ON THE NUMBER OF SOLUTIONS OF THE NEUMANN PROBLEM FOR THE ORDINARY SECOND ORDER DIFFERENTIAL EQUATION

Irena Rachůnková

Abstract

We have found conditions for the nonlinearity f which are sufficient for the existence of at least two solutions to the Neumann problem for the equation $u^{\prime \prime}+f\left(t, u, u^{\prime}\right)=s$.

1. Introduction

Consider the second order differential equation

$$
\begin{equation*}
u^{\prime \prime}+f\left(t, u, u^{\prime}\right)=s \tag{1.1s}
\end{equation*}
$$

where $s \in \mathbb{R}$ is a parameter, $I=[a, b] \subset \mathbb{R}$ and $f \in C\left(I \times \mathbb{R}^{2}\right)$. We seek results concerning the number of solutions to (1.1s), satisfying the Neumann conditions

$$
\begin{equation*}
u^{\prime}(a)=0, \quad u^{\prime}(b)=0 . \tag{1.2}
\end{equation*}
$$

Our method of proofs makes use of a relation between strict upper and lower solutions and the coincidence topological degree and is close to that of [1]. The number of solutions $(2,1$ or 0$)$ of (1.1s), (1.2) is a function of parameter s. Such multiplicity results of Ambrosetti-Prodi type are obtained in [1] and [4] for periodic and four-point problems, respectively, provided f satisfies the Berstein-Nagumo growth conditions. However they were proved under the assumption that for fixed $s_{1} \in \mathbb{R}$ the set of all solutions to \{(1.ls), $\left.s \leq s_{1}\right\}$, satisfying the boundary conditions, is bounded above. In contrast

[^0]to that, our results are proved under assumptions imposed on f directly. Moreover no growth conditions (like Bernstein-Nagumo) are required here (see (3.1),(3.2)).

Other multiplicity results (one nonnegative and one nonpositive solution) for Neumann problem

$$
\begin{equation*}
u^{\prime \prime}=f(t, u), \quad u^{\prime}(0)=u^{\prime}(1)=0 \tag{1.3}
\end{equation*}
$$

have been proved by M. N. Nkashama and J. Santanilla in [2] for a Carathéodory function f bounded below by a Lebesgue integrable function and fulfilling e.g. conditions:
$\lim _{|u| \rightarrow \infty} f(t, u) \geq 0$ for a.e. $t \in[0,1]$ with strict inequality on a subset of positive measure,

$$
\begin{aligned}
& f(t, u) \leq \alpha_{+} u \quad \text { for a.e. } \quad t \in[0,1] \quad \text { and all } \quad u \geq 0 \\
& f(t, u) \leq-\alpha_{-}^{2} u \quad \text { for a.e. } \quad t \in[0,1] \quad \text { and all } \quad u \leq 0,
\end{aligned}
$$

where $\alpha_{+} \in(0, \infty), \quad \alpha_{-} \in\left(0, \frac{\pi}{2}\right)$.
We can see that the theorems of [2] cannot be used for functions f rapidly growing in their second variable.

Now, let us remind that functions $\sigma_{1}, \sigma_{2} \in C^{2}(I)$ are called lower and upper solutions for (1.1s), (1.2), respectively, if they fulfil (1.2) and

$$
\begin{equation*}
\left(\sigma_{i}^{\prime \prime}+f\left(t, \sigma_{i}, \sigma_{i}^{\prime}\right)-s\right)(-1)^{i} \leq 0 \quad \text { for each } \quad t \in I, \quad i=1,2 . \tag{1.3}
\end{equation*}
$$

The lower and upper solutions are said to be strict, if the inequalities in (1.3) are strict for all $t \in I$.

For $r_{1} \in(0,+\infty)$ we shall write

$$
\begin{aligned}
D\left(-r_{1}\right) & =\left\{x \in C^{2}(I): x(t)>-r_{1} \quad \text { for each } t \in I\right\}, \\
D\left(r_{1}\right) & =\left\{x \in C^{2}(I): x(t)<r_{1} \quad \text { for each } t \in I\right\} .
\end{aligned}
$$

2. Lemmas

Let us consider the auxiliary equation

$$
\begin{equation*}
u^{\prime \prime}=g\left(t, u, u^{\prime}\right) \tag{2.1}
\end{equation*}
$$

where $g \in C\left(I \times \mathbb{R}^{2}\right)$.

