they differ on only one coordinate by 1. A sequence 
C i , a 2 , . . . , ak of elements of the lattice will be called a path from A to B, 

where A, B C m x n, if ax G A, ak € B, and aj "and a ; + i are adjacent for 
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each j. There are two kinds of paths, the 8-path, if the adjacement means 
8-adjacement, and the A-path, if the adjacement means 4-adjacement. A 
path P from A to B will be called minimal, if any proper subset of the set 
of elements of P is not a path from A to B. We can identify a minimal path 
with the set of its elements. 

For both 8-paths and 4-paths the following property holds: (*) assume 
that the first element of a path P belongs to the i-column of the lattice and 

the last element of P belongs to the j-column, where i < j. Then in each 

8-column, where i < k < j, lies at least one element of P. The analogous 
property holds for rows. 

A subset A of the lattice will be called connected, if any two elements of 
A can be joined by a path in A . Depending on what kind the path is, the 
set A will be called either A-connected or S-connected. Let B be a subset of 
the lattice. Each maximal connected subset of B will be called a component 
of B, and similarly we have 4-components and 8-components. 

Any function / : m X n —* {white, black} will be called a colouring of the 
lattice. We can say of black path in a certain colouring, if each element of that 
path is black in this colouring; a white path is a path with white elements. 

Let a and b be two different elements of the boundary of the lattice. 
The set Bd(m x n) \ {a, b} has at most two 4-components. While moving 
clockwise on the boundary from a to 6, we meet the elements of only one of 
these components; the unioti of that component and the set {a, 6} we shall 
call an arc ab. By an arc aa we shall mean the set {a}. 

The quadruple of given elements on thejboundary of the lattice a, b, c, d 
will be called ordered, if c, d £ ab and d £ be (this corresponds to the clock
wise ordering of a, b, c, d). 

2. Steinhaus chessboard theorem 

C H E S S B O A R D T H E O R E M . Let a,b,c,d be the ordered quadruple of ele

ments on the boundary of the lattice endowed with the colouring S. The 

existence of a black 8-path from ab to cd is equivalent to the non-existence 

of a white A-path from be to da. 

The Steinhaus theorem is the chessboard theorem in which a,b,c,d are 
the corner elements. We shall prove the chessboard theorem indirectly, by 
reducing it to some special case: 

R E D U C E D C H E S S B O A R D T H E O R E M . Let a and b be different black ele

ments on the boundary of the lattice endowed with the colouring S. The 

existence of a black 8^athJrom a to b is equivalent to the non-existence of 

a white A-path from ab to ba. 
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To infer the chessboard theorem from the reduced chessboard theorem it 
is enough to enlarge the lattice m x n to the lattice (TO + 2) x (n + 2) by 
adding^ the frame around m X n, colour the frame elements 4-adjacent^to the 
arcs ab and cd black and the rest white, and extend a 8-path from ab to cd 
to the frame. 

P R O O F O F T H E R E D U C E D C H E S S B O A R D T H E O R E M . For n = 2 the theo
rem is the direct consequence of the property (*) and the fact that Bd(m x 
2) = m x 2. We shall prove that the existence of a black 8-path from a to 

b implies the non-existence of a white 4-path from ab to ba. Restrict the 
colouring S to m x (n— 1). A black 8-path from a to b in S determines black 
8-paths in 5 | m X ( „ _ i ) such that arcs corresponding to them are subsets of ab 
or ba, and both ab and ba are sumsjaf these arcs and arcs that are black. 
Thus the existence of a 4-path from ab to ba in S contradicts the inductive 
hypothesis for some black 8-path in TO X (n — 1). 

Now we shall prove that the non-existence of a white 4-path from ab to 

ba implies the existence of a black 8-path from a to b. Let us consider the 
special case: suppose that a and b belong to the 0-row and that the first 
coordinate of a is less than the first coordinate of 6. Denote by D the subset 
of the (n — 2)-row containing each element x such that a white 4-path from 
x to ba exists. We can define the colouring T of the lattice m x (n— 1) equal 
to S on m x (n — 1) \ D and black on D. Thus we get the non-existence of 
a white 4-path from ab to ba in T. From the inductive hypothesis it follows 
the existence of the minimal black 8-path P from a to 6 in T. If P and D 
are disjoint, then P is the black path in S too. Suppose that P and D are 
not disjoint, and denote by c and d the elements of (n — l)-row not belonging 
to D and bounding D from the left and from the right, and by e the first 
element of P belonging to D. We shall construct the path from a to b in S 
of three segments: from a to c, from c to d and from d to b. 

