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Q U A S I B I L I N E A R F U N C T I O N A L S 

Abstract In this paper a certain natural generalization of bilinear functional is introduced and 
investigated. We define quasibilinear functionals by replacing the additivity of a bilinear functional 
with three weaker conditions. The solution is a sequence of bilinear functionals on subspaces of the 
given linear space. 

Quasibilinear functionals are useful in considerations of general projective 
metrics defined by Rozenfel'd in [3] and generalizations of projective metric 
spaces as projective spaces with a relation of orthogonality ([2]). These 
applications will be presented in the next paper. 

This work is a part of the author's doctoral thesis entitled "Weak structures 
of orthogonality on projective spaces of finite dimension" (in Polish), com­
pleted under the supervision of doc. dr Edward Siwek at the Silesian University 
in Katowice. The author wishes to thank dr hab. Marek Kordos for valuable 
suggestions. 

1. Basic notions. In this paper the symbol V always denotes a linear space 
of a finite dimension n over a commutative field F of characteristic not equal to 
2. The zero vector of V is denoted by ®. We write ID(u,w) iff vectors 
u, v , w are linearly independent and D(u, v , w ) otherwise. If U is a linear 
subspace of V then we write U < V. In particular 0 <V, {0} < V, 
d i m 0 = - 1 and dim{0} = 0. If U < V, U # V and dim U ^ 1 then we say 
that U is a proper subspace of V. The linear closure of a set M c V is denoted 
by L i n M . In the case of M = {u} , u ©, we write shortly («) instead of L in 
{u}. The symbol dV denotes the set of all directions (i.e. 1-dimensional 
subspace) of V. 

Recall that a bilinear (symmetric) Junctional on V is a mapping / : VxV-*F 
satisfying the following axioms: 
B l V u , » e 7 (f(u,v)=f(v,u)), 
B2 V u,veV V XeF (f(u,Xv) = kf(u,v)), 
B3 V u,v,weV (f(u,v+w) =f(u,v)+f(u,w)). 
By JS?2(7, JF) we denote the set of all bilinear functionals on V. For arbitrary 
fe&2(V,F) the structure (V,F) is called an orthogonal linear space. 
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D E F I N I T I O N 1.1. A mapping / : Vx V-> F is called a quasibilinear 
functional on V if, and only if, the following axioms are satisfied: 
Q B l V u , » e 7 (/(«,») = / ( » , « ) ) , 
QB2 V u,veV V XeF (/(u,Xv) = Xf(u,»)), 
QB3 V u,v,weV ( / («,») * 0 A f(u,w) *0 =>/(«,v + w) =f(u,v)+f(u,w)), 
QB4 V u,v,weV ( /(«,») = / ( « , w ) = 0 A / ( U , » + W ) * 0 =>/(»,w+w) = 0), 
QB5 V H , B , W G V if(u,v) =/(u,w) = / (» ,w) = 0 A /(»,I>) * 0 

=>/(u ,»+w) = 0). 
The set of all quasibilinear functionals on V is denoted by 2L&2{V,F). For 
arbitrary / e i L S ? 2 (V.F) the structure (V,/) is called a quasiorthogonal linear 
space. 

Note that we consider only symmetric functionals. Moreover we have 
C O R O L L A R Y 1.2. £2(V, F) c 2.&2{V, F). 
Conversely, by an easy verification we obtain 
C O R O L L A R Y 1.3. A quasibilinear junctional fe£&2(V,F) is bilinear on 

V if, and only if, 

(B) Vu,v,weV (f(u, v) = / (u , w) = 0 =>/(«, v+w) = 0). 

Since the axioms QB1—QBS are universal sentences then we get 
C O R O L L A R Y 1.4. Iffe£&2(V,F) andU<V thenf\UxUe£&2(U,F). 
D E F I N I T I O N 1.5. A quasibilinear functional / e JJS? 2 (7 , F) is said to be 

nondegenerated if, and only if, 
QB6 V ue V\{&} 3 »e V (f(u, v) * 0). 
The set of all nondegenerated quasibilinear functionals on V is denoted by 
*VMSf2(V,F). A quasiorthogonal linear space (V,f) is said to be nondegenerated 
if, and only if, fejr&£e2(V,F). Analogically we put JT&2(V,F):= 
<?2(V,F)nJr2<?2(V,F). 

