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ONE-ONE AND ONE-ONE ONTO
CHOICE FUNCTIONS

RoMaN WITULA

Abstract. The existence of one-one and one—one onto choice functions on
a family of subsets of a given nonempty set is studied.

Let 7 be a nonempty family of nonempty sets. The aim of this paper is
to investigate the supplemental conditions imposed on 7 and the elements
of 7 which, together with the Axiom of Choice (or one of its equivalents)
imply the existence of an one-one choice function ¢ : 7 — |J T, or stronger,
the existence of an one-one choice function from 7 onto |J 7.

It will be assumed throughout all the paper that the Axiom of Choice
(and consequently each of its equivalents) proves true. Moreover, a given
sequence (also a transfinite sequence) of sets or elements of a set will be
often identified with its set of values.

THEOREM 1. Let Y = {Y; : = € X} be a family of nonempty subsets
of some infinite set X. If card Y, = card X, = € X, then there exists an
one—one choice function on Y.

ProoF. It is sufficient to prove that there exist pairwise disjoint sets
Z; CY,, z € X, such that card Z, = card X,z € X. To do this let us
denote by < a minimal order on the set X, i.e. a well order on X satisfying
the following condition: :

(Vz € X)(I(z):={y: y€ X and y<z}= card I(z) < cardX).
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Let 0 be the minimal element of the ordered set (X,<). By transfinite
induction we construct an one-one sequence {Yuw : u,v € X} of elements
of X such that

Zy:={yup: vEX}CY,

for every u € X.

Let yp,0 be the minimal element of Yy. Assume now that for some w € X
the one—one sequence Sy = {yu,v : %,v € I{(w)} has been already defined.
Moreover, assume that {y,, : v € I(w)} C Yy, for every u € I(w). By
transfinite induction with respect to u € I(w) we will construct the elements
Yu,w, With u € I(w). First note that

)

card Sy = card (I(w) X I(w)) = card I(w) < card X

whenever 1 (w) is infinite, and therefore Yy \ Sy, # 0. Let yo,, denote the
minimal element of the set ¥ \ S,,. If for some t < w the elements Yu,w With
u < t are already defined then

card (Sy U {Yuw: u <t}) < card I(w) < cardX. -

Hence Y; \ (Sw U {yu,w: u < t}) # 0 and we define yt w t0 be the minimal
element of this set. Thus, all elements y,, ,, with u € T (w) have been already
defined.

In a s1mllar way as above we can define the elements y,. € Y,,
u € I(w + 1). Consequently, we may assume that the one—one sequence
{Yu,v * u,v € I(w + 1)} such that {yu,, : v € I(w+ 1)} C ¥, for every
u € I(w + 1) is constructed.

Finally, by the principle of transfinite induction, the elements y, , are
defined for all u,v € X. . O

COROLLARY 1.1. Let T be a nonempty family of subsets of some infinite
set X. Suppose that the following two conditions are fulfilled:
(1) card T < card X,
(2) (VY) (Y €T = card (X \Y) < card X).

Then there exists an one-one choice function on T.

An alternative (and more compact) proof of Corollary 1.1. will be given
below.

Proor orF CoOROLLARY 1.1. Let f be an arbitrary one—one function
from X x X onto X. Define A, = f({z} x X), z € X. Then the family
{Az : z € X} is a partition of X and card A, = card X, z € X. Hence,

combining (1) with the equality X\Y = |J (4, \Y), Y € T, we can assert
) z€X
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that the families By := {A;: ¢ € X and A, CY}, Y € 7, are nonempty
and, more precisely, that card By = card X for every Y € 7.

Let F be a choice function on the family {By :- Y € T} and let g be the
equivalence relation on 7 defined as follows: Y9Z & F(By) = F(Bz). We
see that for every £ € 7 /p the following inclusion is fulfilled: '

F(By)c[{Z: ze€}, Ye&.
Fix an choice function G on 7 /g. Then we have
(VD € T/o) (VE € T/0) (D # & = F(Bg(p)) N F(Bge)) = 0).

