ONE-ONE AND ONE-ONE ONTO CHOICE FUNCTIONS

ROMAN WITUŁA

Abstract. The existence of one-one and one-one onto choice functions on a family of subsets of a given nonempty set is studied.

Let \mathcal{T} be a nonempty family of nonempty sets. The aim of this paper is to investigate the supplemental conditions imposed on \mathcal{T} and the elements of \mathcal{T} which, together with the Axiom of Choice (or one of its equivalents) imply the existence of an one-one choice function $\psi: \mathcal{T} \to \bigcup \mathcal{T}$, or stronger, the existence of an one-one choice function from \mathcal{T} onto $\bigcup \mathcal{T}$.

It will be assumed throughout all the paper that the Axiom of Choice (and consequently each of its equivalents) proves true. Moreover, a given sequence (also a transfinite sequence) of sets or elements of a set will be often identified with its set of values.

THEOREM 1. Let $\mathbb{Y} = \{Y_x : x \in X\}$ be a family of nonempty subsets of some infinite set X. If card $Y_x = \text{card } X$, $x \in X$, then there exists an one—one choice function on \mathbb{Y} .

PROOF. It is sufficient to prove that there exist pairwise disjoint sets $Z_x \subseteq Y_x$, $x \in X$, such that card $Z_x = \operatorname{card} X, x \in X$. To do this let us denote by < a minimal order on the set X, i.e. a well order on X satisfying the following condition:

$$(\forall x \in X)(I(x) := \{y: y \in X \text{ and } y < x\} \Rightarrow \text{card } I(x) < \text{card} X).$$

AMS (1991) subject classification: Primary 03E25. Secondary 04A25.

Received June 4, 1993.

Let 0 be the minimal element of the ordered set (X,<). By transfinite induction we construct an one-one sequence $\{y_{u,v}: u,v\in X\}$ of elements of X such that

$$Z_u := \{y_{u,v}: v \in X\} \subseteq Y_u$$

for every $u \in X$.

Let $y_{0,0}$ be the minimal element of Y_0 . Assume now that for some $w \in X$, the one—one sequence $S_w = \{y_{u,v}: u,v \in I(w)\}$ has been already defined. Moreover, assume that $\{y_{u,v}: v \in I(w)\} \subset Y_u$, for every $u \in I(w)$. By transfinite induction with respect to $u \in I(w)$ we will construct the elements $y_{u,w}$, with $u \in I(w)$. First note that

$$\operatorname{card} S_w = \operatorname{card} (I(w) \times I(w)) = \operatorname{card} I(w) < \operatorname{card} X$$

whenever I(w) is infinite, and therefore $Y_0 \setminus S_w \neq \emptyset$. Let $y_{0,w}$ denote the minimal element of the set $Y_0 \setminus S_w$. If for some t < w the elements $y_{u,w}$ with u < t are already defined then

$$\operatorname{card} (S_w \cup \{y_{u,w}: u < t\}) \leq \operatorname{card} I(w) < \operatorname{card} X.$$

Hence $Y_t \setminus (S_w \cup \{y_{u,w} : u < t\}) \neq \emptyset$ and we define $y_{t,w}$ to be **the** minimal element of this set. Thus, all elements $y_{u,w}$ with $u \in I(w)$ have **been** already defined.

In a similar way as above we can define the elements $y_{w,u} \in Y_w$, $u \in I(w+1)$. Consequently, we may assume that the one-one sequence $\{y_{u,v}: u,v \in I(w+1)\}$ such that $\{y_{u,v}: v \in I(w+1)\} \subset Y_u$ for every $u \in I(w+1)$ is constructed.

Finally, by the principle of transfinite induction, the elements $y_{u,v}$ are defined for all $u, v \in X$.

COROLLARY 1.1. Let \mathcal{T} be a nonempty family of subsets of some infinite set X. Suppose that the following two conditions are fulfilled:

- (1) $\operatorname{card} T \leq \operatorname{card} X$,
- (2) $(\forall Y) \ (Y \in \mathcal{T} \Rightarrow card \ (X \setminus Y) < card \ X).$

Then there exists an one-one choice function on T.

