Prace Naukowe Uniwersytetu Śląskiego nr 1399

ON THE NUMBER OF SOLUTIONS OF THE NEUMANN PROBLEM FOR THE ORDINARY SECOND ORDER DIFFERENTIAL EQUATION

IRENA RACHŮNKOVÁ

Abstract. We have found conditions for the nonlinearity f which are sufficient for the existence of at least two solutions to the Neumann problem for the equation u'' + f(t, u, u') = s.

1. Introduction

Consider the second order differential equation

(1.1s) u'' + f(t, u, u') = s,

where $s \in \mathbb{R}$ is a parameter, $I = [a, b] \subset \mathbb{R}$ and $f \in C(I \times \mathbb{R}^2)$. We seek results concerning the number of solutions to (1.1s), satisfying the Neumann conditions

(1.2)
$$u'(a) = 0, \quad u'(b) = 0.$$

Our method of proofs makes use of a relation between strict upper and lower solutions and the coincidence topological degree and is close to that of [1]. The number of solutions (2, 1 or 0) of (1.1s), (1.2) is a function of parameter s. Such multiplicity results of Ambrosetti-Prodi type are obtained in [1] and [4] for periodic and four-point problems, respectively, provided f satisfies the Berstein-Nagumo growth conditions. However they were proved under the assumption that for fixed $s_1 \in \mathbb{R}$ the set of all solutions to $\{(1.1s), s \leq s_1\}$, satisfying the boundary conditions, is bounded above. In contrast

Received January 13, 1993.

AMS (1991) subject classification: 34B10, 34B15.

to that, our results are proved under assumptions imposed on f directly. Moreover no growth conditions (like Bernstein-Nagumo) are required here (see (3.1),(3.2)).

Other multiplicity results (one nonnegative and one nonpositive solution) for Neumann problem

(1.3)
$$u'' = f(t, u), \quad u'(0) = u'(1) = 0$$

have been proved by M. N. Nkashama and J. Santanilla in [2] for a Carathéodory function f bounded below by a Lebesgue integrable function and fulfilling e.g. conditions:

 $\lim_{|u|\to\infty} f(t,u) \ge 0 \text{ for a.e. } t \in [0,1] \text{ with strict inequality on a subset}$ of positive measure,

$$f(t, u) \leq \alpha_{+} u \quad \text{for a.e.} \quad t \in [0, 1] \quad \text{and all} \quad u \geq 0,$$

$$f(t, u) \leq -\alpha_{-}^{2} u \quad \text{for a.e.} \quad t \in [0, 1] \quad \text{and all} \quad u \leq 0,$$

$$u_{+} \in (0, \infty), \quad \alpha_{-} \in (0, \frac{\pi}{2}).$$

where $\alpha_+ \in (0,\infty)$, $\alpha_- \in (0,\frac{\pi}{2})$.

We can see that the theorems of [2] cannot be used for functions f rapidly growing in their second variable.

Now, let us remind that functions $\sigma_1, \sigma_2 \in C^2(I)$ are called lower and upper solutions for (1.1s), (1.2), respectively, if they fulfil (1.2) and

(1.3)
$$(\sigma_i'' + f(t, \sigma_i, \sigma'_i) - s)(-1)^i \leq 0 \quad \text{for each} \quad t \in I, \quad i = 1, 2.$$

The lower and upper solutions are said to be strict, if the inequalities in (1.3) are strict for all $t \in I$.

For $r_1 \in (0, +\infty)$ we shall write

$$D(-r_1) = \{ x \in C^2(I) : x(t) > -r_1 \text{ for each } t \in I \},\$$

$$D(r_1) = \{ x \in C^2(I) : x(t) < r_1 \text{ for each } t \in I \}.$$

2. Lemmas

Let us consider the auxiliary equation

(2.1)
$$u'' = g(t, u, u'),$$

where $g \in C(I \times \mathbb{R}^2)$.

LEMMA 1. Let σ_1 be a lower solution and σ_2 an upper solution to (2.1), (1.2) with $\sigma_1(t) \leq \sigma_2(t)$ for each $t \in I$. Further, let there exist $k \in (0, \infty)$ such that for each $t \in I$, $x, y \in \mathbb{R}$, where $\sigma_1(t) \leq x \leq \sigma_2(t)$, the inequality

$$(2.2) |g(t,x,y)| \le k$$

is fulfilled.

