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Abstract. We consider discret time dynamical systems with multiplicative 
perturbations. We give a sufficient condition for the asymptotic stability of 
Markov operators on measures generated by dynamical systems with multi­
plicative perturbations. 

Introduction. In this paper we consider a stochastically perturbed dis­
crete time dynamical system of the form xn+\ = S(xn)£n, n = 0,1,2,..., 
where S is a,given Borel measurable transformation, and f n are random 
variables. The trajectories of our system are sequences of random variables 
xn with values in E d . Systems of this type has been examined recently by 
K. Horbacz ([1], [2)). She considered the case when f n are continuously 
distributed with a common density g. In this case xn are also continuously 
distributed. K. Horbacz gave a sufficient condition for the convergence of 
the densities of xn to a unique stationary density. 

We study the same problem without assumption that the common dis­
tribution of £ n is continuous. In our case xn are in general random vectors 
without density. Our aim is to found sufficient conditions for the weak con­
vergence of the distributions of xn to a stationary measure. The Proof of the 
main result is based on a theorem of A. Lasota and J.A.Yorke [5] concerning 
Markov operator on measures. 

Received November SO, 1993. 
AMS (1991) subject classification: Primary 58F10. Secondary 47D07. 

This research was supported by the State Committee for Scientific Research Grant 
No. 2 P301 026 05 . 

7* 



100 

Our paper is divided into two sections. Section 1 contains some notations 
and definitions. The main result is formulated in Section 2. 

1. Formulation of the problem. Consider a stochastically perturbed 
discrete time dynamical system of the form 

(1.0) x n + 1 = S(xn)£n for n = 0,1,2,. 

where 5 is a Borel measurable transformation of E d into itself, and £ n are 
independent random variables with values in R+. 

We assume the following conditions: 
(i) The random variables £O,£L?--- are independent and have the same 

nontrivial distributions G i.e. G is not concetrated on a single point. 
(ii) 5 is a function which satisfies the Lipschitz condition: 

\S(x) - S(z)\ < L\x - z\ for x, z € Rd 

where the symbol | • | denotes a norm in Rd. 
(iii) There is a0 € (0,1) such that 

' « 0 / yaoG(dy) < 1. 

(iv) The vector x0, and variables are independent for i = 0,1,2, 
According to (1.0) the random vector xn is function of xo and £o»fi> • • •» 

£ n _ i . From this and from condition (iv) it follows that xn and f n are inde­
pendent. Using this fact we will derive a recurrence formula for the measures 

(1.1) Hn(A) = Prob (acB € A), A € B(Rd). 

Let consider now a bounded Borel measurable function h : R d —»• E . The 
expectation E(zn+\) of the random vector zn+i = h(xn+i), (where n > 0) 
is given by 

(1.2) E(zn+1) = E(h(xn+1)) = J h(x)(in+1(dx). 

Since z n + i = /i(5'(a;n)^n)this implies 

(1,3) E(zn+1) = E(h(S(xn)Cn)) = J j h(S(x)y)G(dy) Hn(dx). 
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Comparing (1.2) and (1.3) and setting h = 1,4 we obtain: 

fi„+i(A) = J [J lA(S(x)y)G(dy) fin(dx) or nn+l(A) = Pnn(A), 

where 

(1.4) Pfi(A) = J j lA(S(x)y)fi(dx)G{dy). 

The operator P given by formula (1.4) maps the space Mi, of all proba­
bilistic measures on M.d into itself and is called the Markov operator corre­
sponding to the dynamical system (1.0). 
The equation (1.4) can be rewritten in the form 

(1.5) Pn(A) = JUlAn(dx) 

where U : Co(Md) —• C(Rd) is the operator adjoint to the Markov opera­
tor P. By Co(]Rd) is denoted the space of all real valued continuous functions 
with compact support, and by C(R d) the space of all continuous functions. 

The operator U satisfes the following equation: 

(1.6) U f{x) = J f(S(x)y)G(dy). 

»+ 

Let us define a sequence of functions Tn(x, yi,... , yn) by setting: 

T(x,y) = S{x)y, Tn(x,yu... ,yn) = T(Tn-\x,yi,... , y„_ i ) , y„ ) . 

Using this notation we obtain 

(1.7) Unf(x) = J ••• J f(Tn{x,yi,... ,yn))G(dyi)..-G(dyn) 

and 

(1.8) Pn

ii{A) = j Un\Aii{dx). 
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We introduce the class $ of functions <f>: —> satisfying the following 
conditions: 

1° <J> is continuous and <£(0) = 0; 
2° 4> is nondecreasing and concave, i.e. 