To construct the path from a to c (and, similarly, from d to b) we have 
to construct the' path Q from e to c. The existence of Q follows from the 
inductive hypothesis applied to the elements c and e of the lattice m x ( n - l ) 
with black e. The assertions can be obtained from the first implication of 
the proving theorem. Then concatenate the initial segment of P from a to 
e with Q and remove e. 

The existence of the path from c to d can be easily proved by induction 
on number of components of D. For one component the needed path can be 
composed of c, then all elements of (n- l)-row 4-connected to D and then d. 
For more components the existence of the path connecting the components' 
bounding elements follows from the inductive hypothesis. 

Now suppose that a belongs to the (n — l)-row, and b to the (m — 1)-
column. Add the m-column to the lattice and colour the elements from 
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(m,n— 1) up to the one 4-adjacent to b black and rest of them white. From 
the proof of the first case we get the existence of black path from a to the 
element of the (m — l)-column with second coordinate greater than the one 
of b. Second applying of the first case gives us the path from this element 
to b. The case when a belongs to the 0-row and b belongs to the (n — l)-row 
can be proved similarly, by adding n-row to the lattice. • 

3. Jordan Curve Theorem 

Firstly we shall pTove the 

L E M M A . Let Q C m x n be a minimal 8-path from a to b, where a and b 

are different and not 4-adjacent elements of B d ( m X n). Assume that a and 

b are the only elements on the boundary belonging to Q. The complement 

of Q in m x n has exactly two 4-components such that each element of Q is 

4-adjacent to both these components. 

P R O O F . Define the colouring S of the lattice mxn'm which the elements 
of Q are black and all otber — white. JFrom the reduced chessboard theorem 
it follows that the sets a6\{a,6} and ba\{a,b} lie in different 4-components 
of the complement of Q. Now we must prove that for each element c of the 
complement of Q there exists the white 4-path from c to the boundary of 
the lattice. Move from c up (i.e. with fixed first coordinate and the second 
one increasing) on the white elements of the lattice. The white 4-path that 
we move on can end at the boundary or at the path Q. So we must show 
that for each element q of the path Q and for each white and 4-adjacent 
to q element d there exists the white 4-path from d to the boundary of the 
lattice. F ix such an element q and define the new colouring S' equal to S 
with one exception: q is white in S'. Since Q is minimal, there does not exist 
the black 8-path from o to b in S'. The reduced chessboard theorem implies 
the existence of a white 4-path from ab to ba in S'. A l l white 4-adjacent to 
q elements o f r a X n can be linked to one of the parts, into which this path is 
dissected by q. Moreover, among 4-adjacent to q elements of the lattice there 
exist elements of both components of the complement of Q, what provides 
us with the second part of the lemma. • 

A minimal circular path is a path {pi,P2, • • • ,Pk}, in which pi and pk are 
adjacent and such that after the removal of any element from this path,.the 
remaining elements form a minimal path from the successor to the predeces
sor of the removed element. 

J O R D A N C U R V E T H E O R E M . Let P be a minimal circular 8-path contained 

in m x n and disjoint with Bd (m x n). The complement of P in m x n has 

exactly two 4-components such that each element of P is 4-adjacent to both 

these components. 
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P R O O F . We can assume that in the (n — 2)-row there exists an element 
c of the path P. Since P is minimal, the predecessor and the successor of 
c in P belong to the ( 7 — 1)- and the ( 7 + l)-column respectively, where 7 
is the first coordinate of c. Remove from P the element c and add to P the 
elements a = ( 7 — 1, n— l),b = ( 7 + 1 , n — 1) , (7— 1, n — 2 ) and ( 7 + 1 , n — 2 ) . 
We get a minimal 8-path Q from a to b, a and b being boundary elements 
of m x TO. It follows from lemma that the complement of Q has exactly two 
4-components. Denote the component containing c by A and the other one 
by B. The set B is contained in the complement of P, and after adding to 
B the elements of Q \ P and the element ( 7 , n — 1) we get the set B', still 4-
connected and contained in the complement of P. Similarly, after removing 
the elements ( 7 , n — 1 ) and c from A we get the set A', still 4-connected and 
contained in the complement of P. Notice that m x n \ P = A' U B'. It 
remains to show that elements of P are 4-adjacent to both A' and B'. For 
the elements of P D Q this follows from the lemma. For remaining elements 
of P this is obvious in view of the construction of A' and B'. • 
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