An alternative (and more compact) proof of Corollary 1.1. will be given below.

PROOF OF COROLLARY 1.1. Let f be an arbitrary one—one function from $X \times X$ onto X. Define $A_x = f(\{x\} \times X)$, $x \in X$. Then the family $\{A_x : x \in X\}$ is a partition of X and card $A_x = \operatorname{card} X$, $x \in X$. Hence, combining (1) with the equality $X \setminus Y = \bigcup_{x \in X} (A_x \setminus Y)$, $Y \in \mathcal{T}$, we can assert

that the families $B_Y := \{A_x : x \in X \text{ and } A_x \subset Y\}, Y \in \mathcal{T}, \text{ are nonempty}$ and, more precisely, that card $B_Y = \text{card } X$ for every $Y \in \mathcal{T}$.

Let F be a choice function on the family $\{B_Y: Y \in \mathcal{T}\}$ and let ρ be the equivalence relation on \mathcal{T} defined as follows: $Y \rho Z \Leftrightarrow F(B_Y) = F(B_Z)$. We see that for every $\mathcal{E} \in \mathcal{T}/\varrho$ the following inclusion is fulfilled:

$$F(B_Y) \subset \bigcap \{Z: Z \in \mathcal{E}\}, Y \in \mathcal{E}.$$

Fix an choice function G on \mathcal{T}/ϱ . Then we have

$$(\forall \mathcal{D} \in \mathcal{T}/\varrho) \ (\forall \mathcal{E} \in \mathcal{T}/\varrho) \ (\mathcal{D} \neq \mathcal{E} \Rightarrow F(B_{G(\mathcal{D})}) \cap F(B_{G(\mathcal{E})}) = \emptyset).$$

Applying (2) we get card $\mathcal{E} \leq \operatorname{card} F(B_{G(\mathcal{E})})$ for every $\mathcal{E} \in \mathcal{T}/\varrho$. Therefore for every $\mathcal{E} \in \mathcal{T}/\varrho$ there exists an one-one function $g_{\mathcal{E}} : \mathcal{E} \to F(B_{G(\mathcal{E})})$. We are now in a position to define an one-one choice function $g: \mathcal{T} \to X$, by $g(Y) = g_{\mathcal{E}}(Y)$ for every $Y \in \mathcal{E}$ and $\mathcal{E} \in \mathcal{T}/\varrho$.

THEOREM 2. Let $\{X_{\beta}\}_{{\beta}<\alpha}$ be a transfinite sequence of sets satisfying the following two conditions:

- (1) $(\forall \beta) \ (\beta < \alpha \Rightarrow \text{card } X_{\beta} > \text{card } \beta), \ \cdot$
- $(\forall \beta, \delta) \ (\beta < \delta < \alpha \Rightarrow X_{\beta} \subseteq X_{\delta}).$ (2)

Then there exists an one-one choice function on $\{X_{\beta}\}_{\beta<\alpha}$.

PROOF. By the transfinite induction, we deduce that there exists an ordinal number $\tilde{\alpha} \leq \alpha$ and an increasing function $f: \mathcal{Z}(\tilde{\alpha}) \to \mathcal{Z}(\alpha)$, where $\mathcal{Z}(\beta)$ denotes the set of all ordinal numbers smaller then β for every ordinal number β , such that

- (3) the sets $\mathcal{Z}(\widetilde{\alpha})$ and $f(\mathcal{Z}(\widetilde{\alpha}))$ are similar, f(0) = 0 and $f(\widetilde{\alpha}) = \alpha$,
- (4) for every isolated ordinal $\beta < \tilde{\alpha}$, $\beta = \gamma + 1$, we have $\operatorname{card} (X_{f(\beta)} \setminus X_{f(\gamma)}) = \operatorname{card} X_{f(\beta)}$

and

$$(\forall \delta) (\delta \in \mathcal{Z}(\alpha) \text{ and } f(\gamma) < \delta < f(\beta) \Rightarrow \operatorname{card} (X_{f(\beta)} \setminus X_{\delta}) < \operatorname{card} X_{f(\beta)}),$$