The conditions QB1—QB6 are a certain version of the conditional Cauchy 
equation (see e.g. [1]). Moreover, one can easily verify that the axioms 
QB1—QB6 are independent 

We say that vectors u,ve Fare orthogonal with respect to fe£J?2(V, F) and 
we write u ±fv iff/(u, v) = 0. If / is fixed then we write shortly J . instead of ± f . 
The axioms QB1 and QB2 imply the following 

C O R O L L A R Y 1.6. Iffe2tf2(V,F) then 
(i) V u,veV ( M ± » O O ± M ) , 

(ii) V u e K ( u l ® ) , 
(iii) V u,veV ( u l » = » V X,fieF (Xu 1 fiv)). 

L e t / e £&2{V, F). A nonzero vector v e F i s said to be isotropic iff v L v. The 
last corollary makes it possible to define an isotropic direction as AedV such 
that A contains an isotropic vector. Subspaces U, W< V are said to be 
orthogonal (we write U ± W) iff u JL w for every ueU and we W. Analogically, 
we define an orthogonality u ± W for ue Vand W<V. Now, by Corollary 1.6, 
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we can say that a direction AedVis isotropic iff A L A. Moreover, in the usual 
manner we define the singularity of subspaces, Le. a proper subspace U < V is 
said to be singular in (V,f) iff U LV. We may easily verify the following 

C O R O L L A R Y 1.7. A quasibilinear Junctional f is nondegenerated on V if and 
only if (V,f) contains no singular subspaces. 

Corollaries 1.6 and 1.7 give some interpretations of the axioms QB1, QB2 
and QB6, respectively. Now we shall interpret the remaining axioms. The 
axiom QB3 implies 

C O R O L L A R Y 1.8. Iffe£&2(V,F), u,v,weV,ID(v,w), u lv and uJLw then 
there exists the unique AedLin(v,w) such that u LA. 

Proof . Since u]Lv and ulw then, by virtue of QB1, QB2 and QB3, for 
arbitrary X,peF\{0} we have f(u,Xv+pw) — Xf(u,v)+pf(u,w). Hence 
f(u,Xv+pw) = 0 iff X = pf(u,w) and p = —pf(u,v) for some peF. Thus 
A = (f(u,w)v-f(u,v)w). 

By QB1—QB4 we obtain 
C O R O L L A R Y 1.9. / / fe2#2(V,F),u,v,weV,ID(v7w),uLv,uLw and 

uJLv+w then uLAL(v+w) for every AedLin(v,w)\{(v+w)}. 
Proof . It follows from the assumptions and Corollary 1.8 that for every 

direction AedLin(v,w) different from (v+w) we have u LA. For an arbitrary 
vector teLin(v, w)\(v+w) there exist X,peF such that X p. and t — Xv+pw. 
If A = 0 or p — 0 then by Corollary 1.6 we have tLv+w. Let X ̂  0 and p ^ 0. 
Putting s = (X—p)w we obtain t+se(v+w\ but since uLt, uLs and uJLt+s 
then by QB4 we have tLt+s. Thus tLv+w for every teLin(w,w)\(w+w). 

Finally, the evident interpretation of QB5 gives the following 
C O R O L L A R Y 1.10. Iffe2&2(V,F),u,v,weV,ID(v,w),uLvLwLu and 

vJLv then u±Lin(u,w). 
From the point of view of applications even more important than Corollary 

1.9 is the following 
C O R O L L A R Y 1.11. Iffe 2&Z{V,F), u, o, we V, ID (», w), ue Lin(», w), u 1 v 

and uLw then uLt for every tehin(v, W) \(H). 

Proof . It follows from Corollary 1.8 that either u±Lin(» ,w) or there is 
a unique direction AedLin(v,w) such that uJLA and uLt for every 
teLia(v,w)\A. Obviously, it is sufficient to consider only the second case. Let 
s = Xv+pw and uJLs, where X, p eF. Hence X ^ 0 and p # 0. By Corollary 
1.10 we obtain tLs for every teLin(v,w)\(s). Since sJLu then ue(s), Le. 
(u) = (s) = A. Thus uLt for every teLin(w,w)\(u). 

Given fe£#2(V,F) and U <V, dim 17 = 2. Putting fx =f\ UxU, by 
Corollary 1.4, we obtain fxe2.<e2$J,F). It follows from Corollary 1.3 that if 
fxeS£2{[J,F),u,v,weU,u^&, ID(v,w), uLv and u l w then (u)LU, Le. (u) is 
a singular subspace of (t/,^). Now, let us assume ft e£&2(U, F)\£f2(U,F). By 
virtue of Corollary 1.3 there exist u, v, we U such that uLv,uLw and uJLv+w. 
Consequently by Corollaries 1.6 and 1.11 we have ID(v, w), u # &,(u) = (»+w) 
and (u)JL(u). Thus (u) is not a singular subspace of (17,/Ł) but is has a very 
similar property: (u)Lt for teU\(u). This suggests the following 
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D E F I N I T I O N 1.11 Let fel&2(V, F). A proper subspace U < V, U * V, is 
called a quasisingular subspace of (V,f) if and only if U± t for every te V\U. 