Lemma 1. Let σ_{1} be a lower solution and σ_{2} an upper solution to (2.1), (1.2) with $\sigma_{1}(t) \leq \sigma_{2}(t)$ for each $t \in I$. Further, let there exist $k \in(0, \infty)$ such that for each $t \in I, x, y \in \mathbb{R}$, where $\sigma_{1}(t) \leq x \leq \sigma_{2}(t)$, the inequality

$$
\begin{equation*}
|g(t, x, y)| \leq k \tag{2.2}
\end{equation*}
$$

is fulfilled.
Then problem (2.1), (1.2) has a solution u satisfying

$$
\begin{equation*}
\sigma_{1}(t) \leq u(t) \leq \sigma_{2}(t) \quad \text { for each } \quad t \in I \tag{2.3}
\end{equation*}
$$

Proof. This known fact can be proved for example in the same way as in [3].

Lemma 2. Suppose $s \in \mathbb{R}$. Let σ_{1} be a lower solution and σ_{2} an upper solution to (1.1s), (1.2) with $\sigma_{1}(t) \leq \sigma_{2}(t)$ for each $t \in I$.

Further, let there exist $m \in \mathbb{R}$ such that
(2.4) $m \leq f(t, x, y)$ for each $t \in I, x, y \in \mathbb{R}$, where $\sigma_{1}(t) \leq \sigma_{2}(t)$.

Then problem (1.1s), (1.2) has a solution u fulfiling (2.3).
Proof. Let us choose $s \in \mathbb{R}$ and suppose that u is a solution of (1.1s), (1.2) satisfying (2.3). We shall find an a priori estimate for u^{\prime}. From (1.1s), (2.4) it follows $u^{\prime \prime}(t)+m \leq s$ for each $t \in I$. Using (1.2) and integrating the last inequality on $(a, t), t \in I$, we get $u^{\prime}(t) \leq|s-m|(b-a)$ on I. Similarly, by integration on $(t, b), t \in I$, we have $u^{\prime}(t) \geq-|s-m|(b-a)$ on I. So if we put $\varrho=|s-m|(b-a)+\max \left\{\left|\sigma_{1}(t)\right|+\left|\sigma_{2}(t)\right|: \quad t \in I\right\}$, we have

$$
\begin{equation*}
\max \left\{\left|u^{\prime}(t)\right|: t \in I\right\} \leq p \tag{2.5}
\end{equation*}
$$

and

$$
\max \left\{f(t, x, y): t \in I, \quad \sigma_{1}(t) \leq x \leq \sigma_{2}(t),-\varrho \leq y \leq \varrho\right\}=M \in \mathbb{R}
$$

So, we can define a function g

$$
g(t, x, y)=\left\{\begin{array}{cl}
f(t, x, y) & \text { for } t \in I, x \in \mathbb{R}, y \in[-\varrho, \varrho] \\
f(t, x, \varrho \cdot \operatorname{sign} y) & \text { for } t \in I, x \in \mathbb{R},|y|>\varrho
\end{array}\right.
$$

which fulfils the condition of Lemma 1 for $k=\max \{|m|+|s|, \quad|M|+|s|\}$ and the same upper and lower solutions and hence problem (2.1), (1.2) has
a solution u fulfilling (2.3). Then u^{\prime} satisfies (2.5) and according to (2.6) u is a solution to (1.ls), (1.2) as well.

3. Multiplicity results

Using Lemma 2 and the coincidence degree theory we get multiplicity results of Ambrosetti-Prodi type.

Theorem 1. Let $f \in C\left(I \times \mathbb{R}^{2}\right)$ and there exist $r_{1} \in(0, \infty), m, s_{1} \in \mathbb{R}$ such that the irequalities

$$
\begin{equation*}
f\left(t,-r_{1}, 0\right)>s_{1}>f(t, 0,0) \quad \text { for each } \quad t \in I \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
m \leq f(t, x, y) \quad \text { for each } \quad t \in I, \quad x \in\left(-r_{1}, \infty\right), \quad y \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

are satisfied. Then there exists $s_{0} \in\left[m, s_{1}\right)$ such that
(a) for $s<s_{0}$, problem (1.1s), (1.2) has no solution in $\overline{D\left(-r_{1}\right)}$,
(b) for $s=s_{0}$, problem (1.1s), (1.2) has at least one solution in $\overline{D\left(-r_{1}\right)}$,
(c) for $s \in\left(s_{0}, s_{1}\right]$, problem (1.ls), (1.2) has at least two solutions in $D\left(-r_{1}\right)$.