(5) for every limit ordinal number $\beta < \widetilde{\alpha}$ two following conditions are satisfied:

$$(\forall \gamma) \ (\gamma < \widetilde{\alpha} \text{ and } \gamma < \beta \Rightarrow \text{ card } (X_{f(\beta)} \setminus X_{f(\gamma)}) = \text{ card } X_{f(\beta)})$$

and if $\delta \in \mathcal{Z}(f(\beta))$ and $\delta > f(\gamma)$ for every $\gamma < \beta$, then

 $\operatorname{card} (X_{f(\beta)} \setminus X_{\delta}) < \operatorname{card} X_{f(\beta)}.$ An one-one choice function $g: \{X_{\beta}\}_{\beta < \alpha} \to \bigcup_{\beta < \alpha} X_{\beta}$ will be constructed below by the transfinite induction with respect on $\gamma \in \mathcal{Z}(\tilde{\alpha})$.

By (1), an one-one choice function g on all sets X_{β} , with β finite, could be easily defined. In the sequel, g could be defined on all finite sets X_{β} . Assume now that g is an one-one choice function defined on all X_{β} with $\beta \leq f(\gamma)$ for some $\gamma < \widetilde{\gamma}$, where $\widetilde{\gamma} \in \mathcal{Z}(\widetilde{\alpha})$ is arbitrary fixed. There is no loss of generality in assuming that the cardinality of $f(\widetilde{\gamma})$ is infinite. If $\widetilde{\gamma}$ is an isolated ordinal number then $\widetilde{\gamma} = \gamma + 1$ for some $\gamma < \widetilde{\alpha}$. By (1) we obtain

$$\operatorname{card} X_{f(\gamma)} > \operatorname{card} Im(g),$$

where Im(g) denotes the image of g. Hence, by (4), we deduce that

$$\begin{split} (\forall \delta) \, (\delta \in \mathcal{Z}(\alpha) \quad \text{and} \quad f(\gamma) < \delta < f(\widetilde{\gamma}) \Rightarrow \\ & \operatorname{card} \left[(X_{f(\widetilde{\gamma})} \setminus \, \operatorname{Im}(g)) \setminus (X_{\delta} \setminus \, \operatorname{Im}(g)) \right] \\ & < \operatorname{card} \left[X_{f(\widetilde{\gamma})} \setminus \, \operatorname{Im}(g) \right]) \, . \end{split}$$

Therefore, if the set $(X_{f(\tilde{\gamma})} \setminus \operatorname{Im}(g))$ is infinite then, in virtue of Corollary 1.1, there exists an one-one choice function on the family $\{X_{\delta} \setminus \operatorname{Im}(g) : f(\gamma) < \delta < f(\tilde{\gamma})\}$. Thus the definition of g can be extended on the sets X_{δ} with $\delta \in \mathcal{Z}(\alpha)$ and $f(\gamma) < \delta < f(\tilde{\gamma})$. In the case when the set $(X_{f(\tilde{\gamma})} \setminus \operatorname{Im}(g))$ is finite then by the equality

$$\operatorname{card}(X_{f(\widetilde{\gamma})} \setminus \operatorname{Im}(g)) = \operatorname{card} X_{f(\widetilde{\gamma})}$$

we obtain that the set $X_{f(\widetilde{\gamma})}$ is also finite, which was excluded above. If $\widetilde{\gamma}$ is a limit ordinal number then applying the condition (5) we can extand the definition of g on the sets X_{δ} with $\delta > f(\gamma)$ for every $\gamma < \widetilde{\gamma}$ and $\delta \leq f(\widetilde{\gamma})$. \square

LEMMA 3. Let $\{Y_x: x \in (0,1]\}$ be a family of sets such that card $Y_x \geq \mathfrak{c}$, $x \in (0,1]$ and $Y_x \subseteq Y_z$ for $x,z \in (0,1]$, $x \leq z$. Then there exists an one-one choice function

$$\psi: \{Y_x: x \in (0,1]\} \to Y_1.$$

PROOF. First assume that card $\bigcap_{0 < x \le 1} Y_x \ge \mathfrak{c}$. Let g be an one-one function from the interval (0,1] into the set $\bigcap_{0 < x \le 1} Y_x$. Then the mapping $Y_x \mapsto g(x), x \in (0,1]$, is the desired choice function.