Then problem (2.1), (1.2) has a solution u satisfying

(2.3)
$$\sigma_1(t) \le u(t) \le \sigma_2(t)$$
 for each $t \in I$.

PROOF. This known fact can be proved for example in the same way as in [3]. \Box

LEMMA 2. Suppose $s \in \mathbb{R}$. Let σ_1 be a lower solution and σ_2 an upper solution to (1.1s), (1.2) with $\sigma_1(t) \leq \sigma_2(t)$ for each $t \in I$.

Further, let there exist $m \in \mathbb{R}$ such that

(2.4) $m \leq f(t, x, y)$ for each $t \in I$, $x, y \in \mathbb{R}$, where $\sigma_1(t) \leq \sigma_2(t)$.

Then problem (1.1s), (1.2) has a solution u fulfilling (2.3).

PROOF. Let us choose $s \in \mathbb{R}$ and suppose that u is a solution of (1.1s), (1.2) satisfying (2.3). We shall find an a priori estimate for u'. From (1.1s), (2.4) it follows $u''(t) + m \leq s$ for each $t \in I$. Using (1.2) and integrating the last inequality on (a, t), $t \in I$, we get $u'(t) \leq |s - m|(b - a)$ on I. Similarly, by integration on (t, b), $t \in I$, we have $u'(t) \geq -|s - m|(b - a)$ on I. So if we put $\varrho = |s - m|(b - a) + \max\{|\sigma_1(t)| + |\sigma_2(t)|: t \in I\}$, we have

(2.5)
$$\max\{|u'(t)|: t \in I\} \le p$$

and

$$\max\{f(t,x,y):\ t\in I,\ \sigma_1(t)\leq x\leq \sigma_2(t),\ -\varrho\leq y\leq \varrho\}=M\in\mathbb{R}.$$

So, we can define a function g

$$g(t,x,y) = \begin{cases} f(t,x,y) & \text{for } t \in I, \ x \in \mathbb{R}, \ y \in [-\varrho,\varrho] \\ f(t,x,\varrho. \text{ sign } y) & \text{for } t \in I, \ x \in \mathbb{R}, \ |y| > \varrho, \end{cases}$$

which fulfils the condition of Lemma 1 for $k = \max\{|m| + |s|, |M| + |s|\}$ and the same upper and lower solutions and hence problem (2.1), (1.2) has

6 - Annales...

a solution u fulfilling (2.3). Then u' satisfies (2.5) and according to (2.6) u is a solution to (1.1s), (1.2) as well.

3. Multiplicity results

Using Lemma 2 and the coincidence degree theory we get multiplicity results of Ambrosetti-Prodi type.

THEOREM 1. Let $f \in C(I \times \mathbb{R}^2)$ and there exist $r_1 \in (0, \infty)$, $m, s_1 \in \mathbb{R}$ such that the irequalities

(3.1)
$$f(t, -r_1, 0) > s_1 > f(t, 0, 0)$$
 for each $t \in I$,

are satisfied. Then there exists $s_0 \in [m, s_1)$ such that

(a) for $s < s_0$, problem (1.1s), (1.2) has no solution in $\overline{D(-r_1)}$,

(b) for $s = s_0$, problem (1.1s), (1.2) has at least one solution in $\overline{D(-r_1)}$,

(c) for $s \in (s_0, s_1]$, problem (1.1s), (1.2) has at least two solutions in $D(-r_1)$.

PROOF. Put

(3.3)
$$h(t, x, y) = \begin{cases} f(t, x, y) & \text{for } x \ge -r_1 \\ f(t, -r_1, y) & \text{for } x < -r_1 \end{cases}$$

and for $s \in \mathbb{R}$ consider the equation

(3.4s)
$$u'' + h(t, u, u') = s.$$

Proving Theorem 1 we shall need several auxiliary propositions.

PROPOSITION 1. If $s \in (-\infty, s_1]$, then any solution of (3.4s), (1.2) belongs to $D(-r_1)$.

PROOF OF PROPOSITION1. Let u be a solution of (3.4s), (1.2) for some $s \leq s_1$. Suppose that $\min\{u(t): t \in I\} = u(t_0) \leq -r_1$. Then, by (1.2), $u'(t_0) = 0$, $u''(t_0) \geq 0$. On the other hand from (3.1), (3.3) it follows $u''(t_0) = s - f(t_0, -r_1, 0) < 0$, a contradiction.