Proof. Put.

$$
h(t, x, y)=\left\{\begin{array}{lll}
f(t, x, y) & \text { for } & x \geq-r_{1} \tag{3.3}\\
f\left(t,-r_{1}, y\right) & \text { for } & x<-r_{1}
\end{array}\right.
$$

and for $s \in \mathbb{R}$ consider the equation

$$
\begin{equation*}
u^{\prime \prime}+h\left(t, u, u^{\prime}\right)=s \tag{3.4s}
\end{equation*}
$$

Proving Theorem 1 we shall need several auxiliary propositions.
Proposition 1. If $s \in\left(-\infty, s_{1}\right.$], then any solution of (3.4s), (1.2) belongs to $D\left(-r_{1}\right)$.

Proof of Proposition 1. Let u be a solution of (3.4s), (1.2) for some $s \leq s_{1}$. Suppose that $\min \{u(t): t \in I\}=u\left(t_{0}\right) \leq-r_{1}$. Then, by (1.2), $u^{\prime}\left(t_{0}\right)=0, \quad u^{\prime \prime}\left(t_{0}\right) \geq 0$. On the other hand from (3.1), (3.3) it follows $u^{\prime \prime}\left(t_{0}\right)=s-f\left(t_{0},-r_{1}, 0\right)<0$, a contradiction.

Proposition 2. There exists $s_{0} \in\left[m, s_{1}\right)$ such that for $s<s_{0}$ problem (3.4s), (1.2) has no solution.

Proof of Proposition 2. Suppose that (3.4s), (1.2) has a solution u for some $s \in \mathbb{R}$. Then, integrating (3.4s) on (a,b), we get $m(b-a) \leq \int_{a}^{b} h\left(\tau, u(\tau), u^{\prime}(\tau)\right) d \tau=s(b-a)$, thus $m \leq s$, and we can take

$$
\begin{equation*}
s_{0}=\inf \{s \in[m, \infty):(3.4 \mathrm{~s}),(1.2) \text { has a solution }\} \tag{3.5}
\end{equation*}
$$

Let us show that the set in (3.5) is nonempty. Put

$$
s^{*}=\max \{h(t, 0,0): t \in I\}
$$

Then 0 is an upper solution and $-r_{1}$ a lower solution of (3.4s*), (1.2). Thus, by Lemma 2, problem (3.4s*), (1.2) has a solution u^{*} with $-r_{1} \leq u^{*}(t) \leq 0$ on I. Clearly $s_{0} \leq s^{*}<s_{1}$.

Proposition 3. For any $s \in\left(s_{0}, s_{1}\right]$ problem (3.4s), (1.2) has at least one solution.

Proof of Proposition 3. Let $\widetilde{s} \in\left(s_{0}, s_{1}\right)$ and u be a solution of (3.4 $\left.\widetilde{s}\right)$, (1.2). By Proposition $1, \widetilde{u} \in D\left(-r_{1}\right)$. Let us choose $\sigma \in\left[\widetilde{s}, s_{1}\right]$. Then \widetilde{u} is an upper solution and $-r_{1}$ is a lower solution of (3.4 σ), (1.2). Therefore, by Lemma $2,(3.4 \sigma),(1.2)$ has at least one solution. Since σ is an arbitrary number of $\left[\widetilde{s}, s_{1}\right]$, problem (3.4s), (1.2) has a solution for any $s \in\left[\widetilde{s}, s_{1}\right]$, and according to (3.5) for any $s \in\left(s_{0}, s_{1}\right]$.