In the case when card $\bigcap_{0 < x \le 1} Y_x < \mathfrak{c}$, it is easy to show that the following condition is sastisfied:

(1)
$$(\forall x \in (0,1)) (\exists z \in (0,1)) (z < x \text{ and } \operatorname{card} (Y_x \setminus Y_z) \ge \mathfrak{c}).$$

Indeed, if there exists $x \in (0,1)$ such that for any $z \in (0,1)$ we have card $(Y_x \setminus Y_z) < \mathfrak{c}$ then

$$\bigcap_{0 < z \le x} Y_z = Y_x \setminus \left(\bigcup_{0 < z \le x} (Y_x \setminus Y_z) \right) = Y_x \setminus \left(\bigcup_{n=1}^{\infty} (Y_x \setminus Y_{x/n}) \right).$$

Hence, it follows immediately that card $\bigcap_{0 < z \le x} Y_z \ge \mathfrak{c}$, which contradicts our

assumption. By (1), we can choose a decreasing sequence $\{x(n): n \in \mathbb{N}\} \subset (0,1)$ convergent to zero such that card $(Y_{x(n)} \setminus Y_{x(n+1)}) \geq \mathfrak{c}$ for every $n \in \mathbb{N}$. Let g_n denotes an one-one function which maps the interval (x(n), x(n-1)] into the set $Y_{x(n)} \setminus Y_{x(n+1)}$, $n \in \mathbb{N}$, where x(0) = 1. Then the function $g(Y_x) := g_n(x)$ for $x \in (x(n), x(n-1)]$, $n \in \mathbb{N}$, is the desired choice function.

THEOREM 4. Let $\{Y_x: x \in (0,1)\}$ be a family of subsets of the interval (0,1) and let the following condition be fulfilled. There exists a sequence $\{X_n: n \in \mathbb{N}\}$ of mutually disjoint nonempty subintervals of the unit interval such that for every $x \in (0,1)$ there exists an index $n(x) \in \mathbb{N}$ such that $X_{n(x)} \subseteq Y_x$. Then we are able to define an one-one choice function $\psi: \{Y_x: x \in (0,1)\} \to \bigcup_{n \in \mathbb{N}} X_n$ effectively.

PROOF. It is well known that we can construct an one-one function ϕ from (0,1) onto a Sierpiński's family $\mathcal S$ of increasing sequences of positive integers with almost disjoint sets of values effectively. From now on we assume that the family $\{Y_x: x \in (0,1)\}$ is indexed by elements $s \in \mathcal S$ i.e. we have $\{Y_x: x \in (0,1)\} = \{Y_s: s \in \mathcal S\}$.

For every $s \in \mathcal{S}$ we denote by k(s) the minimal positive integer such that $X_{k(s)} \subseteq Y_s$. Moreover, let $(a_n, b_n) = \operatorname{int} X_n$, $n \in \mathbb{N}$, and let the functions $f_n : (0,1) \to (a_n, b_n)$, $n \in \mathbb{N}$, be defined as follows $f_n(x) = (b_n - a_n)x + a_n$, $x \in (0,1)$. Then a trivial verification shows that the following mapping is the desired choice function:

$$Y_s \mapsto f_{k(s)} \left(\sum_{t=1}^{\infty} 2^{-L(s,t)} \right)$$

where $s \in \mathcal{S}$, $s = \{s_i : i \in \mathbb{N}\}$, $L(s,t) = \sum_{i=1}^t l_i$, $t \in \mathbb{N}$, and the sequence $l = \{l_i : i \in \mathbb{N}\}$ is defined in the following way: $l_{s_i} = 2i - 1$, $i \in \mathbb{N}$, and the restriction to the complement of the set s to \mathbb{N} of l is the increasing sequence of all even positive integers.

