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ASYMPTOTIC STABILITY OF MARKOV
OPERATORS CORRESPONDING TO
THE DYNAMICAL SYSTEMS WITH
MULTIPLICATIVE PERTURBATIONS

KATARZYNA OCZKOWICZ

Abstract. We consider discret time dynamical systems with multiplicative
perturbations. We give a sufficient condition for the asymptotic stability of
Markov operators on measures generated by dynamical systems with multi-
plicative perturbations.

Introduction. In this paper we consider a stochastically perturbed dis-
crete time dynamical system of the form z,41 = S(z,)én, n = 0,1,2,...,
where S is a given Borel measurable transformation, and £, are random
variables. The trajectories of our system are sequences of random variables
z,, with values in RY. Systems of this type has been examined recently by
K. Horbacz ([1], [2)). She considered the case when £, are continuously
distributed with a common density g. In this case z, are also continuously
distributed. K. Horbacz gave a sufficient condition for the convergence of
the densities of z,, to a unique stationary density.

We study the same problem without assumption that the common dis-
tribution of £, is continuous. In our case z, are in general random vectors
without density. Our aim is to found sufficient conditions for the weak con-
vergence of the distributions of z,, to a stationary measure. The Proof of the
main result is based on a theorem of A. Lasota and J.A. Yorke (5] concerning
Markov operator on measures.
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Our paper is divided into two sections. Section 1 contains some notations
and definitions. The main result is formulated in Section 2.

1. Formulation of the problem. Consider a stochastically perturbed
discrete time dynamical system of the form

(1.0) ZTnt1 = S(zn)én for n=0,1,2,...

where § is a Borel measurable transformation of R into itself, and &, are
independent random variables with values in R.

We assume the following conditions:

(i) The random variables &y, &;,... are independent and have the same
nontrivial distributions G i.e. G is not concetrated on a single point.

(ii) § is a function which satisfies the Lipschitz condition:

|S(z) - S(2)| < Lz — 2| for =z,z€R*

where the symbol | - | denotes a norm in R<.
(iii) There is ap € (0,1) such that

% / y*G(dy) < 1.

By

(iv) The vector zg, and variables §; are independent for i = 0,1,2,....

According to (1.0) the random vector z,, is function of zo and &, &;,...,
£n—1. From this and from condition (iv) it follows that z,, and &, are inde-
pendent. Using this fact we will derive a recurrence formula for the measures

(1.1) p#n(A) = Prob (z, € A), A€ B(RY).
Let consider now a bounded Borel measurable function # : R¢ — R. The

expectation E(zn41) of the random vector zn41 = h(Zp41), (Where n > 0)
is given by

(1.2) E(snt1) = Blh(ons2)) = [ he)hnsa(do)

Since zp41 = h(S5(7n)€n)this implies

(13)  E(mi) = EB(S@a)a) = [ | [ MS@0)G()| n(do)

Rd
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Comparing (1.2) and (1.3) and setting h = 14 we obtain:

pas(D) = [ | [1a(S@06WE) | in(d) o pasa(4) = Prua(a),

where
(1.4)  Pu) = [ [1aS@wunGca).
B4 BRI ’

The operator P given by formula (1.4) maps the space M, of all proba-
bilistic measures on R? into itself and is called the Markov operator corre-
sponding to the dynamical system 1. 0)

The equation (1.4) can be rewritten in the form

(1.5) Pu(A) = / Ul 4p(dz)

ld
where U : Co(]Rd) - C(]Rd) is the operator ad_)omt to the Markov opera-
tor P. By CO(IR") is denoted the space of all real valued continuous functions

with compact support, and by C(R?) the space of all continuous functions.
The operator U satlsfes the followmg equatlon

(1.6) Ufe) = / £(S@wG(dy).

Let us define a sequen'ce'of functions T™(2,41,... ,Yn) by setting:

T(x, y) = S(x)yv Tn(x’ Yiy--- ,y'n) = T(Tn_l(mayl’ L) ayn-—l)y yn)-

Using this notation we obtain

(L7)  Uf(z)= / / F(T™(,91,- .. ,ya))G(dyy) -+ G(dy,.)
E, &

and

a8 Pru(A) = / U™ Lan(da).