Applying (2) we get card £ < card F(Bg¢)) for every £ € T/p. Therefore
for every £ € 7 /g there exists an one-one function g¢ : £ — F(Bg(g)). We

are now in a position to define an one—one choice function g : 7 — X, by
g(Y)=ge(Y) foreveryY € £ and £ € T /p. a

THEOREM 2. Let {Xp}p<o be a transfinite sequence of sets satisfying
the following two conditions: '
(1) (VB) (B < a= card Xg > card B), -
(2) (VB,6) (B<bé<a= XgC Xs).
Then there exists an one-one choice function on {Xg}p<a-

Proor. By the transfinite induction, we deduce that there exists an
ordinal number @ < a and an increasing function f : Z(a@) —» Z(a), where
Z() denotes the set of all ordinal numbers smaller then J for every ordinal
number S, such that
(3) the sets Z(a) and f(Z(a)) are similar, f(0) = 0 and f(&) = a,

(4) for every isolated ordinal 8 < &, B =~ + 1, we have

. card (Xy(p) \ X s(z) = card X y(5)

an

(V6) (6 € Z(a) and f(y) <8 < f(B) = card (Xf(p) \Xg) < carde(p)) ,

(5) for every limit ordinal number 8 < & two following conditions are satis-
fied: '

(V) ('y <aandy< = card (Xf(p) \ Xf(,,)) = card Xf(ﬁ))

and if § € Z(f(,B)) and 6 > f(v) for every v < 3, then
card (Xf(p) \Xg) < card Xf(p).

An one-one choice function g : {Xg}s<ca — U X will be constructed
, B<a
below by the transfinite induction with respect on v € Z(@).

5 — Annales...
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By (1), an one-one choice function g on all sets Xz, with 3 finite, could
be easily defined. In the sequel, g could be defined on all finite sets Xg.
Assume now that g is an one-one choice function defined on all Xz with
B < f(v) for some ¥ < ¥, where ¥ € Z(a) is arbitrary fixed. There is no
loss of generality in assuming that the cardinality of f(¥) is infinite. If 5 is
an isolated ordinal number then ¥ = v+ 1 for some v < @. By (1) we obtain

card Xy(,) > card Im(g),

where I'm(g) denotes the image of g. Hence, by (4), we deduce that

(V6)(§ € Z(a) and f(7)<d6< f(7) =
card [(X;(5) \ Im(g))\ (X5\ Im(g))]
< card [Xfﬁ) \ Im(g)]) .

Therefore, if the set (X s5)\ Im(g)) is infinite then, in virtue of Corollary 1.1,
there exists an one-one choice function on the family {X;\ Im(g): f(v) <
8 < f(3)}. Thus the definition of g can be extended on the sets X5 with
6 € Z(a) and f(7) < § < f(]). In the case when the set (X5 \ Im(g)) is
finite then by the equality

card(X;(5) \ Im(g)) = card Xy()

we obtain that the set X ) is also finite, which was excluded above. If ¥
is a limit ordinal number then applying the condition (5) we can extand the
definition of g on the sets X5 with § > f(v) for every ¥ < ¥ and 6 < f(%).
a v

LEMMA 3. Let {Y, : z € (0,1} be a family of sets such that
card Y; > ¢, = € (0,1} and Y, C Y, for z,2 € (0,1], = < z. Then
there exists an one-one choice function

P: {Yz: z€(0,1]} - Yi.

Proor. First assume that card (] Y. > ¢. Let g be an one-one
0<z<1

function from the interval (0,1] into the set () Y;. Then the mapping
) 0<z<1
Y, — g(z), = € (0,1], is the desired choice function.
In the case when card [] Y. < ¢, it is easy to show that the following
0<z<1
condition is sastisfied:

(1) (Vz€(0,1)) (3z€(0,1)) (z<z and card (Yz\Yz)2> ).



67

Indeed, if there exists ¢ € (0,1) such that for any z € (0,1) we have
card (Yz \Y;) < ¢ then

N Y,:Y,\( U (Yx\Yz)> :Y,\(U(Yx\Yzln)>.

