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ON MEASURABLE FUNCTIONS 
WITH VANISHING DIFFERENCES 

Abstract It is shown (under suitable conditions o n H c R ) that if/:R-»R is a measurable 
function such that for an neN 0 and every heH we have z l J + 1 / M = 0 almost everywhere on R, 
then / is equal almost everywhere on R to a polynomial of degree at most n. In particular, every 
measurable polynomial function/: R -» R is a polynomial. In fact, these (essentially known) results 
are here proved in a more general and more abstract form. The paper contains also a version of the 
Łomnicki-type theorem on measurable microperiodic functions. 

Introduction. In the present paper we study (under conditions which will be 
specified later) measurable functions f: X -*Y satisfying for every heH the 
condition 

(1) Al+1f(x) = 0 almost everywhere in X 

(n is here a fixed nonnegative integer). We will prove that such a function / is 
equal almost everywhere in X to a continuous polynomial function of order n. 
(See the Preliminaries section below for definitions). 

Such a result clearly is related to the theorem of R. Ger £5] (cf. also [9; 
Theorem 17.7.2]) on almost polynomial functions. And indeed, in some 
instances our Theorem 3 is an immediate consequence of Ger's result, but in 
general the two results are independent of one another. 

For X = y= R and / Lebesgue measurable our theorem becomes a special 
case of much more general and difficult result in [7]. Also [1] contains related 
results. 

For n = 0 we obtain a version of our earlier result [10] about measurable 
microperiodic functions. In the case X = Y= R and / Lebesgue measurable 
this version reduces to a result of R.P. Boas Jr. [2]. 

Concerning further references pertinent to the questions discussed in the 
present paper and, in particular, to the quoted results the reader is referred to 
[9] and [10]. 
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Preliminaries. Let X and Y be linear spaces over Q (or, what amounts to 
the same, commutative divisible groups), and let/denote an arbitrary function 
f: X -*Y. The difference operator Ah with the span heX and its iterates A\, 
n = 1,2 are defined by the formulas 

r Ą m = Ahf(X) =f(X+h)-f(x), 

\Arlf{x) = AhAlf(x), n= l ,2 , . . . 

The composition of operators Akl A^ is denoted simply by Ahl ,xihn. 
It can easily be shown by induction that 

(3) A'hf(x) = ^(-irk(^f(x+kh). 

The main properties of the difference operator may be found e.g. in [9; Chapter 
XV]. In particular, we have the following 

LEMMA 1. For every positive integer n and every ht,h„e X we have 

= £ •+£n Wf(x+h") 
«1 «n = 0 

where 

j=i J j=i 

Let i be a positive integer. A function ^:Xl-*Y is called i-additive 
whenever it is additive in each variable, i.e. whenever the relation 

i^(x 1,...,x j_ 1,x+y,x j+ 1,...,xj 

= i/ffei,Xj_lf x, X j + 1 Xj) + i / ' ( x 1 , X j _ l s y, Xj+l,Xj) 

holds for every x l t x „ x,yeX and every y = 1 , i . Function ^ is called 
symmetric iff 

^ ( X L - . X J ) = \l/(xh,...,xJt) 

for every x 1 , . . . ,x,eX and every permutation (/i»—»7i) of .0- The 
function 9": X Y arising from \f> by putting all the variable equal 

W(x) = \l/(x,...,x), xeX, 

is called the diagonalization of ij/. By a O-additive function we understand any 
constant from Y. Every O-additive is symmetric, and its diagonalization is again 
the same constant. 

LEMMA 2. Let W: X -*Y he the diagonalization of a symmetric n-additive 
function i/t: X"-* Y (neN). For every integer m^n and every ^ / i^e l 
we have 

n ! ^ ^ ! , . . . , ^ ifm = n, 

0 if m>n. 
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In particular, for every heX, 

i m m , , fn!f(k) ifm = n, 

\0 if m > n. 

COROLLARY 1. Let n e N 0 and let 9"j be the diagonalization of a symmetric 
i-additive Junction, i = 0,.... n. Put 

(4) / w = i w 
j=o 

(5) 4!+7(x) = 0 for all x, heX. 

A function f:X-*Y fulfilling (5) is called a polynomial function of order 
n (neN0). Corollary 1 states that every function of form (4) is a polynomial 
function of order n. The converse is also true: if / : X -*• Y is a polynomial 
function of order n, then there exist symmetric i-additive functions : X1 -» 7, 
i = 0 , n , such that (4) holds, where f, denotes the diagonalization of ̂ „ 
i = 0 , n . The classical reference is [11], but several other proofs of this fact 
have been found since: cf. [9]. 

When X = Y = R, the function ty: R'-»R, 

(ceR) is symmetric and i-additive, and its diagonalization is the monomial ex*. 
By Corollary 1 every polynomial / : R -»R is a polynomial function of every 
order > the degree of / The converse is true under mild regularity assumption; 
cf. [9] and also Proposition 3 and Corollary 4 in the last section of the present 
paper. 

