ANDRZEJ KASPERSKI*

APPROXIMATION OF ELEMENTS OF THE SPACES
X; AND X, BY NONLINEAR, SINGULAR KERNELS

Abstract. Let I* be a Musielak-Orlicz sequence space. Let X} and X, » be the modular spaces of
multifunctions generated by i*. Let K, R—+ Rforj = 0, 1,2,..., we W, where W is an abstract set
of indices. Assuming certain singularity assumptlon on the nonlinear kernel K, ; and setting

T(F) = (T @) with (T.(F) ) —{z Kuy(f(): f()eF()}, convergence theorems

T(F);* F in X; and T,(F) ;- F mX are obtained.

1. Introduction. In [3] a general approximation theorem in modular space
was obtained and applied to translation operators and linear integral operators
in Musielak-Orlicz space L? of periodic functions as well as in Musielak-Orlicz
space [® of sequences. The application in I? was extended in [4] to some
nonlinear integral operators and in [1] and [2] to some operators in the space
X, of multifunctions generated by L?. In [6] an extension of the results of [3]
to the case of approximation by some nonlinear operators in the Musie-
lak-Orlicz space I* of sequences was obtained. The aim of this note is to obtain
an extension of the result of [6] to the case of approximation by some
nonlinear operators in the spaces X; and X, generated by I°.

‘Let N be the set of all nonnegatwe mtegers Let I* be the Musielak-Orlicz

sequence space generated by a modular p(x) = 2 @ (1x@)), x = (x(i)), with
. =0

p-functions ¢, i.c. p;:R, > R, anditisa nondec-reasing continuous function
such that ;) =0 iff u =0 and ¢,(u) > 0 as u— oo for every ieN. Let

={F:N-2" F() is compact nonempty set for all i eN}.
Let f(F)(i) = m;x(})x, HOIE m;u!()x for all FeX and all ieN. Let
xe xeF(

={FeX: F(i) = [a(i),b()] for all ieN and a, bel®}.
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Let W be an abstract nonempty set of indices and let #~ be a filter of subsets
of W.
DEFINITION 1. A function g: W— R tends to zero with respect to W,

written g (w) %0, if for every & > O there is a set We % such that |g(w)| < & for
all weW

2. General Lemma.

DEFINITION 2. A family T = (T,),.w of operators T,: X} — X1 will be
called # -bounded if there exist positive constants k,,...,ks and a function
g: W— R, such that g(w) %0 and for all F, Ge X} there is a set Wy &% for
which

p(a({(T(F)—{(T,(G))
. Skyplak(f(F)—£(G))+ksplaky(f (F)—F (G))+g W),

p(@(F (T F)-F(T(G)))
< ksp (ake(f (F) =1 (G)+k,p(aks(F (F)—T (G)) +g W),

for all we Wy and every a> 0.
. DEFINITION 3. Let F,eX! for every we W and let Fe X.. We write
E, —»F if for every s>0 and every a > 0 there is a We"llf' such that

p(a(f(F..) J(F)) <& and p(aU(Fw)—f(F))) < ¢ for every weW.
DEFINITION 4. Let S X We denote

Sew = {FeXg: F,——» F for some F,eS, weW}.

LEMMA L. Let § c X} and let T = (T,),yew be W -bounded. If T, 7 F
for every Fe€S, then T(F)—-»F for every FeS, 4.

Proof. Leta,e > 0 be arbxtrary and let F €544 be given. Then there exist
GeS 'and W e¥ such that: p(3ak,(f(F)-f (G))) < gf6k,, p(3ak,(F(F)—
7 @) < &/6ks, p(3a(f(T(G)—f(G) < /6, p(3a(F(T(G)—T(G)) < ¢/6,
p(Ba(f(F)- £G) < &/6, pBa(FF)-F(©G) <e/6, g(w) <s/6 for every
we ¥, where we may assume k,, ky > 1. Let Wy ¢ be chosen for (T, ),.w and
F, G according to the definition of # -boundedness. Then we have

p(a(f(T,F)-f(F) < p(3a(f (T, (F)—£(T,(G))
+p (3a(£(T(G)—£ (@) +p (3a(f (F)—f (G)))
< kyp(3ak,(f (F)—£ (G)) + k3 p(3ak, (F (F)—F (G)))
+p (B3a(£(T(G) - £(G))+p Ba(f (F)— £ (G) +g(w).