0<2<z 0<z2Lz n=1

Hence, it follows immediately that card (] Y, > ¢, which contradicts our
0<z<z

assumption. By (1), we can choose a decreasing sequence {z(n): n € N} C
(0, 1) convergent to zero such that card (Yz(n) \ Yo(n41)) = ¢ for every n € N.
Let g,, denotes an one-one function which maps the interval (z(n), z(n—1)]
into the set Yz(n) \ Yo(n41), 7 € N, where 2(0) = 1. Then the function
g(Yz) = gn(z) for z € (z(n), z(n — 1)], n € N, is the desired choice
function. a

THEOREM 4. Let {Y;: = € (0,1)} be a family of subsets of the interval
(0,1) and let the following condition be fulfilled. There exists a sequence
{X, : n € N} of mutually disjoint nonempty subintervals of the unit in-
terval such that for every z € (0,1) there exists an index n(z) € N such
that Xp(z) C Y. Then we are able to define an one-one choice function
P: {Ye: z€(0,1)} - U X, effectively.

neN

Proor. It is well known that we can construct an one-one function ¢ from
(0,1) onto a Sierpiniski’s family S of increasing sequences of positive integers
with almost disjoint sets of values effectively. From now on we assume that
the family {Y; : z € (0,1)} is indexed by elements s € S i.e. we have
{Yz: z€(0,1)}={Y,: s€S}.

For every s € S we denote by k(s) the minimal positive integer such that
Xi(s) € Ys. Moreover, let (a,,b,) = int X,,, n € N, and let the functions

n: (0,1) = (an,by), n €N, be defined as follows f,(z) = (b, — a,)z +
@n, ¢ € (0,1). Then a trivial verification shows that the following mapping
is the desired choice function:

oo
Y, — fk(a) (z 2—L(8,l))

t=1

where s € S, s={s;: 1 € N}, L(s,t) = Z l;, t € N, and the sequence

I = {I;: i € N} is defined in the following way Iy, =2i -1, 1 €N, and the
restriction to the complement of the set s to N of / is the increasing sequence
of all even positive integers. O

5*



68

LEMMA 5. Let H be a Hilbert space overK = R or C. Let {H,: a € A}
be a family of nonempty, closed and convex subsets of H. Then, by the
countable Axiom of Choice, there exists a choice function

P: {Ho: a€ A} - U Ha.
a€A
Moreover, if one of the following two conditions is satisfied: either the sets

Ha, a € A, are mutually disjoint, or i, # ig for any two o, € A, a # 3,
where i, = inf{|| b ||: h € Hy}, then we can additionally assume that 1 is
one-one.

Proor. It is sufficient to note that, in virtue of the countable Axiom of
Choice, each set H,,a € A, contains precisely one element with minimal
norm (cf [3], Theorem 2.3.1). m

REMARK. Since for every z € H and for every o € A there exists precisely
one element z, € H, such that || z — z, ||= dist (2, H,), we may suppose
that there-exist, in general case, many different choice functions discussed
in the above Lemma.

THEOREM 6. Let 7 be a family of subsets of some infinite set X such
that . '

1) (Vz)(z€X=> card{Y: Y €T and =z EVY}= card X).

Then there exists a choice function v from T onto X.
Additionally, if the following two conditions are fulfilled:

(2) card 7 = card X,
and
(3) - (YWY)(Y €T = cardY = card X),

then there exists an one-one onto choice function ¢ : T — X.

PRrOOF. Suppose that é and é' are minimal ordinal numbers such that
card § = card X and card §' = card 7. Let {2z, : a < 6} and {Y,: a < §'}
be two one-one transfinite sequences containing all elements of the sets X
and 7, respectively. Define, by transfinite induction, an one-one function ¢
from {a: a < 6} into {a: a < §'} as follows:

g(0) =min{a: a<é and z¢ €Y.},

g(ﬂ) = min {a: a<é and aé¢{g(7): Y<PB} and z5€Y,}
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for every 3 < 6. We note that by (1) this definition is correct. Obviously,
then g is one-one and zg € Yy() for every 8 < é.

Now we prove that if the conditions (2) and (3) hold true then g is onto
{a : a < 6}, because then §' = 6. To this aim assume that there ex-
ists B < 6 such that 8 ¢ g({a : a < 6}). It follows from (3) that
card g({a : @ < 6 and zo € Yg}) = card X. On the other hand, by
the definition of g, the following implication holds true:

(Va) (¢ < § and z,€ Yz = either gla)< B or Be{g(7): v<a}).