B4



102

We introduce the class ® of functlons ¢:Ry > Ry satxsfymg the following
conditions:

1° ¢ is continuous and ¢(0) =
2° ¢ is nondecreasing and concave, i.e.

t + 1 1 .
6 (1) 2 J6m) + ) for nn e Ry
3° ¢(t) > 0 for t > 0 and &é(t) — +oo when t — +o0.

We define the metric g4 in R? by the formula:

04(z,y) = #(e(z,y)) for z,y€ R,

where p is Euclidean metric and in the space M; we define the distance
between measures by:

19 i sale =l [ S - [ @),

where Fy is the set of functlons such that |fl £ 1 and |f(z) - f(y)] <
24(2,9) = é(e(z,9))- |

The space M; with the distance |1 — p2llg is a complete metric space
and '

(1.10) Jm lun = plle =0 for pn,p € M

holds if and only if the sequence {u,} is weakly convergent to u. The
sequence of measures {u,} is convergent to p in || - ||, if and only if {g,} is
convergent to u in || - ||ia, where id (z) = z. Indeed, the identity function id
belongs to the set & and the metrics gia and o4 deﬁne the same topology.
From now, || - || = |- “|d

2. Asymﬁtotic stability. Let P be a Markov operator; a measure
i € My is called stationary or invariant if Pu = p. A Markov operator is
called asymptotically stable if there exists a stationary distribution u, such’
that

(2.1) lim ||P"u— u*||—0 for pe M.

n—<400

From now we consider R¢ with metric g4.
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We introduce the following definitions:
A Markov operator P is called nonezpansive if

|Pu1 — Ppuzllg < llpx — palle  for  p1,pz € M.

A Markov operator P : M; — M, satisfies the Prochorov condition if
there exists a compact set Y C R?% and a number 3 > 0 such that

(2.3) nli)x_}_loo inf PPu(Y)> B for pe M.

From [5] it follows that, if P-satisfies the Prochorov condition and P is
nonexpansive then the Markov operator P has an invariant measure f,.
We can use the following theorem [5]:

"THEOREM. Let P be a nonexpansive Markov operator Assume that for
every € > 0 there is a number A > 0 having the following property: for every.
l1, 2 € My there exists a Borel set A with diam A < ¢ and an integer ng
such that

-(2.4). Prp(A)> A for i=1,2.
Then P satisfes the following condition

(2.5) Jim [[PR(u — p2)l| =0 for  puy, 2 € M.

Now we proof the following auxiliary lemma:

LEMMA 1. Assume that conditions (i), (ii), (iv) hold for equation (1.0). |
Suppose that the Markov operator P corresponding to the dynamical system
(1.0) satisfes Prochorov condition and the following inequality holds:

1

-3

(2.6) , L / °Gdy) | <1

+

for some a € (0,1). Then the Markov operator defined by equation (1.4) is
asymptotically stable. - "

Proor. First, we prove that the operator P is nonexpansive i.e.

sup Il{ U f(z)m —l{ Uf(z)ua| < fs‘gg Il{ f(@)m — f(z)ps]
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for ¢(t) = |t|*. In order to check it we show that if f € Fy than Uf € Fy.
Indeed :

US@) - UFEI < | [UwS@) - 165G)G@)
< / $(31S(2) — 5(2))G(dy)

< / 1%|S(2) — 5(2)|°G(dy)

L

<IS(z) - S(2)° / y*G(dy)

By

<L%z - 2|° / ¥*G(dy)
<le - 2| = (] — 2]).

Since P is nonexpansive and P satisfies Prochorov condition, the operator P -

has an invariant measure p,.
Now we show that condition (2.4) holds. Fix an € > 0. Then there exists
an integer m such that

(2.7) H(r™ diam,Y) <e

where 0 < 7 < 1, Y - compact set satisfying Prochorov condition. Notice
that :

Prob (£ < / y*G(dy))*) > 0.