LEMMA 5. Let \mathcal{H} be a Hilbert space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Let $\{\mathcal{H}_{\alpha} : \alpha \in A\}$ be a family of nonempty, closed and convex subsets of H. Then, by the countable Axiom of Choice, there exists a choice function

$$\psi: \{\mathcal{H}_{\alpha}: \alpha \in A\} \to \bigcup_{\alpha \in A} \mathcal{H}_{\alpha}.$$

 $\psi: \ \{\mathcal{H}_\alpha: \ \alpha \in A\} \to \bigcup_{\alpha \in A} \mathcal{H}_\alpha.$ Moreover, if one of the following two conditions is satisfied: either the sets \mathcal{H}_{α} , $\alpha \in A$, are mutually disjoint, or $i_{\alpha} \neq i_{\beta}$ for any two $\alpha, \beta \in A$, $\alpha \neq \beta$, where $i_{\alpha} = \inf\{\|h\|: h \in \mathcal{H}_{\alpha}\}$, then we can additionally assume that ψ is one-one.

PROOF. It is sufficient to note that, in virtue of the countable Axiom of Choice, each set $\mathcal{H}_{\alpha}, \alpha \in A$, contains precisely one element with minimal norm (cf [3], Theorem 2.3.1). П

REMARK. Since for every $z \in \mathcal{H}$ and for every $\alpha \in A$ there exists precisely one element $z_{\alpha} \in \mathcal{H}_{\alpha}$ such that $||z-z_{\alpha}|| = \text{dist } (z,\mathcal{H}_{\alpha})$, we may suppose that there exist, in general case, many different choice functions discussed in the above Lemma.

THEOREM 6. Let \mathcal{T} be a family of subsets of some infinite set X such that

(1)
$$(\forall x) (x \in X \Rightarrow \text{ card } \{Y : Y \in \mathcal{T} \text{ and } x \in Y\} = \text{ card } X).$$

Then there exists a choice function ψ from \mathcal{T} onto X. Additionally, if the following two conditions are fulfilled:

(2)
$$\operatorname{card} T = \operatorname{card} X$$
,

and

(3)
$$(\forall Y) (Y \in \mathcal{T} \Rightarrow \text{ card } Y = \text{ card } X),$$

then there exists an one-one onto choice function $\psi: \mathcal{T} \to X$.

PROOF. Suppose that δ and δ' are minimal ordinal numbers such that card $\delta = \operatorname{card} X$ and card $\delta' = \operatorname{card} T$. Let $\{x_{\alpha} : \alpha < \delta\}$ and $\{Y_{\alpha} : \alpha < \delta'\}$ be two one-one transfinite sequences containing all elements of the sets X and \mathcal{T} , respectively. Define, by transfinite induction, an one-one function gfrom $\{\alpha : \alpha < \delta\}$ into $\{\alpha : \alpha < \delta'\}$ as follows:

$$g(0) = \min\{\alpha: \ \alpha < \delta' \ \text{and} \ x_0 \in Y_\alpha\},$$

$$g(\beta) = \min \left\{ \alpha : \ \alpha < \delta' \quad \text{and} \quad \alpha \notin \left\{ g(\gamma) : \ \gamma < \beta \right\} \quad \text{and} \quad x_\beta \in Y_\alpha \right\}$$

for every $\beta < \delta$. We note that by (1) this definition is correct. Obviously, then g is one-one and $x_{\beta} \in Y_{g(\beta)}$ for every $\beta < \delta$.

Now we prove that if the conditions (2) and (3) hold true then g is onto $\{\alpha: \alpha < \delta\}$, because then $\delta' = \delta$. To this aim assume that there exists $\beta < \delta$ such that $\beta \notin g(\{\alpha: \alpha < \delta\})$. It follows from (3) that card $g(\{\alpha: \alpha < \delta \text{ and } x_{\alpha} \in Y_{\beta}\}) = \text{card } X$. On the other hand, by the definition of g, the following implication holds true:

$$(\forall \alpha) \ (\alpha < \delta \ \text{ and } \ x_{\alpha} \in Y_{\beta} \Rightarrow \ \text{ either } \ g(\alpha) < \beta \ \text{ or } \ \beta \in \{g(\gamma) : \ \gamma < \alpha\}).$$

The condition $\beta \in \{g(\nu) : \nu < \alpha\}$ is excluded from our discussion. Therefore card $g(\{\alpha : \alpha < \delta \text{ and } x_{\alpha} \in Y_{\beta}\}) \leq \text{card } \beta$ which contradicts the inequality card $\beta < \text{card } X$. Accordingly, g is onto $\{\alpha : \alpha < \delta\}$ as claimed. Then it follows immediately that $h(Y_{g(\beta)}) := x_{\beta}, \beta < \delta$, is the desired choice function on \mathcal{T} .