^(j-y1) > 5(^*1)+ for *i,t 2 em+; 

3° <f>(t) > 0 for t> 0 and 0(f) -»• +oo when * -» +oo. 
We define the metric g^'m E d by the formula: 

Q4>(x, V) = »)) for x, y £ M d , 

where Q is Euclidean metric and in the space M\ we define the distance 
between measures by: 

(1.9) \\m - n2\U = sup I y f(x)m(dx) - J f(x)n2(dx)\, 

where F ,̂ is the set of functions such that | / | < 1 and \f(x) — f(y)\ < 
Q<t>(x, y) = <f>(g(x,.y)). 

The space Mi with the distance — / /2 IU is a complete metric space 
and 

(1.10) lim | | / z n - / i | L = 0 for / i n , / i 6 M i 
n—>+oo 

holds if and only if the sequence {fin} is weakly convergent to fi. The 
sequence of measures {/xn} is convergent to /J in || • H ,̂ if and only if {/in} is 
convergent to /z in || • ||jd, where id (x) = x. Indeed, the identity function id 
belongs to the set $ and the metrics Q\Ą and define the same topology. 
From now, || • || = || • | | i d . 

2. Asymptotic stability. Let P be a Markov operator; a measure 
H G M\ is called stationary or invariant if P/x = /x. A Markov operator is 
called asymptotically stable if there exists a stationary distribution //* such 
that 

(2.1) Urn \\Pnn - //*|| = 0 for /i G M i . 
n—>+oo 

From now we consider Rd with metric QJ,. 
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We introduce the following definitions: 
A Markov operator P is called nonexpansive if 

\\Ppi - P/x 2 |U < | | M I - M 2 I U F O R 

A Markov operator P : M\ —> Afi, satisfies the Prochorov condition if 
there exists a compact set Y C M d and a number /? > 0 such that 

( 2 . 3 ) lim inf P n / /(Y) > 0 for p, e Mi. 

From [5] it follows that, if P satisfies the Prochorov condition and P is 
nonexpansive then the Markov operator P has an invariant measure . 

We can use the following theorem [5]: 

" T H E O R E M . Let P be a nonexpansive Markov operator Assume that for 
every e > 0 tAere is a number A > 0 having the following property: for every 
(ii,H2 G Mi there exists a Borel set A with diam A < e and an integer no 
such that 

(2 .4 ) P n >i(yl)>A for i = 1 ,2 . 

Tiien P satisfes the following condition 

( 2 . 5 ) lim \\Pn(fii -fi2)\\ = 0 for m,(i2eMi. 

Now we proof the following auxiliary lemma: 

L E M M A 1. Assume that conditions (i), (ii), (iv) hold for equation (1.0). 
Suppose that the Markov operator P corresponding to the dynamical system 
(1.0) satisfes Prochorov condition and the following inequality holds: 

for some a G ( 0 , 1 ) . TAeii the Markov operator defined by equation (1.4) is 
asymptotically stable. 

P R O O F . First, we prove that the operator P is nonexpansive i.e. 

sup I / Uf(x)m - / Uf(x)p,2\ < sup I / f(x)m - f(x)n2\ 
/ e n J J ffF* J. 

file:////Ppi
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for <j>(t) = \t\a. In order to check it we show that if / G than Uf G F$. 
Indeed 

\Uf(x) - Uf(z)\ < I J(f(yS(x)) - f{yS{z)))G{dy)\ 

< J <f>(y\S(x)-S(z)\)G(dy) 

< J ya\S(x)-S(z)\aG(dy) 

<\S(x)-S(z)\° j yaG(dy) 

<La\x-z\a J yaG(dy) 

<|x-.z | a = <£( |x -2 | ) . 

Since P is nonexpansive and P satisfies Prochorov condition, the operator P 
has an invariant measure 

Now we show that condition (2.4) holds. Fix an e > 0. Then there exists 
an integer m such that 

{2.7) <j>(rm diameY) < e 

where 0 < r < 1, Y - compact set satisfying Prochorov condition. Notice 
that 

Prob ( £ » < {jyaG{dy))°) > 0. 