From now on, let $\widetilde{s} \in\left(s_{0}, s_{1}\right)$ be arbitrary but fixed and let \widetilde{u} denote a solution of (3.4 $\widetilde{s}),(1.2)$. Further, let us put for all $t \in I, x, y \in \mathbb{R}$

$$
\alpha(x)=\left\{\begin{array}{lll}
-r_{1} & \text { for } & x<-r_{1} \\
x & \text { for } & -r_{1} \leq x \leq \widetilde{u}(t) \\
\widetilde{u}(t) & \text { for } & x>\widetilde{u}(t)
\end{array}\right.
$$

and

$$
\begin{equation*}
g(t, x, y)=f(t, \alpha(x), y)-x+\alpha(x) . \tag{3.6}
\end{equation*}
$$

We shall consider the equation

$$
\begin{equation*}
u^{\prime \prime}+g\left(t, u, u^{\prime}\right)=s \tag{3.7s}
\end{equation*}
$$

Proposition 4. For each $s \in\left(\widetilde{s}, s_{1}\right]$ any solution u of problem (3.7s), (1.2) satisfies

$$
-r_{1}<u(t)<\widetilde{u}(t) \quad \text { for all } \quad t \in I
$$

Proof of Proposition 4. Let $s \in\left(\widetilde{s}, s_{1}\right]$ and u be a solution of (3.7s), (1.2). Suppose that for some $t \in I \quad u(t) \geq \widetilde{u}(t)$. Then there exists $t_{0} \in I$ such that $u\left(t_{0}\right) \geq \widetilde{u}\left(t_{0}\right), u^{\prime}\left(t_{0}\right)=\widetilde{u}^{\prime}\left(t_{0}\right), \quad u^{\prime \prime}\left(t_{0}\right) \leq \widetilde{u}^{\prime \prime}\left(t_{0}\right)$. But from (3.6) we can get $u^{\prime \prime}\left(t_{0}\right)>\widetilde{u}^{\prime \prime}(t)$, which is a contradiction. The inequality $-r_{1}<u$ can be proved by similar arguments.

Now, for $s \in\left(-\infty, s_{1}\right]$, let us consider the class of equations

$$
u^{\prime \prime}-(1-\lambda) u+\lambda\left[g\left(t, u, u^{\prime}\right)-s\right]=0, \quad \lambda \in[0,1] .
$$

Proposition 5. There exist $R, \varrho \in(0, \infty)$ such that for any $s \in\left[s_{0}, s_{1}\right]$ and any $\lambda \in!〕, 1]$ each solution u of ($3.8 s \lambda$), (1.2) satisfies

$$
|u(t)|<R, \quad\left|u^{\prime}(t)\right|<\varrho \quad \text { for all } t \in I .
$$

Proof of Proposition 5. Let us denote

$$
\widetilde{r}=\max \{\widetilde{u}(t): \quad t \in I\}, \quad \widetilde{m}=\max \{f(t, x, 0): \quad t \in I, \quad x \in[-r, \widetilde{r}]\}
$$

Let us choose a real number R with

$$
\begin{equation*}
R>\max \left\{r_{1}+s_{1}-m, \quad \tilde{r}+\widetilde{m}-s_{0}\right\} . \tag{3.9}
\end{equation*}
$$

Suppose that for some $s \in\left[s_{0}, s_{1}\right]$ and $\lambda \in[0,1]$ there exists a solution u of (3.8s λ), (1.2) with $\max \{u(t): t \in I\}=u\left(t_{0}\right) \geq R$. Then, in view of (1.2), $u^{\prime}\left(t_{0}\right)=0, u^{\prime \prime}\left(t_{0}\right) \leq 0$ and by (3.8s $\left.\lambda\right),(1.2),(3.9)$ we get $u^{\prime \prime}\left(t_{0}\right)=$ $(1-\lambda) u\left(t_{0}\right)+\lambda\left[s-g\left(t_{0}, u\left(t_{0}\right), u^{\prime}\left(t_{0}\right)\right)\right] \geq(1-\lambda) R+\lambda\left[s_{0}-\widetilde{m}+R-\widetilde{r}\right]>0$, a contradiction.