Taking W= W, n We,cwe obtain p(a(f(T,(F))—f (F))) < ¢ for all we W. We
prove analogously that there exists a We %" such that p (a (F(T,(F)) -7 (F))) < &
for every we W. Hence T, (F)—'—b F because Wy= W WeWw.
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3. The application. Let now W = N and let the filter %~ consist of all sets
W < W which are complements of finite sets.

Let now ¢, be convex for ie W. Let for every we WK, ;: R— R for je W,
and let K, ;(0) =0 for all w,je W. We define for all FeX} and ieW

i
(TW(F))(i)={jg:oKw.,-,(f(i»: fG)EF(), j=0,1,..i},

) T.(F) = (T,(F)) ())Zo-

We shall call K a semisingular kernel, if the following conditions are satisfied,
where

Ly= igg IK“’"(IIZ : gwd(”» :

0 LW =(3 Lu) <o <o,
: i=0

@) Ly /L(w) %0 for j=1,2,...

If moreover (1/c)K,, o(c) % 1 for every ¢ # 0, then K will be called a singular
kernel.

DEFINITION 5. The sequence (¢)i2o is called t,-bounded if there exist
constants k;,k, >1 and a double-sequence (g;;) such that ¢, ;u)<

ky@i(kyw)+e,; for u>0, i,jeW, where &,;>0, 60=0, g;= ), &;—0 as
j— 00, e=supg; < oo. i=0

THEOREM 1. If K is a semisingular kernel such that K, ,(s) > K, (t) for all
i, weWand s > t, ¢ = (¢)iZo is T4-bounded, then T,: X} — X} for every we W
and the family T of operators defined by (1) is W -bounded.

Proof. It is easy to see that

i
F(TF)6) = Eo Kyi-;(f(F) ()

and
i
F(TF) ) = j;o K- (F(F) ()

T(F)(i) is convex because K, ; is continuous for all w,ie W. Let ¢ >0 be
arbitrary. Then for F,Ge X} we have (see the proof of Theorem 1 in [6])

@ i
pc(f(TF)~{(TG)) < Eo il 3—20 L1 f(F) G=)—£(G) G—))
< kyp(ckyo (fF)—£(G))+g(w),
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p(c(F(T(F)—F(T.(G)) < kyp (ck,a (FF)—F(GN)+g (w),

where g(w) = L(l j 2 Z L, ;& %0. So T,: X}~ X, and T is # -bounded.

Now, given a kemel K and a number c # 0, let us denote

x4() = (0,0,...,0,K, ,(0), K, 5(0), ---).
J+ 1times

Moreover, let us write
e, =(0,)i20 with o, =1fori=k, ,,=0 fori#k,
E,=(4,p%%0 with 4,,=[0,1] for i=k, 4,,=0 fori#k.
LEMMA 2. If F = coeg+coEg+ ... +c,e,+,E,, then for every b >0
p (B2 n+ 1) (f(T(F)—£(F))

igﬂmmﬁ+z¢@mww)u)
and
p (62" n+ 1) ((TF)~T ()
<3 5 o) +; 3 06K, @)-4).
where |
i {cj+ej for ¢,<0, _ {c, for ¢, <0,
o forg>0 ¢;+¢; for ¢;>0.

Proof. It is easily seen that

™M~

KW.i—j(dj)—dl fOl‘ i < n,

[

0

F(TE)O-fE 6 =<’

Kw,l—j(dj) for i > n,

i

and
i

2 Kw,g—j@j)—-é, for i< n,
FTE)O-TE6O=<""
jzo Ky.-5d) for i > n.

So the proof is quite analogous to that of Lemma in [6] and we omit it.
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We easy obtain (see [5, 8.13 and 8.14]) the following

LEMMA 3. Letg = (p)i2o satisfy the condition (6,). Let FeX} and
F = (F@)2o. Let F, be such that F, (i) = F() for i = 0,1,...,w, F, (i) = 0 for
i>w for every we W, then F, - F.