Before we proceed further with our main result we prove a variant (in the 
spirit of [2]; cf. also [7]) of a theorem [10] on measurable microperiodic 
functions. 

1. In this section we assume that (cf. [10]): 
(i) X is a separable semitopological group (Le. the group operation is 

separately continuous with respect to either variable; cf. [6]). 
Although we do not assume that the group is commutative, we use the 

additive notation because of the connection of the present section with the rest 
of the paper. Observe that in a semitopological group translations are 
homeomorphisms. 

(ii) Y is a separable metric space. 
(iii) H czX is countable and dense subsemigroup of X. 
(iv) Jl is a c-algebra of subsets of X. A function / : X -* Y is said to be 

Jt'-measurable i f f / - 1 (V)eJ( for every open set Va Y. 
(v) Jf c M is a proper a-ideal, Le., a non-empty family of subsets A e M of 

X fulfilling the conditions (cf. [9], [10]) 
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1. XiJT. 
2. If At c A2 and A2eJf, then also AleJT. 

00 
3. If A^JT for i = 1 , 2 , t h e n also | J A^JT. 

Let 4>(x) be a condition depending on a parameter xeX. We say that <P(x) 
holds ^"-(a.e.) in X iff <P(x) holds in where 4e./r. 

(vi) The following analogue of Smital's lemma (cf. [9], [10]) holds true: 
(s) If BeJt\JT, DcXis dense in X and B+DeJt, then X\{B+D)eJT. 
REMARK 1. The most important examples of Jt, Jf fulfilling (iv)—(vi) are 

as follows (cf. [10]). 
L X = RN, Jt is the family of all Lebesgue measurable subsets of Rw, and 

JV is the family of all subsets of R" of iV-dimensional Lebesgue measure zero. 
In the sequel these particular Jt and Jf (in X — RN) will be denoted by Jtv 

and ^VN, respectively. 
U. X is a locally compact topological group with a complete right Haar 

measure \i defined on a c-algebra M of subsets of X, and JT is the family of all 
subsets of X of measure fi zero. 

DI. X is a second category semitopological group. Jt is the family of all 
Baire subsets of X, and JV is the family of all first category subsets of X. 

Now we prove the following 
THEOREM 1. Let hypotheses (i)—(vi) he fulfilled. If an Jt-measurable 

function f:X-*Y fulfils for every heH the condition 

(6) fix+h) =/(x) jr-(a.e.), 
then there exists a ceY such that 

(7) /(x) = c Jf-{a.e). 

Proof. We may assume without loss of generality (possibly replacing H by 
ffu{0})that 

(8) Oetf. 
For every heH write 

(9) Xk:={xeX:f(x+h)=f(x)} 
and put 

(10) X* := {xeX: f(x+h) =/(x) for every heH} = fj X„. 
heH 

Condition (6) says that for every heH 
X\Xhejrf 

whence 

(11) X\X* = U (XXX^ejr, 
heH 

since H is countable. Relation (11) implies in particular that X*eJt and 
X*$Jf so that 
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(12) X*eJ(\JT. 

We are going to show that 

(13) X*+H = X*. 

Take arbitrary xeX* and heH. For every h'eH we have h+h'eH, whence 
by (10) 

f((x+h)+h') =/(x+(fc+fcO) =/(*) =/(*+*), 

and again by (10) x+heX*. Thus X * + H c X * . The converse inclusion 
results from (8). 

Further the proof runs very much like in [10]. Let R c Y be a countable 
and dense set, and for every meN and reR let K? denote the open ball in 
Y centred at r and with the radius 2"m. For every fixed m e N we have 

reR 
thus in view of (12) there exists an rmeJR such that 

Bm:-X*nf-HKZ)tJr. 

On the other hand, BmeJl since / is ^-measurable and by (12) X*eJK. 
Consequently 

(14) BmeJt\Jf. 

Take arbitrary xeB and heH. According to (10) and to the definition of Bm 

we have f(x+h) =f(x)eK?m. Moreover, x+heX* by virtue of (13). Thus 
x+heBm, that is, Bm+H a Bm and since the converse inclusion results from 
(8), we actually have 

(15) Bm+H = Bm. 

Now, (14), (15) and (s) imply 

(16) X\Bm = X\(Bm+H)ejr. 

Now we put 

B : - n C:=nK?mczY. 
meN meN 

By (16) 

(17) X\B= \J(X\BJeJr. 
meN 

In particular, B ^ 0 and since evidently 

(18) /(*)<= C, 

also C ̂  0. On the other hand, it is clear that C cannot contain two distinct 
points. Consequently C is a singleton: C = {c} with a ce Y. Relation (7) results 
now from (18) and (17). 
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The assumption about the algebraic structure of H is not so arbitrary as it 
might seem. This can be seen from Lemma 3 below. The set family JT is said to 
be invariant under (right) translations iff A+deJf for every AeJf and deX. 