By

Thus there exists

(23) e < ([ veG(an?
Xy
such that Prob (&, < ¢) > 0.
Fix § € [0, ¢} According to (ii) we have

IT(,5) - T(2,7)| =I5@)f - S()il
=ylS(z) - S(2)| L cL|z - 2.
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Conditions (2.8) and (2.6) imply that ¢L < 1. Thus, we can set in (2.7)
r =cL, (0 < r < 1). Observe that
(2.9)

|Tm(z’§19 s ,gm) - Tm(zagh .. agm)l

=|T(Tm_1(x’ gla R ”gm-l)’ tﬁm) - T(Tm—l(z’ ‘:‘71, LR a?jm—l)v ym)l
STITm—l(z”gl, v ,5771—1) - Tm—l(Z,yl, s 7gm—l)| < Tmlx - Zl.

where (%1,... ,9m) € [O,c]™ is fixed. Condition (2.9) implies that

(2.10) diam ,(T™(Y,%1,--- 1 ¥m)) < v™ diam,Y.
Define

(2.11) A=T™(Y, %1, sIm)-

Then

(2.12) diam,,(A) < ¢(diam,A) < ¢(r™ diam,Y) < ¢.

According to Prochorov condition there exists @ = 7(p;) such that
(2.13) Prui(Y)>pB for n>m, i=1,2

Set ng = @ + m, then
Prop(A) = J/ ]i*é / La(T™ (2,91, -+« » Y ))11i(d2)G(d) - .. G(dymy)
ld + . »

Z// e /IA(T"‘(TW(w,ykl,--.,yk;),ykw,---,yk..o))n.-(dx)
ke m;x[o,_c]m

x G(dyx,) .- - G(dyk,,)-

Define
T oA ={w eR: T™w,51,... ,ym) € A}

and notice that condition

Tm(T.ﬁ(z’ Ykyoe - ’ykw)ayk‘;.,.]" . )ykno) €A

gives _ '
Tn(za Ykyseoo s ykﬁ') € T(;:r;_'_l yeeey yk,.o )(A)'



106

This implies:
P u;(4)
2G10,0)" [ [ 1ren @@, v0-. v ()
o ey
X G(dyr,) - - G(dy),
where
Tig m (4)
={w € R? such that there is (¥15-+ ,¥m) € [0, ™ :
Tm(w’ylr-* aym) € A} /
From the definition of the set A it follows that:
Y CTi5 g (A).
Conseqgently
P pi(A)
2(G10:)" [ [ 10T et e )Gty .. Gy
R BT
=(GlO, )" P u;(Y) > (G[O,e])™B > 0, where m is fixed.
If A = (G[O,c])™B, than A satisfies conditions (2.4). Since P is nonexpan-

sive and satisfes conditions (2.4), operator P is asymptotically stable which
completes the proof. O

A continuous V: R? - [0, +00) is called a Liapunov function if

(2.14) lim V(z)=+400

o(z,z0)—~+o00

for some z; € R?.
New we present an auxiliary proposition concerning the Prochorov con-
ditior. ([5)).

PROPOSITION 1. Let P be a Markov operator and let U Le a operator
dual to P. Assume that there is a Liapunov function V such that

(2.15) UV(z)<aV(z)+b for zeR?
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where a,b are nonnegatwe constants and a<l1. Then p satlsfes the Pro-
chorov condition.
From Lemma 1 and Proposition 1 we ha-ve the following.

THEOREM 1. If conditions (1) -(iv) hold for equatmn (1.0), then the ope-
rator P given by equation (1.4) is asymptotically stable

PROOF. Setting V(:c) = |z|* we have

0v(e) = [ 15l = 5@ [ 1a()

By Ry
=18(2) ~ S(za) + S| [ 4Gldy)
<I5(z) - S(zo)|*® / y®G(dy) +|5(z0)| / ¥ G(dy).

Since S satisfies Lipschitz condition (ii), it is easy to notice that following
inequalities hold:

UV(e) SLfo ~ 2ol® [ 470G(ds) +1S(an)l* / ¥ G(dy)

B+

<1 [ yaiaylel + 1% [ 4 Gldpiaal®

By By
+15G@I [y 6.
By
Thus condition (2.15) holds with
a= L / y*°G(dy)
By |

and

b= (Llzal"® +1(z0)[*) / ¥ G(ds).

Consequently Markov operator P correspondlng to the dynamical system
(1.0) satisfes the Prochorov condition (2.3). " According to Lemma 1 the
Markov operator P is a,symptotlca.]ly stable. The proof is completed. 0
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