In the case when only the condition (1) is satisfied and the set $\mathcal{T}' := (\mathcal{T} \setminus \{Y_{g(\beta)} : \beta < \delta\})$

is nonempty, then h should be extended arbitrarily onto T'.

COROLLARY 6.1. Let X be an infinite set and let

$$\mathcal{T} := \{Y : Y \subset X \text{ and } \operatorname{card}(X \setminus Y) < \operatorname{card}X\}.$$

If card T = card X then there exists an one-one choice function from T onto X.

COROLLARY 6.2. Let T be the family of all open intervals of the real line. Then there exists an one-one onto choice function $f: \mathcal{T} \to \mathbb{R}$.

Let ρ be the relation on \mathbb{R} defined as follows: $(\forall x, y \in \mathbb{R})$ $(x\rho y \Leftrightarrow x - y \in Q)$. The relation ρ is obviously an equivalence. We denote by \mathbb{R}/ρ the corresponding family of equivalence classes. Our next result is a consequence of the existence of a choice function $\psi : \mathbb{R}/\rho \to \mathbb{R}$.

LEMMA 7. Let $\{Q_n\}_{n=1}^{\infty}$ be a sequence of nontrivial intervals of \mathbb{R} satisfying the following conditions:

- (1) $(\forall i)$ $(i \in \mathbb{N} \text{ and } i < n \Rightarrow Q_i \cap Q_n \neq Q_i),$ and
- (2) for every real number x there exist infinite many intervals Q_i which contain x.

If \mathcal{F}_n , $n \in \mathbb{N}$, are nonempty families of subsets of \mathbb{R} such that

(3) $(\forall n, m) (n, m \in \mathbb{N} \text{ and } n \neq m \Rightarrow \mathcal{F}_n \cap \mathcal{F}_m = \emptyset)$ and

- (4) $(\forall n) (\forall F) (n \in \mathbb{N} \text{ and } F \in \mathcal{F}_n \Rightarrow Q_n \subset F)$ then there exists an one-one choice function $\psi : \bigcup_{n \in \mathbb{N}} \mathcal{F}_n \to \mathbb{R}$.
 - If, additionally, the following condition is fulfilled:
- (5) $(\forall n) \ (n \in \mathbb{N} \Rightarrow \text{card } \mathcal{F}_n = \mathfrak{c})$ then there exists an one-one onto choice function $\psi : \bigcup_{n \in \mathbb{N}} \mathcal{F}_n \to \mathbb{R}$.

PROOF. For every $E \in \mathbb{R}/\rho$ we denote by $\{x_n(E)\}_{n=1}^{\infty}$ an one-one sequence of all elements of the set E. More precisely, if $\{q_n\}_{n=1}^{\infty}$ is an one-one sequence of all rational numbers and $\psi : \mathbb{R}/\rho \to \mathbb{R}$ is a choice function then we could set $x_n(E) = \psi(E) + q_n$ for every $n \in \mathbb{N}$.

Now, by induction on n, we define auxiliary sequences of indices $\{s(n,E)\}_{n=1}^{\infty}, E \in \mathbb{R}/\rho$.