LEMMA 3. Let X be an arbitrary group, Y^Oan arbitrary set.f: X-*Yan 
arbitrary Junction, and let Jf be a propera-ideal of subset of X (i.e. a family of 
subsets of X fulfilling conditions 1—3 of (v)) invariant under right translations. 
Then the set 

(19) H*:={heX: fix+h) = fix) jV-(a.e.)} 

is a subgroup of X. 
Proof. Clearly OeH*, so H* # 0. For heX we have heH* if and only if 

X\XnejV, where Xh is defined by (9). 
Take arbitrary h', h"eH* so that 

(20) X\Xh.ejr and X\Xh..eJT. 

Hence also 

(21) X \ [ X r ł ( f c " - f c ' ) ] = (X\X„,.)+(h"-hr)ejr, 

For xeXh..+(h"-W) we have x+h'-h'eXw., whence by (9) 

(22) fix+h1) =f((x+h'-h")+h") =fix+h'-h"). 

Further, for xeXh. we have, also by (9), 

(23) fix+h1) =fix). 

Relations (22) and (23) imply that for xeXh. c\\_Xh..+ih"-K)~\ we have 

f(x+ih'-h")) = /(x), 

which shows that Xh. n [Xv-+(/»"—h')2 c Xh--k». This yields according to (20) 
and (21) 

X\X„.-h.. cziX\Xh.)uiX\[_X„..+ih"-h')-])ejr. 

Consequently X\XK-h..eJV, that is, h'-h"eH*. This means that H* is 
a subgroup of X. 

REMARK 2. It follows from Theorem 1 that under hypotheses (i)—(vi) if, 
moreover, Jf is invariant under right translations and f:X-*Y is an 
^-measurable function fulfilling (6) for every heH, then for the set (19) we have 

(24) H* = X. 

Indeed, then there are a ceY and a set B c X such that X\BeJ/~ and 
fix) = c for xeB. Then also, for arbitrary heX, we have fix+h) = c for 
xeB-h and X\iB-h) = [{X\B)-h]ejr. Consequently fix+h) = c =/(x) 
for xeBniB-h)c Xk, whence X\Xhe^V and heH*. This implies (24). 

We terminate this section with a version of Theorem 1 in the case where 
X = R. 
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THEOREM 2. Let X = R, let Y Julfil (ii), and let hypotheses (iv)—(vi) be 
fulfielled with X = R. Further assume that Jf is invariant under translations and 
H czRis a dense set. If an M-measurable Junction f: R -* Y fulfils condition (6) 
for every heH, then there exists a ceY such that (7) holds. 

Proof. In view of Lemma 3 we may assume that H is a group (a subgroup 
of the additive group of the reals). We will distinguish two cases. 

Case 1. There exist in H two incommensurable (rationally independent) 
real numbers a, b. Then the set 

(25) H = {xeR: x = ka+W, k,leZ) 

is contained in H: 

(26) J? c H. 

H. is a countable and dense subgroup of R and by (26) relation (6) holds for 
every he3. Theorem 1 (with S. in place of H) implies the existence of a ce Y 
with the property (7). 

Case 2. Any two members of if are rationally dependent Then there exists 
an aeR\{0} such that 

flcoQ. 

Consequently H is countable and again (7) results from Theorem 1. 

Theorem 2 with Y = R and J( = JtuJf = Jfx (cf. Remark 1) was proved 
by R. P. Boas Jr. [2]. Our Theorems 1 and 2 may be regarded as genaraliza-
tions of the latter result 

2. Now we pass to the case of the general n in (1). To this aim we must 
strengthen considerably our hypotheses. In this section we assume that: 

(vii) X is a linear space over Q, endowed with a topology such that 
X becomes a separable topological space and the mapping 

(X,x, z)\~* Xx+z, XeQ, x,zeX, 

is separately continuous with respect to each variable (a semilinear topology; 
cf [8]). 

Whenever we refer to a subset of X as a group we have in mind the additive 
structure of X. (Thus X is a commutative divisible separable semitopological 
group). Observe that for every fixed AeQ\{0} and zeX the mapping 
XBX*-*Xx+zeX is a homeomorphism. 

(viii) Y is a linear space over Q, endowed with a topology such that 
Y becomes a separable and metrizable topological space and the mapping 

(27) (pt,y,w)t-^fiy+w, fieQ, y,weY, 

is jointly continuous with respect to the triple (ji, y, w) in Q x Y x Y (a linear 
topology). 
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In other words, Y is a linear space over Q, endowed with a topology such 
that 7 becomes a T 0 topological space satisfying the second axiom of 
countability and mapping (27) is continuous in QxYxY (cf. [4; p. 537, 
Exercise 8.1.6(a)]). 

(ix) E c X i s a countable and dense linear subspace of X over Q with the 
property: 

(P) For every positive integer i, every dense subgroup G of E and every 
symmetric i-additive function Gl-*Y there exists a (necessarily unique) 
continuous symmetric i-additive function $: X1 -*• Y such that \fr = ^ on G'. 