,THEOREM 2. Let ¢ = (p)i2 satisfy the condition (5,). Let K be a singular
kernel such that p (bx},) % 0O for every jeN and all b > 0. Let the assumptions of
Theorem 1 hold. Then T,(F) 5> F for every FeX i

Proof. Let § = {c,eg+coEg+ ... +¢,,+¢,E,: n€N}. From the assump-
tions and from Lemma 2 we easily obtain that TW(F);;;» F for every FeS.

From the assumptions and from Lemma 3, Se.w = X1, so, from Lemma 1 and
Theorem 1, T, (F),» F for every FeXj.

4. A generalization of General lemma. Let

X,={FeX: f(F),f(F)el*}.

REMARK 1. If F,GeX, and a€R, then F+GeX,.

Proof. Let F,GeX, and acR. If F(i) and G(i) are compact, then
F(@)+G() and aF(j) are compact. SF+G)(@) = f(F)(H)+f(G)(#) and
JF+G) () =T (F)()+F(G) (i) for every i€N, so F+GeX,. If a=0, then
aFeX,. If a > 0, then f(aF)() = af (F) (i), /(aF) () = af (F)(i). If a < 0, then
f@F) @) = af (F) (), 7(aF) () = af (F)(i). So aFeX,.

Let

d(A, B) = max {max min |x—y|, max min jx—y|}
xeAd yeB yeB xed

for all compact nonempty 4,B cR.
For all F,GeX, we define the function D(F, G) by the formula

D(F,G)(i) = d(F(i),G(@) for every ieN.
Now, we introduce the function O by the formula
' 0@ =0 for évery ieN.
REMARK 2. If F,GeX,, then D(F,G)el.
Proof. Let F,GeX,. We have for every a >0
p(@D(F,G) < p(a(D(F,0)+D(G, 0)) < p(2aD (F, 0))+p(2aD (G, 0))

< p(4af (F))+p (4af (F))+p (4af (G))+ p (441 (G)).
So D(F,G)el®.
DEFINITION 2. A family T = (T,), e of operators T,: X, e — X, will be
called (d, #°) — bounded if there exist positive constants k,, k, and a function

g:W— R, such that g(w) %0 and for F,GeX, there is a set Wp e W for
which : ‘
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p(aD(T,(F), T,(G))) < k;p(ak, D(F, G)+g(w) for all weWrg, a>0.
DEFINITION 3'. Let F,eX, for every weW and let FeX,. We write

Fw‘—;,-»F if for every ¢ > 0 and every a > O there is a We#  such that

p(aD(F,, F)) < ¢ for every weW.
DEFINITION 4. Let S € X,. We denote

S,,,.,r {FeX,: F,—_—»F for some F, €S, weW}.

LEMMA 1’ Let Sc X, and let T =(T,)yew be (d, #)-bounded. If
T(F)-T—»Ffor every FeS then T(F)'—.——»Ffor every FE€Sy o w.

Proof. Let a,6>0 be arbitrary and let FeS,,« be given. Then
there exist GeS and W,eW# such that p(3ak,D(T,(F),F)) < ¢/6k,,
p(3aD(T,(G), G)) < ¢/6, p(3aD(F,G)) <¢/6, g(w)<é&/6 for every weW,,
where we may assume k, > 1. Let W; ; be chosen for T and F, G according to
the definition of (d, #")-boundedness. We have

p(aD (T, (F), F)) < p(3aD(T,(F), T,(G)))+p (3aD(T,(G), G))+ p (3aD (F, G))
< kyp (3ak, D(F, G))+g(w)+ p(3aD(F, G))+ p(3aD(T,(G), G)).
Taking W = W, A Wp.g we obtain p(aD(T,(F), F)) < for all we W,

5. The application. Let ¢, W, #” be suéh that as in section 3. Let for every
weWK, ;:R - Rfor jeN and let K,, ;(0) = O for all w, j€ W. We define for all
FeX, and all compact nonempty A = R the operators K,,;, T,, by the formulas

7) K..(4) = {K..(x): xe A} for all w,ieW,

3 (T.F)6) = Eo Kui-;FG), T(F) = (T,(F) O)2o

for all i,weW.
We shall call K d-semisingular kernel, if the followmg condmons are
satisfied:

@) Lo =(F Lo) <o <o,
i=0

(ii) Ly, ;/L(w) X0 for j=1,2,...
where

_ d (Kw.i(A): Kw.i(B))
Loi= 0 =44 B

for all we W and ieN, with compact nonempty 4,B < R.