First, we define s(1, E) to be the smallest positive integer with the property that $x_{s(1,E)} \in Q_1$ for every $E \in \mathbb{R}/\rho$. Let for some $n \in \mathbb{N}$, $n \geq 2$, the indices s(i, E), $i = 1, \ldots, n-1$, $E \in \mathbb{R}/\rho$, are already defined. Then for every $E \in \mathbb{R}/\rho$ the index s(n, E) is the smallest positive integer satisfying: $s(n, E) \neq s(i, E)$ for every $i = 1, \ldots, n-1$, and $x_{s(n,E)} \in Q_n$. We note that, by (2), the following implication holds true:

$$(\forall E) \ (E \in \mathbb{R}/\rho \Rightarrow \{s(n, E): \ n \in \mathbb{N}\} = \mathbb{N}).$$

Let f_n denotes an one-one function from \mathcal{F}_n into (onto, resp., whenever the condition (5) holds true) the set $\{x_{s(n,E)}: E \in \mathbb{R}/\rho\}$ for every $n \in \mathbb{N}$. Then the function $f(T) := f_n(T)$ for $T \in \mathcal{F}_n$ and $n \in \mathbb{N}$, is the desired choice function.

REMARK 7.1. Let $\{Q_n\}_{n=1}^{\infty}$ be the sequence built from all elements of the succesive finite sequences of the following intervals of \mathbb{R} :

 $\left((i-3^{-1})2^{-n},\;(i+1+3^{-1})2^{-n}\right),\;\;-n2^n\leq i< n2^n,$ for every $n\in\mathbb{N}.$

Then $[-n,n] \subset \bigcup_{i=k(n)}^{k(n+1)} Q_i$, for every $n \in \mathbb{N}$, where $k(n) := n(n+1), n \in \mathbb{N}$.

Hence the condition (2) of Lemma 7 is fulfilled. It can be readily checked that the condition (1) of Lemma 7 is also satisfied.

COROLLARY 7.1. Note that Corollary 6.2 also follows from Lemma 7. For the proof of this fact it is sufficient to define families \mathcal{F}_n , $n \in \mathbb{N}$, in the following way. Let \mathcal{F}_1 be the set of all intervals $(a,b) \subseteq \mathbb{R}$ such that $Q_1 \subseteq (a,b)$. If for some $n \in \mathbb{N}$, $n \geq 2$, the pairwise disjoint sets $\mathcal{F}_1, \ldots, \mathcal{F}_{n-1}$ are defined, then we set \mathcal{F}_n to be the family of all intervals $(a,b) \subseteq \mathbb{R}$ such that $Q_n \subseteq (a,b) \notin \bigcup_{i=1}^{n-1} \mathcal{F}_i$. We note that by (1) the condition (5) is satisfied.

COROLLARY 7.2. Let us define by \mathcal{T} the family of all open intervals (a,b) of the real line such that $(b-a) \in Q$. Then there exists an one-one onto choice function $\phi: \mathcal{T} \to \mathbb{R}$. We note that then \mathcal{T} is equal to the family of all intervals $I(q,\psi(E))$ with endpoints: q and $q+\psi(E)$ for $q \in Q, E \in \mathbb{R}/\rho$, where ψ and ρ are defined in the same way as in the proof of Lemma 7. Hence we may put $\phi(I(q,\psi(E))) = \frac{1}{2}q + \psi(E)$.

Acknowledgements. I would like to express my thanks to Professor Jerzy Mioduszewski for his encouragement and valuable suggestions in order to improve the manuscript. I am also grateful to drs W. Dzik and J. Włodarz for helpful and stimulating discussions.

REFERENCES

- [1] J. Barwise, Handbook of Mathematical Logic, 1977, Amsterdam, New York, Oxford.
- [2] Th. Jech, The Axiom of Choice, North-Holland, 1973, Amsterdam, London, New York.
- [3] W. Mlak, Hilbert Spaces and Operator Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1989.
- [4] H. Rubin and J. E. Rubin, Equivalents of the Axiom of Choice, II, North-Holland, 1985, Amsterdam, New York, Oxford.
- [5] W. Sierpiński, Cardinal and Ordinal Numbers, PWN, 1958, Warszawa.
- [6] W. Sierpiński, Sur un probleme conduisant a un ensemble non mesurable, ne contenant aucun sous-ensemble parfait, Fund. Math., 14 (1929), 229-230.

Instytut Matematyczny Politechnika Śląska ul. Kaszubska 23 44-100 Gliwice