(x) H <=. X is a subgroup of X such that the set 

(28) H0 = HnE 

is dense in X. 
Concerning the set classes Jt and JV we assume that besides (iv)—(vi) they 

fulfil also the following conditions. 
(xi) We have 

XA+zeJ/~, XB+zeJK 

for every AeQ, zeX, AeJf and BeJK. 
(xii) M contains all Borel subsets of X. In other words, every continuous 

function f: X -*Y is ^-measurable. 
REMARK 3. All the examples of Jt, Jf given in Remark 1 fulfil also 

conditions (xi) and (xii). 
We start with a lemma. 
LEMMA 4. Let hypotheses (vii), (viii), (iv) and the part of (xi) concerning 

Jl be fulfilled. If the functions f,fltf2:X-*Yare Jt-measurable, then also (for 
every fixed X,fieQ, zeX and weY) the functions gi,g2: X-*Y given by 

9i(x) = nf(Xx+z) + w, g2(x)=f1(x)+f2(x), xeX, 

are Jl-measurable. 
Proof. Since every constant function from X into Y is ^-measurable we 

may assume that X ̂  0 and \i & 0. For every open set V c Y we have 

. « r W - i [ / - ( J ( K - ^ ) - . } 

whence the ^T-measurability of gy results. 
The space Y satisfies the second axiom of countability, consequently it has 

a countable neighbourhood base "U. The «#-measurability of gz is now 
a consequence of the formula 

valid for every open set VcY. 
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COROLLARY 2. Under conditions of Lemma 4, if'/: X -*Yis an Jt-meas
urable function, then for every positive integer n and every fixed h1,...,h„eX the 
junction A^.^f is Jt-measurable. 

Proof. For n = 1 this is true by virtue of (2) and Lemma 4. Now use 
induction on n. 

Now we are going to prove our main result. 
THEOREM 3. Let hypotheses (iv)—(xii) be fulfilled and let n be a non-

negative integer. If an Jt-measurable function f\ X Y satisfies for every heH 
the condition 

(29) A"h

+lf(x) = 0 jr-(a.e.), 

then there exists a continuous polynomial function <p: X -*Y of order n such that 

(30) /(*) = </>(*) JT-{a.e). 

Proof. First observe that (replacing, if necessary, H by the set H0 given by 
(28)) we may assume that His a countable and dense subgroup of X fulfilling 
the condition H c E. 

For n = 0 Theorem 3 is a consequence of Theorem 1. Now assume that 
Theorem 3 it true with n replaced by n— 1 (neN) and let / : X-* Y be an 
^-measurable function fulfilling for every heH condition (29). Put 

(31) G = (n+l)\H. 

G is a countable and dense subgroup of X fulfilling the condition 

(32) G c £ . 

Moreover, for every heG and every positive integer j < n+1 we have -eH. 

Thus it follows from (29) by virtue of Lemma 1 that for every h t , h H + 1 e G 
the function / satisfies the condition 

(33) Ahlmkm,J(x) = 0 ^-(a.e.). 

For every hlf...,h„eG we define a function ...*„: X -* Y by the formula 

(34) 9H...KSX)-= K...K,m, xeX. 

Corollary 2 guarantes that g^,,,^ is ^-measurable, and by (33) 

for every heG. By virtue of Theorem 1 g*,...^ is constant Jf—(a.e.) in X (the 
constant, however, depends on h^,...,h^\ 

0A,...*»(X) = c(*i * J ^-(a.e.). 

In other words, for every hlt...,h„eG, we have in view of (34) 

(35) K...KRX) = c(h, * J for xeX\Alht fcj, 
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where 

(36) A [ « 1 , . . . , n B ] e ^ . 

Fix arbitrary hi,...,hneG and an arbitrary permutation (ij i„) of 

(1,..., n). According to (36) there exists an x in X such that 

xeX\(^ [ k l P y u / 1 [fcfc,.... fcj), 

whence by (35) 
c(*i n„) = Akx..jJ{x) = A^.^fix) = c(fcft,...,fcj, 

This shows that c is a symmetric function of its variables. Moreover, for every 
u,v,h2,...,hneG we can find an x in X such that 

xeX\(A[u+v,h2,...,hJuA[u,h2 n j u (A [v, h 2 , f c j — «)). 

Thus by (2) and (35) 

c(u+», n 2 hj-c(u,h2,... hj-c(v,h2,n„) 

= Aa + 9 M knfW-Au,!* Knfto-AvM *n/(* + ") 

. =K M+v fix)-A J(x)-AJ(x+u)] 

= ^ ^ . . . ^ [ / ( X + U + P J - ^ X J - ^ X + U J + ^ X J - ^ X + U + ^ + ^ X + M ) ] = 0. 

Consequently c is additive in the first variable, and due to the symmetry c is 
actually additive in each variable. Consequently c.G*-*Y is a symmetric 
n-additive function. According to (P) (cf., in particular, (31) and (32)) there exists 
a continuous symmetric n-additive function $:X*-*Y such that 

(37) ^(k 1 , . . . ,k„) = c(n1,...,k l l) for n x hneG. 