PROPOSITION 2. There exists $s_0 \in [m, s_1)$ such that for $s < s_0$ problem (3.4s), (1.2) has no solution.

PROOF OF PROPOSITION 2. Suppose that (3.4s), (1.2) has a solution u for some $s \in \mathbb{R}$. Then, integrating (3.4s) on (a, b), we get $m(b-a) \leq \int_{a}^{b} h(\tau, u(\tau), u'(\tau)) d\tau = s(b-a)$, thus $m \leq s$, and we can take

(3.5)
$$s_0 = \inf\{s \in [m, \infty): (3.4s), (1.2) \text{ has a solution}\}.$$

Let us show that the set in (3.5) is nonempty. Put

 $s^* = \max\{h(t, 0, 0): t \in I\}.$

Then 0 is an upper solution and $-r_1$ a lower solution of (3.4s^{*}), (1.2). Thus, by Lemma 2, problem (3.4s^{*}), (1.2) has a solution u^* with $-r_1 \le u^*(t) \le 0$ on *I*. Clearly $s_0 \le s^* < s_1$.

PROPOSITION 3. For any $s \in (s_0, s_1]$ problem (3.4s), (1.2) has at least one solution.

PROOF OF PROPOSITION 3. Let $\tilde{s} \in (s_0, s_1)$ and u be a solution of $(3.4\tilde{s})$, (1.2). By Proposition 1, $\tilde{u} \in D(-r_1)$. Let us choose $\sigma \in [\tilde{s}, s_1]$. Then \tilde{u} is an upper solution and $-r_1$ is a lower solution of (3.4σ) , (1.2). Therefore, by Lemma 2, (3.4σ) , (1.2) has at least one solution. Since σ is an arbitrary number of $[\tilde{s}, s_1]$, problem (3.4s), (1.2) has a solution for any $s \in [\tilde{s}, s_1]$, and according to (3.5) for any $s \in (s_0, s_1]$.

From now on, let $\tilde{s} \in (s_0, s_1)$ be arbitrary but fixed and let \tilde{u} denote a solution of $(3.4\tilde{s})$, (1.2). Further, let us put for all $t \in I$, $x, y \in \mathbb{R}$

$$\alpha(x) = \begin{cases} -r_1 & \text{for } x < -r_1 \\ x & \text{for } -r_1 \le x \le \widetilde{u}(t) \\ \widetilde{u}(t) & \text{for } x > \widetilde{u}(t) \end{cases}$$

and

6*

$$(3.6) g(t,x,y) = f(t,\alpha(x),y) - x + \alpha(x).$$

We shall consider the equation

(3.7s)
$$u'' + g(t, u, u') = s$$

PROPOSITION 4. For each $s \in (\tilde{s}, s_1]$ any solution u of problem (3.7s), (1.2) satisfies

 $-r_1 < u(t) < \widetilde{u}(t)$ for all $t \in I$.

PROOF OF PROPOSITION 4. Let $s \in (\tilde{s}, s_1]$ and u be a solution of (3.7s), (1.2). Suppose that for some $t \in I$ $u(t) \geq \tilde{u}(t)$. Then there exists $t_0 \in I$ such that $u(t_0) \geq \tilde{u}(t_0)$, $u'(t_0) = \tilde{u}'(t_0)$, $u''(t_0) \leq \tilde{u}''(t_0)$. But from (3.6) we can get $u''(t_0) > \tilde{u}''(t)$, which is a contradiction. The inequality $-r_1 < u$ can be proved by similar arguments.

Now, for $s \in (-\infty, s_1]$, let us consider the class of equations

$$(3.8s\lambda) u'' - (1-\lambda)u + \lambda[g(t,u,u') - s] = 0, \quad \lambda \in [0,1].$$

PROPOSITION 5. There exist $R, \varrho \in (0, \infty)$ such that for any $s \in [s_0, s_1]$ and any $\lambda \in [0, 1]$ each solution u of $(3.8s\lambda)$, (1.2) satisfies

$$|u(t)| < R$$
, $|u'(t)| < \rho$ for all $t \in I$.