Similarly, if $u\left(t_{0}\right) \leq-R$, we get

$$
0 \leq u^{\prime \prime}\left(t_{0}\right) \leq-(1-\lambda) R+\lambda\left[s_{1}-m-R+r_{1}\right]<0
$$

a contradiction. Thus

$$
|u(t)|<R \quad \text { for all } \quad t \in I .
$$

Further, $u^{\prime \prime}=(1-\lambda) u+\lambda\left[s-f\left(t, \alpha(u), u^{\prime}\right)+u-\alpha(u)\right]<R+\lambda\left[s_{1}-m+r_{1}\right]$, hence $u^{\prime \prime}(t)<K$ for all $t \in I$, where $K=R+\left|s_{1}\right|+|m|+r_{1}$. Therefore

$$
\left|u^{\prime}(t)<\varrho\right| \quad \text { for all } \quad t \in I, \quad \text { where } \quad \varrho=K(b-a) .
$$

Let us put $\operatorname{dom} L=\left\{u \in C^{2}(I): \quad u^{\prime}(a)=0, u^{\prime}(b)=0\right\}, L: \operatorname{dom} L \rightarrow$ $C(I), u \rightarrow u^{\prime \prime}, N_{s}: C^{1}(I) \rightarrow C(I), u \rightarrow h\left(\cdot, u(\cdot), u^{\prime}(\cdot)\right)-s$. Then problem $(3.4 \mathrm{~s}),(1.2)$ can be written in the form

$$
\begin{equation*}
\left(L+N_{s}\right) u=0 . \tag{3.10s}
\end{equation*}
$$

Let us consider two open bounded sets in $C^{1}(I)$:

$$
\Omega=\left\{u \in C^{1}(I):-r_{1}<u(t)<\widetilde{u}(t),\left|u^{\prime}(t)\right|<\varrho \quad \text { rm for all } t \in I\right\},
$$

and

$$
\Omega_{1}=\left\{u \in C^{1}(I):|u(t)|<R, \quad\left|u^{\prime}(t)\right|<\varrho \text { for all } t \in I\right\}
$$

where \tilde{u} is the above fixed solution of $(3.4 \widetilde{s}),(1.2)$ and R, ϱ are the constants of Proposition 5. In the same way as in [4] we can prove that $d_{L}\left(L+N_{s}, \Omega\right)=$ ± 1 and $d_{L}\left(L+N_{s}, \Omega_{1}-\bar{\Omega}\right)=\mp 1$, for any $s \in\left(\widetilde{s}, s_{1}\right]$. This implies that for $s \in\left(\widetilde{s}, s_{1}\right]$ problem (3.10s) has at least one solution in Ω and at least another one in $\Omega_{1}-\bar{\Omega}$. Using Proposition 1 and the fact that \widetilde{s} is a fixed but arbitrary number in (s_{0}, s_{1}), we get the assertion (c) of Theorem 1. Now, using Arzelà-Ascoli Theorem and Proposition 5, we can find a solution of (3.10 s_{0}) as a limit of a sequence of solutions u_{n} of (3.10 s_{n}) for $s_{n} \rightarrow s_{0}$. Finally, the assertion (a) of Theorem 1 follows from (3.3) and Propositions 1,2 . Theorem is proved.

Replacing f by $-f$ and x by $-x$, a dual version of Theorem 1 can be given.

Theorem 2. Let $f \in C\left(I \times R^{2}\right)$ and there exists $r_{1} \in(0, \infty), m, s_{1} \in R$ such that the inequalities

$$
\begin{equation*}
f(t, 0,0)>s_{1}>f\left(t, r_{1}, 0\right) \quad \text { for each } \quad t \in I, \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
f(t, x, y) \leq m \quad \text { for each } \quad t \in I, \quad x \in\left(-\infty, r_{1}\right), \quad y \in R \tag{3.12}
\end{equation*}
$$

are satisfied.
Then there exists $s_{0} \in\left(s_{1}, m\right]$ such that
(a) for $s>s_{0}$ problem (1.1s), (1.2) has no solution in $\overline{D\left(r_{1}\right)}$,
(b) for $s=s_{0}$ problem (1.1s), (1.2) has at least one solution in $\overline{D\left(r_{1}\right)}$,
(c) for $s \in\left[s_{1}, s_{0}\right)$ problem (1.1s), (i.2) has at least two solutions in $D\left(r_{1}\right)$.

The proof of Proposition 2 implies the following criterion of nonexistence.