Let ^ : X -* Y be the diagonalization of $ and write !P(x) = ^ ^(x), xe . 
For heG we have by Lemma 2, (37), (35) and (36) 

(38) AW(x) = A"hf(x) ^ - ( 8 A ) . 

!P: X -> 7 is a continuous, and hence ^-measurable function. By Lemma 
4 also the function/— W is ^-measurable and for every heG we have in view 
of (38) 

Allf(x)-V(x)l = 0 JT-{**.). 

By the induction hypothesis there exists a continuous polynomial function 
q>Q: X -* Y of order n— 1 such that 

f{x)-Y(x) = <p0(x) JT-(*&). 

Hence we obtain (30), where c>(x):= *F(x)+<p0(x) clearly is a continuous 
polynomial function of order n (cf., in particular, Lemma 2). Induction 
completes the proof. 
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REMARK 4. One could believe that without the measurability assumption 
(29) still implies (30) with a (not necessarily continuous) polynomial function 
q>: X -»Y of order n. However, it is not so, as may be seen from Example 
1 below. 

Similarly, one could reasonable conjecture that if the equality in (29) holds 
for' all xeX, then also the equality in (30) holds for all xeX. And again, in 
general it is not true, the conjecture being disproved by Example 2 below. 

Before proceeding with the announced examples we prove a lemma. 
LEMMA 5. Let hypotheses (vii), (viii), (v) and the part of (xi) concerning 

Jf be fulfilled, and suppose that we are given a set H c X, Junctions f,g:X-*Y 
and an meN such that 

(39) HCJf 
and 

(40) Aff{x) = Afgix) for all xeX, heH. 

If 
(41) fix) = gix) ^-(a.e.), 

then actually f = g on X. 

Proof. The proof is standard. Write (41) as 

(42) fix) = gix) for xeT, 

where X\TeJf. Take an arbitrary xeX and write 

(43) S : = n ^ ( T - x ) . 

We have 

X\S = 0 [*\j(r-x)J = 0 [ y ( * V O - y * ] e ^ . 

In view of (39) we get hence HnS ^ 0 . Take an heHnS. It follows from 
(43) that 

x+jheT for ; = l , . . . ,m, 
whence by (42) 

fix +jh) = gix +jh) for ;* = 1 m, 

and by (40), in view of formula (3), we obtain fix) = gix). 
In the examples that follow X = Y = R, Jl = uTŁ, Jf = JTA (cf. Remark 1). 

We write measurable instead of ̂ x-measurable and almost everywhere instead 
of Jfi— (a.e.). 

EXAMPLE 1. Assuming the continuum hypothesis, W. Sierpiński [12; p. 
135] constructed a nonmeasurable function o: R - » R such that for every heR 

(44) Ahcix) = 0 almost everywhere. 
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(By the way, this shows that the measurability assumption in Theorems 1 and 
2 is essential). By induction 

(45) Aklmhte(x) = 0 almost everywhere 

for arbitrary n t , . . . , fe,eR and ieN. 
Fix an neN and a polynomial P: R -+ R of degree n, and write/ = P+o\ 

For every x,hx hn+1eR we have (cf. the Preliminaries section) 

(46) J. 1 . . . B B ł lP(x) = 0, 

whence it follows in view of (45) that for every heR 

(47) JJ + 1/(x) = 0 almost everywhere. 

Suppose that there exists a (discontinuous) polynomial function <p: R -»R of 
order n such that 
(48) f(x) = q>(x) almost everywhere. 

By virtue of Lemma 1 the function q> fulfils for every x,h1,...,h„+1eR the 
condition 

(49) K...K.MX) = O. 

Now fix arbitrarily an heR. We have by (44) and (48) 

AhP(x) = Ahę(x) almost everywhere, 

whereas by (46) and (49) 

A"h.{AkP{x)) = 0 = AH

h.(Ahq>(x)) for all x, h'eR. 

According to Lemma 5 AhP = Ahq> in R, whence Aha = 0 in R. This being true 
for every heR, it follows that a = const, a contradiction. Consequently (48) 
cannot be true. 

EXAMPLE 2. Fix an neN and a polynomial q>: R -* R of degree n, and 
define the function / : R->R by 

{0 for xeQ, 

c>(x) for xeR\Q. 

For every x, heQ we have x+jheQ for; = 0 , n + 1 , whence by (3) and (50) 

4 r v M = z i ( - D " + l - - ' ( n + 1 V ( x + ^ ) - °> 
J=o \ J / 

whereas for xeR\Q, heQ we have x+jheR\Q for; = 0 , n + 1 , whence by 
(3) and (50) 

*rlnx) = z (-ir'-'h^nx+M = (-ir+1-j(n+l) ^x+m 
= jj +VW = o. 

53 



Thus with H — Q the function / fulfils the condition 

An

h

+1f(x) = 0 for all xeR, heH, 

but the equality/(x) = q> (x) holds only almost everywhere, and not everywhere 
in R. 