PROOF OF PROPOSITION 5. Let us denote

$$\widetilde{r}=\max\{\widetilde{u}(t):\ t\in I\},\quad \widetilde{m}=\max\{f(t,x,0):\ t\in I,\ x\in [-r,\widetilde{r}]\}.$$

Let us choose a real number R with

(3.9)
$$R > \max\{r_1 + s_1 - m, \quad \tilde{r} + \tilde{m} - s_0\}.$$

Suppose that for some $s \in [s_0, s_1]$ and $\lambda \in [0, 1]$ there exists a solution u of $(3.8s\lambda)$, (1.2) with $\max\{u(t): t \in I\} = u(t_0) \geq R$. Then, in view of $(1.2), u'(t_0) = 0, u''(t_0) \leq 0$ and by $(3.8s\lambda), (1.2), (3.9)$ we get $u''(t_0) = (1-\lambda)u(t_0) + \lambda[s-g(t_0, u(t_0), u'(t_0))] \geq (1-\lambda)R + \lambda[s_0 - \tilde{m} + R - \tilde{r}] > 0$, a contradiction.

Similarly, if $u(t_0) \leq -R$, we get

$$0 \le u''(t_0) \le -(1-\lambda)R + \lambda[s_1 - m - R + r_1] < 0,$$

a contradiction. Thus

$$|u(t)| < R$$
 for all $t \in I$.

Further, $u'' = (1 - \lambda)u + \lambda[s - f(t, \alpha(u), u') + u - \alpha(u)] < R + \lambda[s_1 - m + r_1]$, hence u''(t) < K for all $t \in I$, where $K = R + |s_1| + |m| + r_1$. Therefore

 $|u'(t) < \varrho|$ for all $t \in I$, where $\varrho = K(b-a)$.

84

Let us put dom $L = \{u \in C^2(I) : u'(a) = 0, u'(b) = 0\}, L : \text{dom } L \to C(I), u \to u'', N_s : C^1(I) \to C(I), u \to h(\cdot, u(\cdot), u'(\cdot)) - s.$ Then problem (3.4s), (1.2) can be written in the form

(3.10s)
$$(L+N_s)u = 0.$$

Let us consider two open bounded sets in $C^1(I)$:

$$\Omega = \{ u \in C^1(I) : -r_1 < u(t) < \widetilde{u}(t), |u'(t)| < \varrho \quad \text{rm for all} \quad t \in I \},$$

and

$$\Omega_1 = \{ u \in C^1(I) : |u(t)| < R, |u'(t)| < \rho \text{ for all } t \in I \},\$$

where \tilde{u} is the above fixed solution of $(3.4\tilde{s}), (1.2)$ and R, ϱ are the constants of Proposition 5. In the same way as in [4] we can prove that $d_L(L+N_s, \Omega) =$ ± 1 and $d_L(L+N_s, \Omega_1 - \overline{\Omega}) = \mp 1$, for any $s \in (\tilde{s}, s_1]$. This implies that for $s \in (\tilde{s}, s_1]$ problem (3.10s) has at least one solution in Ω and at least another one in $\Omega_1 - \overline{\Omega}$. Using Proposition 1 and the fact that \tilde{s} is a fixed but arbitrary number in (s_0, s_1) , we get the assertion (c) of Theorem 1. Now, using Arzelà-Ascoli Theorem and Proposition 5, we can find a solution of $(3.10s_0)$ as a limit of a sequence of solutions u_n of $(3.10s_n)$ for $s_n \to s_0$. Finally, the assertion (a) of Theorem 1 follows from (3.3) and Propositions 1.2. Theorem is proved.

Replacing f by -f and x by -x, a dual version of Theorem 1 can be given.

THEOREM 2. Let $f \in C(I \times R^2)$ and there exists $r_1 \in (0, \infty)$, $m, s_1 \in R$ such that the inequalities

(3.11) $f(t,0,0) > s_1 > f(t,r_1,0)$ for each $t \in I$,

(3.12) $f(t, x, y) \le m$ for each $t \in I$, $x \in (-\infty, r_1)$, $y \in R$

are satisfied.