Theorem 3. Let $f \in C\left(I \times R^{2}\right)$.
(a) If f is bounded below, i.e.

$$
\inf \left\{f(t, x, y):(t, x, y) \in I x R^{2}\right\}=m_{1} \in R,
$$

then for $s<m_{1}$ problem (1.1s), (1.2) has no solution.
(b) If f is bounded above, i.e.

$$
\sup \left\{f(t, x, y): \quad(t, x, y) \in I \times R^{2}\right\}=m_{2} \in R,
$$

then for $s>m_{2}$ problem (1.1s), (1.2) has no solution.

4. Examples

Example 1. Let us consider the equation

$$
\begin{equation*}
u^{\prime \prime}+c\left|u^{\prime}\right|^{n}+u^{2 k}+\Phi(t)=s \tag{4.1s}
\end{equation*}
$$

where $\phi \in C(I), c \in[0, \infty], k, m \in \mathbb{N}, s \in \mathbb{R}$. The function

$$
f(t, x, y)=c|y|^{n}+x^{2 k}+\phi(t)
$$

satisfies the assumptions of Theorem 1 with $m=\min \{\phi(t): t \in I\}$ and arbitrary $s_{1}>\max \{\phi(t): \quad t \in I\}$. We can see that f also fulfils (a) of Theorem 3, where $m=m_{1}$. On the other hand, for $c>0, n>2, f$ does not fulfil the conditions of the theorems in [1], [4], and for $c=0 \quad f$ does not satisfy the growth conditions of [2].

Example 2. Let us show that Theorem 1 can be applied on the equation

$$
\begin{equation*}
u^{\prime \prime}+c\left(e^{u^{\prime}}+1\right)-\operatorname{arctg} u=s, \tag{4.2s}
\end{equation*}
$$

where $c, s \in \mathbb{R}$.
Let $c \geq 0$. Then the function $f(t, x, y)=c\left(e^{y}+1\right)-\operatorname{arctg} x$ satisfies conditions (3.1), (3.2) of Theorem 1 with $m=-\frac{\pi}{2}+c$ and arbitrary $s_{1} \in\left(2 c, 2 c+\frac{\pi}{2}\right)$. Since $m=m_{1}$, Theorem 3 implies that for $s<m$ problem (4.2s), (1.2) has no solution.

Let $c<0$. Then f satisfies (3.11), (3.12) of Theorem 2 with $m=\frac{\pi}{2}+c$ and $s_{1} \in\left(2 c-\frac{\pi}{2}, 2 c\right)$. By Theorem 3 , for $s>m$ our problem has no solution.

But if $c \neq 0$, we cannot use theorems of [1], [4] and if $c=0$, theorems of [2] cannot be applied as well.

Example 3. Consider the equation

$$
\begin{equation*}
u^{\prime \prime}+c\left(u^{\prime}\right)^{2 k}+2 \sin u-\sin t=s \tag{4.3s}
\end{equation*}
$$

where $k \in \mathbb{N}, \quad c, s \in \mathbb{R}, \quad I=[0, \pi]$.
If $c \geq 0$, then the function $f(t, x, y)=c y^{2 k}+2 \sin x-\sin t$ satisfies (3.1), (3.2) with $m=-3$ and $s \in(0,1)$. For $c<0, f$ satisfies (3.11), (3.12) with $m=2$ and $s_{1} \in(-2,-1)$.

If $c \geq 0, s<-3$ or $c<0, s>2$, problem (4.3s), (1.2) has no solution.
But for $c \neq 0 f$ does not fulfil the growth conditions of [1] and moreover the function $g(t, x)=2 \sin x-\sin t$ fulfils neither conditions of [2] nor hypothese (H4) of [1].

References

[1] C. Fabry, J. Mawhin, M. N. Nkashama, A multinlicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc. 18 (1986) 173-180.
[2] M. N. Nkashama, J. Santanilla, Existence of multiple solutions for some nonlinear boundary value problems, Journal Diff. Equations 84 (1990) 148-164.
[3] I. Rachůnková, The first kind periodic solutions of differential equations of the second order, Math. Slovaca 39 (1989) 407-415.
[4] I. Rachůnková, Multiplicity results for four-point boundary value problems, Nonlinear Anal., TMA 18 (1992) 497-505.

Department of Mathematics
Palacký University
Tomkova 38, 77146 Olomouc
The Czech Republic

[^0]: Received January 13, 1993.
 AMS (1991) subject classification: 34B10, 34B15.