Such an example would not be possible if the set H were large enough. 
THEOREM 4. Let hypotheses (iv)—(xii) and condition (39) be fulfilled and let 

n be a nonnegative integer. If an Jl-measurable function /: X -+Y satisfies the 
condition 

(51) An

h

+if(x) = 0 for all xeX, heH, 

then f is continuous polynomial function of order n. 
Proof. Condition (51) implies (29) (the exceptional sets being empty), thus 

according to Theorem 3 there exists a continuous polynomial function 
q>: X -»Y of order n such that (30) holds. On the other hand, since ę is 
a polynomial function of order n, we have in particular 

(52) A"h

+l<p(x) = 0 for all xeX, heH. 

Relations (30), (39), (51) and (52) show by virtue of Lemma 5 that / = q>, that is, 
/ is a continuous polynomial function of order n. 

COROLLARY 3. Let hypotheses (iv)—(ix) and (xi)—(xii) be julfilled. Then 
every Jt-measurable polynomial function f: X -*Y is continuous. 

This results from Theorem 4 on taking H = X. 
REMARK 5. It could seem that the condition H$J¥ is considerably 

weaker than H = X, but in many cases it is not true. Suppose that the 
following form of the theorem of Steinhaus is valid in X: 

(H) If A, BeJt\Jf, then int(^+B) # 0 . 
(This is certainly the case for all examples of Jl, Jf listed in Remark 1; cf. 
[10]). Let H c X be a dense subgroup of X. If HeJf\^V, then by (H) 

intH = int(H+H) ± 0 , 

whence H = H+H = X since H is dense in X. 
REMARK 6. Under conditions (vii) and (v), if, moreover, Jf is invariant 

under translations, we have intA = 0 for every set AeJf. Indeed, suppose 
that intA ^ 0 for an AeJf, and let D be a countable and dense subset of X. 
We have 

A+D= U (A+d)eS 

since D is countable and A+deJf for every d. On the other hand, A+D = X 
since mtA-^ 0 and D is dense in X. Consequently XeJf, a contradiction. 

Thus if a condition $(x) is fulfilled JT—(a.e.), then it is fulfilled on a dense 
subset of X. In particular, if two continuous functions are equal Jf—(a.e.), then 
actually they coincide in the whole of X. 
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It follows that the continuous polynomial function ę occuring in Theorem 
3 is determined uniquely. The uniqueness of a polynomial function q>: X-*Y 
fulfilling (30) (without appealing to continuity) may be obtained from Lemma 5. 

3. In the present section we discuss some particular cases of Theorem 3. Of 
course, the most interesting and important instances of X, Y fulfilling (vii) or 
(viii) are R (or, more generally, R1*) and C. 

(a) X = R, 7 = K (K stands for R or C). We start with a lemma. 
LEMMA 6. For every real number a ^0 the set E = aQ is a countable and 

dense linear subspace of R over Q with property (P) ( X = R , Y = K). 
Proof. Only (P) requires a proof. Let G be a dense subgroup of E. We 

may assume that aeG. For otherwise take an a' e G\{0} c £ = aQ. Thus there 
exists an reQ\{0} such that a' = or, whence a = a'r~1 and E = aQ — 
a'(r"lQ) = a'Q and a'eG. 

One can prove by induction that if ifrł: G1 -»K is a symmetric i-additive 
function, then there exists a c,eK such that 

(53) ^ t ( t i , = clt1...tl for all tlt...,tteG. 

Clearly the function : R' -> K given by 

(54) ^(xj.—.x,) = Cj^i-.x, for all x x x,eR 

is a continuous extension of ̂ , onto R', and is symmetric and i-additive. 
COROLLARY 4. / / / : R -»K is a continuous polynomial Junction of order 

n(neN), thenf is a polynomial (in a real variable x with coefficients from K) of 
degree at most n. 

Proof. It follows from the theorem of Mazur-Orlicz [11] (cf. the 
Preliminaries section) that/can be written in form (4), where for/ = 0 , n the 
function Tj is the diagonalization of a symmetric ./-additive function 
^y.R'-t'K. It is enough to show that for j= 1,..., n the function Vj is 
a monomial 
(55) Vj(x) = CjX

J, xeR, 

with a CjeK. (For j = 0 (55) is trivial). Suppose this has already been proved for 
j = i + 1 , n (1 ^ i ̂  n) and write 

F,(x): = /(x)- £ cjXi 

(Fn =/) so that 

(56) Ft(x) = £ y/x). 

The function F, is continuous and in view of (2) AXl„.xtF,(x) is a continuous 
function of Xj x, in R. But according to (56) and Lemma 2 

^xl...XtFi(x) = i\$t(xi,...,xi 

and thus ij/t is continuous. 
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Now put G := Q and tfr, = $,| c ł. We have (53), whence (54) results in view 
of the continuity of $ t and ultimately we get (55) for j = i. Thus (55) is valid for 
j = 0 , n . 