Then there exists $s_0 \in (s_1, m]$ such that

(a) for $s > s_0$ problem (1.1s), (1.2) has no solution in $\overline{D}(r_1)$, (b) for $s = s_0$ problem (1.1s), (1.2) has at least one solution in $\overline{D}(r_1)$,

(b) for $s = s_0$ problem (1.15), (1.2) has at least two solutions in $D(r_1)$, (c) for $s \in [s_1, s_0)$ problem (1.1s), (1.2) has at least two solutions in $D(r_1)$.

The proof of Proposition 2 implies the following criterion of nonexistence.

THEOREM 3. Let $f \in C(I \times R^2)$. (a) If f is bounded below, i.e.

inf
$$\{f(t, x, y): (t, x, y) \in IxR^2\} = m_1 \in R,$$

then for $s < m_1$ problem (1.1s), (1.2) has no solution. (b) If f is bounded above, i.e.

$$\sup \{f(t,x,y): (t,x,y) \in I \times R^2\} = m_2 \in R,$$

then for $s > m_2$ problem (1.1s), (1.2) has no solution.

4. Examples

EXAMPLE 1. Let us consider the equation

(4.1s)
$$u'' + c|u'|^n + u^{2k} + \Phi(t) = s,$$

where $\phi \in C(I)$, $c \in [0, \infty]$, $k, m \in \mathbb{N}$, $s \in \mathbb{R}$. The function $f(t, x, y) = c|y|^n + x^{2k} + \phi(t)$

satisfies the assumptions of Theorem 1 with $m = \min\{\phi(t): t \in I\}$ and arbitrary $s_1 > \max\{\phi(t): t \in I\}$. We can see that f also fulfils (a) of Theorem 3, where $m = m_1$. On the other hand, for c > 0, n > 2, f does not fulfil the conditions of the theorems in [1], [4], and for c = 0 f does not satisfy the growth conditions of [2].

EXAMPLE 2. Let us show that Theorem 1 can be applied on the equation

(4.2s)
$$u'' + c(e^{u'} + 1) - \arctan u = s,$$

where $c, s \in \mathbb{R}$.

Let $c \ge 0$. Then the function $f(t, x, y) = c(e^y + 1) - \arctan x$ satisfies conditions (3.1), (3.2) of Theorem 1 with $m = -\frac{\pi}{2} + c$ and arbitrary $s_1 \in (2c, 2c + \frac{\pi}{2})$. Since $m = m_1$, Theorem 3 implies that for s < m problem (4.2s), (1.2) has no solution.

Let c < 0. Then f satisfies (3.11), (3.12) of Theorem 2 with $m = \frac{\pi}{2} + c$ and $s_1 \in (2c - \frac{\pi}{2}, 2c)$. By Theorem 3, for s > m our problem has no solution.

But if $c \neq 0$, we cannot use theorems of [1], [4] and if c = 0, theorems of [2] cannot be applied as well.

EXAMPLE 3. Consider the equation

(4.3s)
$$u'' + c(u')^{2k} + 2\sin u - \sin t = s,$$

where $k \in \mathbb{N}$, $c, s \in \mathbb{R}$, $I = [0, \pi]$.

If $c \ge 0$, then the function $f(t, x, y) = cy^{2k} + 2 \sin x - \sin t$ satisfies (3.1), (3.2) with m = -3 and $s \in (0, 1)$. For c < 0, f satisfies (3.11), (3.12) with m = 2 and $s_1 \in (-2, -1)$.

If $c \ge 0$, s < -3 or c < 0, s > 2, problem (4. 3s), (1.2) has no solution. But for $c \ne 0$ f does not fulfil the growth conditions of [1] and moreover the function $g(t, x) = 2 \sin x - \sin t$ fulfils neither conditions of [2] nor hypothese (H4) of [1].

REFERENCES

- C. Fabry, J. Mawhin, M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc. 18 (1986) 173-180.
- [2] M. N. Nkashama, J. Santanilla, Existence of multiple solutions for some nonlinear boundary value problems, Journal Diff. Equations 84 (1990) 148-164.
- [3] I. Rachůnková, The first kind periodic solutions of differential equations of the second order, Math. Slovaca 39 (1989) 407-415.
- [4] I. Rachůnková, Multiplicity results for four-point boundary value problems, Nonlinear Anal., TMA 18 (1992) 497-505.

DEPARTMENT OF MATHEMATICS PALACKÝ UNIVERSITY Tomkova 38, 77146 Olomouc The Czech Republic