The condition 8 € {g(v) : ¥ < a} is excluded from our discussion. Therefore
card g({a: a < § and z, € Y3}) < card B which contradicts the inequality
card B < card X. Accordingly, ¢ is onto {a@ : a < 6} as claimed. Then
it follows immediately that h(Yyg)) := 2, B < §, is the desired choice
function on 7.
In the case when only the condition (1) is satisfied and the set
T':= (T\ {Yg(p) 1 f< 6})

is nonempty, then h should be extended arbitrarily onto 7”. O

COROLLARY 6.1. Let X be an infinite set and let
T:={Y:YCX and card (X\Y)< card X}.

If card T = card X then there exists an one-one choice function from T
onto X.

COROLLARY 6.2. Let T be the family of all open intervals of the real .
line. Then there exists an one-one onto choice function f: T — R.

Let p be the relation on R defined as follows: (Vz,y € R) (zpy & 2 —y €
Q). The relation p is obviously an equivalence. We denote by R/p the
corresponding family of equivalence classes. Our next result is a consequence
of the existence of a choice function ¥ : R/p — R.

LEMMA 7. Let {@Q,}32, be a sequence of nontrivial intervals of R satis-
fying the following conditions:
(1) (Vi)(ieNandi<n=Q;NQn#Qi),
and ;
(2) for every real number x there exist infinite many intervals Q; which
contain x.
If F,,, n € N, are nonempty families of subsets of R such that
(3) (VYn,m)(n,me€Nandn#m=F,NF,=0)
and
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(4) (V) VF)(neNand Fe F, = Q, CF)

then there exists an one-one choice function ¥ : |J F, — R.

. : neN
» If, additionally, the following condition is fulﬁllgd:
(5) (Vn)(n €N = card F, =¢)
then there exists an one-one onto choice function ¥ : |J F, — R.
neEN
PRroor. For every E € R/p we denote by {z,(E)}32, an one-one se-
quence of all elements of the set E. More precisely, if {g,}32, is an one-one
sequence of all rational numbers and ¥ : R/p — R is a choice function then
we could set z,(E) = ¥(E)+ ¢, for every n € N.
Now, by induction on n, we define auxiliary sequences of indices
’ {8(71,, E)}:?:l’ Ee ]R/p'
First, we define s(1, E) to be the smallest positive integer with the property
that z,1,5) € @1 for every E € R/p. Let for some n € N, n > 2, the
indices s(¢,E), i = 1,...,n—1, E € R/p, are already defined. Then for
every E € R/p the index s(n, E) is the smallest positive integer satisfying:
s(n, E) # s(i, E) for every i = 1,... ,n—1, and Z4n k) € @r. We note that,
by (2), the following implication holds true:

(VE)(E€eR/p= {s(n,E): n € N} =N).

Let f, denotes an one-one function from F, into (onto, resp., whenever the
condition (5) holds true) the set {z,n,g) : E € R/p} for every n € N. Then
the function f(T) := fo(T) for T € F, and n € N, is the desired choice
function. O

REMARK 7.1. Let {@+}32, be the sequence built from all elements of
the succesive finite sequences of the following intervals of R :
(-3"127", (i+1+4371)27"), —n2" <i< n2n,

for every n € N.

k(n+1)

Then [-n,n] C |J @i, forevery n € N, where k(n) := n(n+1), n € N.

i=k(n) :
Hence the condition (2) of Lemma 7 is fulfilled. It can be readily checked
that the condition (1) of Lemma 7 is also satisfied.

CoOROLLARY 7.1. Note that Corollary 6.2 also follows from Lemma 7.
For the proof of this fact it is sufficient to define families F,, n € N, in
the following way. Let Fy be the set of all intervals (a,b) C R such that
@1 C (a,b). Iffor somen € N, n > 2, the pairwise disjoint sets Fy,... , Fn_1
are defined, then we set F, to be the family of all intervals (a,b) C R such

n—1
that Qn C (a,b) ¢ |J F:. We note that by (1) the condition (5) is satisfied.

=1
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COROLLARY 7.2. Let us define by T the family of all open'intervals (a, b)
of the real line such that (b — a) € Q. Then there exists an one-one onto
choice function ¢ : T — R. We note that then T is equal to the family of
all intervals I(q,%(FE)) with endpoints: q and q + ¥(E) forq € Q,E € R/p,
where ¢ and p are defined in the same way as in the proof of Lemma 7.

Hence we may put ¢(I(q,9%(E))) = 1q + ¥(E).
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