~ If moreover d(K,, o(4), A) %0 for every compact nonempty 4 — R, then
K will be called the d-singular kernel.
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THEOREM 1. Let K be a d-semisingular kernel. Let @ = (p)%o be
t,-bounded. If K, i(s) 2 K,,i(t) for all w,icWand s > t, then T,: X, —» X _ for
every weW and the family T given by (3) is (d, #)-bounded.

Proof. It is easy to see that T,,: I* — I® for every we W(see [6, Theorem 1]).
Kw, is continuous for all w,ie W so we easily obtain that T,: X — X for
every we W. Now, we prove that T is (d, #)-bounded. Let a > 0 be arbltrary
Then for F,GeX, we have (see also [6, the proof of Theorem 1])

@ i i
p(aD (TW(F)! Tw(G))) = Z (pi(ad( Z Kw,l-J(F(j))’ Z Kw.l—](G(i))))

tp;(a(Z d(sz JFG), Ky i J(G(I»»)

l

¢,(a(z d(Ky,;(F(-1), Ky, ,(G(z—;)))))

ng "Ma ng

@(a( Z L, ;d(F(—j), G(—j))

Z L,.;0,(aLw)d(F (—)), G(i~}))

‘*l
e
||M8

Me

= Lw) &, w,J Z ‘Pt+j(aL(W)d(F (1),6(1)))
< kyp(ak oD (F, G))+g(w),

where
1 o0
gw) = Iw) j§1 L, &;%0.

Now, let us write E, = (4,)f%0 with A4, = 4, for i =k, keN, where
A, < R and 4, is compact nonempty for every keN and Ay =0 for i #k.
Moreover, let us write for every compact nonempty 4 = R

(4) x{v(A) = (0’ 0’ eoe ’Oa KW,I(A): Kw.z (A)’ "')'
——
J+1 times
LEMMA 2. If F = E4+E, + ... +E,, then for every b > 0 the inequality
p(b~(n+1)~*D(T,(F), F)

32 1y
< Ej_zo p (b D (x'\'v (AJ'-})! 0)) +'2"’Zo (Pj(bd (KW.O(A-J-J)’ Ai-}))
holds. ) : ‘ |
Proof. For any a > 0 we have (see also [6, the proof of Lemmal])
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p(aD(T,(F), F))

= j; ‘Pi{ad(jz K,,-;(4,), 4, N+ _Z+ @ {ad( Z Ky.i-5(4;), 0)}

Z ¢i{a (jz: d (Kw.l j(Aj j)’ 0)+d(K,, o(A: D 4, !))}

+¢o(ad K., o(Ao0,0), Ao,0))+ Z fP:{a(Z d(sz i(4;),0)}

i=n+1

T 01, (2a(n+ 1)d (Kui(4,,), 0)

i=1

le
p—n
-

i

+3 2 0280+ 1D dEuo(dy), 4,)}
, i=
We obtain the assertion after writing b = 2a(n+1).
LEMMA 3. Let ¢ = (p)io satisfy the condition (5,). Let FeX, and
F = (F(i))io- Let F,, be such that F (i) = F(i) fori=0,1,...,.wand F (i) = 0

fJor i>w for every we W, then Fw—‘————»F

Proof. We have for every a >0

p(@aD(F,, F)) = Z ¢,(ad(F (), 0))

i=w+1

= Z ¢(amax( {(F)@), IFF) @) %0

i=w+1
THEOREM 2. Let the assumptions of Lemmas 2', 3' and Theorem 1' hold.
Let K be the d-singular kernel. If for every compact and nonempty A < R
p (bD (x.,(4), 0)) 50 for all b>0 and every jeN, then T (F) - F for
every FeX,.
Proof Let S={E,+E,+.. +E neN}. From the assumptions
W(F) ~+." F forevery FeS and S4.0.w = X, 50 we obtain the assertion from

Theorem 1’
REMARK 3. If T,,: X} — X} and the assumptions of Theorem 2' hold, then
T(F) 4o F for every FeXl.
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