Now we assume that 
(xiii) H c R i s a subgroup of R and there exists an aeR such that the set 

Hr\(aQ) is dense in R. 
Lemma 6, Theorem 3 and Corollary 4 imply the following 
PROPOSITION 1. Let hypotheses (iv)—<vi), (xi), (xii) (with X = R) and (xiii) 

be fulfilled and let n be a nonnegative integer. If an Jt-measurable function 
f:R-*K satisfies for every heH condition (29), then there exists a polynomial 
q> (in a real variable, with coefficients from K) of degree not exceeding n such that 
(30) holds. 

As it has been pointed out in Remarks 1 and 3, hypotheses (iv)—(vi) and 
(xi)—(xii) (X = R) are fulfilled, e.g., by the family of all Lebesgue measurable 
subsets of R or that of all Bake subsets of R as Jt, and by the family of all 
subsets of R of Lebesgue measure zero or that of all first category subsets of R, 
respectively, as Jf. As to (xiii), it is certainly fulfilled whenever H is a linear 
subspace of R over Q. Another example of an H fulfilling (xiii) is furnished by 
the set of all dyadic numbers. On the other hand, (xiii) is not fulfilled by H =• ff 
given by (25), where a, b are incommensurable real numbers. Actually, it can be 
inferred from the argument in the proof of Theorem 2 that if H is a dense 
subgroup of R, then H fulfils either (xiii) or 

(xiii)' H c R is a subgroup of R and there exist incommensurable a,beR 
such that (26) with (25) holds. 

The two conditions do not exclude each other. For instance, H = R fulfils 
both (xiii) and (xiii)'. 

Unfortunately, we have not been able to prove Proposition 1 with (xiii) 
replaced by (xiii)'. The Proposition 2 below (cf. the sentence immediately before 
Example 1), however, is a consequence of a much more general result of J. H. B. 
Kemperman [7]. 

PROPOSITION 2. Let H c R fulfil (xiii)' and let nbea nonnegative integer. 
If a measurable function f: R -* R fulfils for every heH condition (47), then there 
exists a real polynomial ę of degree not excending n and such that (48) holds. 

Extending this result to the case of functions / : R - * K presents no 
difficulties. 

J.A. Baker [1] proved that if a function f:R-*C satisfies for certain 
m,neN and incommensurable a,beR the condition 

Jmf(x) = Ąf(x) = 0 for all xeR, 

and is Lebesgue integrable on an interval of length ma, then there exists 
a polynomial q> (in a real variable, with complex coefficients) of degree at most 
m— 1 such that 

Am<p(x) = Jg<p(x) = 0 for all xeR 

and (48) holds. 
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Taking X = Y = R and choosing suitable Jt, JT, we obtain from Corol
laries 3 and 4 the following result essentially due to Z. Ciesielski [3] (cf. 
also [9]). 

PROPOSITION 3. Every Lebesgue measurable or Baire measurable polyno
mial function f:R-*R(of order n) is continuous, and hence it is a real polynomial 
(of degree at most n\ 

(b) X = RN, Y = Ru (M, iVeN). Let e± e w eR w be linearly independent 
over R (a base of RN over R) and put 

(57) E:= {xeR": x = V i + - + V * > K *weQ}-

L E M M A 7. Let E be given by (57) with et eNeR" linearly independent 
over R and let G a E be a dense subgroup of E. If \fi\G-*R is an additive 
Junction, then there exist real constants clt...,cN such that for t = xle1 + 
...+xNeNeG 

(58) ijt(t) = tlf(xle1 + ...+xNes) = c1x1+...+cNxN. 

Proof. There exist e\,...,e'NeG linearly independent over R (otherwise 
G could not be dense in E). We have, since G c E, 

(59) e'j = Xhet+ ... +XJtreN, j = 1, ...,N, 

with rational X^, j,k = 1,...,N, whence also 

(60) ej = nhe"i + ...fij^s, j = 1 N, 

with rational nh, j,k = 1,...,N. Relations (57), (59) and (60) imply that 

E = {xeRs: x = j^ei-H ... +HNe'N, ...,%eQ}. 

Thus in the sequel we assume that el,...,eNeG. 
For every heG and keZ we have kheG and ijf(kh) = k\fi(h). An arbitrary 

teG can be written as t = x1el+... +xNeN with xt Tj,eQ. Choose a qeN 
such that pj — qxjeZt for j = 1 , N . We have by the additivity of \jt, since 
pxet +... +pNeNeG, 

#(t) = \fi(qt) = ^(Piej-I-... +pNeN) = pl^(e1) + ... +pw^(ew) 

= qx1\lf(e1)+ ... +qxNitf(eN), 

whence (58) results with Cj-.— ̂ (e^, j = \,...,N. 

LEMMA 8. For every el,...,eNeRN linearly independent over R the set 
E given by (57) is a countable and dense linear subspace of RN over Q with 
property (P) (X — R w , Y = RM). 