Thus there exists 

(2.8) c < ( / yaG(dy))± 

+ 

such that Prob (£„ < c) > 0. 
Fix y G [0,c]. According to (ii) we have 

|r(x,jf)-T(«,jf)l=|5W-5(z)jf| 
=y|S(x)-S(z) |<cZ,|x-z| . 
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Conditions (2.8) and (2.6) imply that cL < 1. Thus, we can set in (2.7) 
r = cL, (0 < r < 1). Observe that 
(2.9) 
\Tm{x,yx,... ,ym)-Tm(z,yi,... ,ym)\ 

= |T(T m - 1 (x ,2 / 1 , . . . ,ym-i),ym)-T{Tm-\z,yu... ,ym-i),ym)\ 

<r\Tm~\x,yx,... ,ym-i)-Tm-\z,yx,... ,ym-i)\ < rm\x - z\. 

where (yx,... , ym) € [0,c]m is fixed. Condition (2.9) implies that 

(2.10) diam e (T m (F,y i , . . . ,ym)) < rm diameY. 

Define 

(2.11) A = Tm(Y,yx,...,ym). 

Then 

(2.12) diam^(A) < <f>(diameA) < <t>{rm diameY) < e. 

According to Prochorov condition there exists n = n(/J,) such that 

(2.13) PnHi(Y)>P f o r n>n, i = 1,2. 

Set no = n + m, then 

PnoHi(A) = J j ... J lA(Tn°(x, yu... , yno)Mdx)G(dyl)... G(dyno) 

>/ / _.. [ lA(Tm(T*(x,ykl,... ,y^),ykir+1,... ,ykno))tii(dx) 
J J » l x [ 0 , c ) m J 
xG(dy f c l ) . . .G(dy f c n o ) . 

Define 

and notice that condition 

Tm(T*(x, ykl,...,ykw), V k w + 1 , . . . , y f c „ o ) € A 

gives 

rx*,yk l,...,ykyr)er (;» , . . . , j / f e n o )(A). 
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This implies: 

Pn>i(A) 

>(G[0,c)rJ J ^ . . ^ ( ^ y ^ , . . . , ^ ) ) ^ ) 

xG(dykl)---G(dykw), 

where 

c[0,c 

= {u; e l d such that there is (ylt... ,j/m) € [0,c]m : 
Tm(a;,2/i,... ,ym) € A}. 

From the definition of the set A it follows that: 

Conseqently 

Pnof*i(A) 

>(G[0,c})m J J lY(I*{x,yk1,...,Vkr))rtdx)G(dykl)...G(dykr) 

=(G[0, c))mPwm(Y) > (G[0,c])m0 > 0, where m is fixed. 

If A = (G[0,c])mj3, than A satisfies conditions (2.4). Since P is nonexpan-
sive and satisfes conditions (2.4), operator P is asymptotically stable which 
completes the proof. • 

A continuous V : M.d —• [0, +oo) is called a Liapunov function if 

(2.14) lim V(x) = +oo 

for some xo ERd. 
New we present an auxiliary proposition concerning the Prochorov con­

dition ([5]). 

P R O P O S I T I O N 1. Let P be a MarAov operator and let U Le a operator 
dual to P. Assume that there is a Liapunov function V such that 

(2.15) UV(x) < aV(x) + 6 fo* x € l r f 
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where a,b are nonnegative constants and a < 1. Then P satisfes the Pro­
chorov condition. 

From Lemma 1 and Proposition 1 we have the following. 

T H E O R E M 1. If conditions (i)-(iv) hold for equation (1-0), then the ope­
rator P given by equation (1.4) is asymptotically stable. 

P R O O F . Setting V(x) = \x\a° we have 

UV(x) = j \S(x)y\°">G(dy) = \S(x)\°"> j ya°G(dy) 

=|5(x) - S(x0) + S(x0)\ao J ya°G(dy) 

<\S(x)-S{xQ)\"° J ya°G(dy)+\S(x0)\a<> J ya°G{dy). 

Since S satisfies Lipschitz condition (ii), it is easy to notice that following 
inequalities hold: 

UV(x) <La°\x - *<>r j yaoG{dy) + \S(x0)\°"> J ya°G(dy) 

0 J yaoG(dy)\x\°"> + La° J ya°G(dy)\x0r 

\S(x0)\ao J yaoG(dy). 

Thus condition ( 2 . 1 5 ) holds with 

jyaoG(dy) 

<L 

+ 

a = La° 

and 
6 = (L a o|xor o + |5(xo)|Qo) J yaoG(dy). 

Consequently Markov operator P corresponding to the dynamical system 
( 1 . 0 ) satisfes the Prochorov condition ( 2 . 3 ) . According to Lemma 1 the 
Markov operator P is asymptotically stable. The proof is completed. • 
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