Proof. Again only (P) requires a proof. Note that we may restrict ourselves 
to M = 1, since each of the M components of \ji may be considered separately. 

Let G c E be a dense subgroup of E. (As previously, we assume that 
e1,...,eseG). Our Lemma will be proved when we show (induction on ieN) 
the assertion: 
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(*) For every symmetric i-additive junction G'-+R there exists a con
tinuous symmetric i-additive function (R w y-» R such that \pt\Gi = i/r,. 

For i = 1 (*) is true by virtue of Lemma 7: the function 

= $ ( £ 1 * 1 + - + < W = c ^ - H . . . +cN£N 

is the desired extension of (58) onto RN. Now assume that (*) is true for an i eN 
and let : G ' + 1 ->Rbea symmetric (i + l)-additive function. Fix arbitrarily 

tteG and write 

(61) <A(0:= ^+1(^1 t„t), teG. 

Thus ^: G-»R is an additive function. By virtue of Lemma 7 we have (58) 
where c^eR,y = 1 , N , depend, in fact, on ^ tt previously fixed. Since by 
(58) and (61) 

Cj(h> — » *J) = ^ j + i f r i h> ej)> J = 1» •••» N> 

every Cj: G' -*• R is a symmetric i-additive function. By the induction hypothesis 
every c} can be extended onto (R*)' to a continuous symmetric i-additive 
function £y. (Rw)ł -»R. Let d = ( ć x , ć w ) e R w be the 2V-tuple of functions ci so 
that c is a function ć: (RN)i-*RN. The functon (R*)'"1"1 -»R 

$ ł + i ( x i » •••> x i » = ^ ( x i » •••« X J ) ' X I + I » x 1 , . . . , X j + 1 e R N , 

where dot denotes the scalar product, is a continuous (i+ l)-additive extension 
°f 1̂+1 o n t o (RA')'+1- The symmetry of results from that of 1 and from 
the continuity of 

Thus (*) is valid for 1'+1. This completes the induction and ends the proof 
of Lemma 8. 

Our next hypothesis reads: 
(xiv) H a R" is a subgroup of R" and there exist e l t e N e R N linearly inde

pendent over R such that the set H n E, where E is given by (59), is dense in RN. 
Since every continuous polynomial function of order n from RN into R is 

a real polynomial in N variables of degree at most n [9, Theorem 15.9.4], we 
obtain from Theorem 3 and Lemma 8 

PROPOSITION 4. Let hypotheses (iv)—(vi), (xi), (xii) (X = Rw) and (xiv) be 
fulfilled and let n be a nonnegative integer. If an M-measurable function 
f:RN-> Ru satisfies for every heH condition (29), then each of the M compon
ents off is equal Jf—(a.e.) to a real polynomial in N variables of degree at most n. 

(c) X = Y = C. Since in the present paper we do not go beyond continuity 
(the analytic structure of C plays no role whatsoever), we may identify C with 
R 2 . Thus the present situation becomes the special case M = N — 2 of (b), in 
particular (cf. Lemma 8), for every zl,z2eC\{0} such that zJz2$R the set 

(62) E:= {zeC: z = Xlzl+X2z2, XuX2eQ) 

is a countable and dense linear subspace of C over Q with property (P) 
(x=Y=q. 
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Observe that a continuous polynomial function from C into C is not 
necessarily a complex polynomial. In fact, l e t / :C->C be a continuous 
polynomial function of order n. According to [9; Theorem 15.9.4] either of the 
(real) functions Re/(z), Im/(z) is a polynomial in two real variables u = Re z 
and v = Imz of degree at most n. In other words, there exist real constants 
and j,k = 0 , n , j+k < n, such that for z = u+iv 

(63) Re/(z)= £ a^v*, Im/(z) = £ b^v*, z = u+iveC. 
JJc=o M = o 

With djk = a^+ib^eC relation (63) yields 

(64) f(z)=f(u+iv) = £ ^ u V , zeC. 

Setting in (64) u = ^(z+ż), i? = ^ (z—f)i (z denotes the complex conjugate of z) 

we arrive at a similar expression, but with other coefficients c^eC: 

(65) /(z)= t C)J?> 

In this way we have proved 
LEMMA 9. Iff: C - » C is a continuous polynomial Junction of order n, then 

f has form (65) or, equivalently, (64), where c^ and d^ are complex constants, 
j,k = 0,...,n, j+k < n. 

Now we assume that 
(xv) if c C is a subgroup of C and there exist Z 1 ,Z 2 GC \ {0} such that 

zJz2^R and the set Hr\E, where E is given by (62), is dense in C. 
PROPOSITION 5. Let hypotheses (iv)—(vi), (xi), (xii) (X = C) and (xv) be 

fulfilled and let nbe a nonnegative integer. If an Jt-measurable junction f: C -»C 
satisfies for every heH condition (29), then there exists a continuous polynomial 
function c>: C -> C of order n (cf. Lemma 9) such that (30) holds. 
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