It is evident that each singular subspace of a quasiorthogonal space (V,f) is 
quasisingular. Before investigating the properties of quasisingular subspaces we 
must introduce some additional notions. 

2. Two-dimensional quasiorthogonal linear spaces. By virtue of Definition 
1.1 and Corollary 1.3 we obtain the following 

L E M M A 11. If dimV= I and fe£X2(V,F) then fe&2(V,F). 
Since for arbitrary vector e ^ Q w e have v = v1el for »e(e 1 X where vieF, 

then this lemma implies 

C O R O L L A R Y 2.1 If dimV= \,fe££e2{V,F) and e^V^®} then either 

(2.2.1) f(M,v) = 0 for u,veV, 

or 

(2.12) f(elt g t) # 0 and f(u, v) = u 1!) 1/^,e t) for u,veV. 

This implies that if dim V = 1 and fe 1&2(V, F) then either u l u for every 
u,ve V, or V u,veV(u±v=>(u = 0 v o = &)). In the first case the functional 
/ is degenerated, in the second case / is nondegenerated. 

It is well known that if dim V=2 and fe£f2(V, F) then there exists a basis 
<e1,e2> of V such that 

(2.13) / ( « , t;) = u V / ( e x , ei)+u2v2f(e2, ej 

for u = u1e1 +u2e2 and v = v1el +vze2eV. 

D E F I N I T I O N 13. Let (elt e2> be a basis of a 2-dimensional space V and 
let / be a bilinear functional on V determined by formula (12.3). The 
quasiorthogonal space (V,f) is said to be: 

(i) totally degenerated space (TDS) iff / ( e l 5 ex) = / ( « 2 > e 2 ^ = 0» 
(ii) parabolic space (PS) ifff(elt e t) # 0 and f(e2, ej = 0, or f(ex, eL) = 0 and 

Ae^eJ^O, 

(iii) elliptic space (ES) iff f(elt ej ^ 0, f(e2, e2) # 0 and 

(114) VX,fieF (X2f(ei,ej+/i2f(fi2,e2) = 0=>X = = 0), 

(iv) hyperbolic space (HS) iff f(el,el) 0, f(e2, e2) # 0 and 

(2.2.5) 3 X,neF\{0} Wf^eJ+ff^,e2) = 0). 

L E M M A 14. 7 / d i m K = 2 and fe£&2(V,F)\#2(V,F) then there exists 
a basis (,elye2} of V such that 

f u Y / X e . , * , ) ifu2 = v2 = 0 
(116) f(el,el)±Qandf{u,v)=\ 1 1 

^u 2 !? 2 /^! , e2) i / u 2 # 0 or » 2 # 0. 
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Proof . From Corollary 1.3 we may see that there exist el,e2,e3eV such 
that e1le2,e1le3 and e1JLe2+e3. It follows from Corollaries 1.6 and 1.11 
that ID(e2,e3) and 

(1) e t l t for teVXieJ. 

Hence D(elte2+e3), 

(2) 

and ID(eit e2), Le. the vectors elt e2 form the basis of V and for every u,veV 
we have u = « 1 e 1 + u 2 c 2 and » = » i e 1 +v 2 e 2 . It results from QB1 and QB2 that 

(3) (u2=v2 = 0=>f(u,v) = u1v1f(el,el)) for u,veV. 

Moreover, from (2) we have 

(4) / ( e i , e i ) * 0 . 

Also (1) implies 

(5) ((u2 = 0 A v2 ± 0 v u2 ± 0 A v2 = 0) =>/(«,») = u 2 » 2 / ( e 2 , e j ) . 

Now, let u2 # 0 and p 2 / 0. From (5) we have / (u , » 2 e 2 ) — 0, and since 
ulel,v±e1,v2e2±ei and e^J.ex, then by Corollary 1.11 we obtain the 
equivalence 

f(u, v) = 0of{u, vhi) = 0, 

and consequently, from Corollary 1.3, we have / (« , v) = f(u, v2e2\ Analogically 
we derive f(u,v2e2)=f(u2e2,v2e2), therefore f(u,v) =f(u2e2,v2e2). Thus 

(6) (u 2 * 0 A v2 * 0 =>/(u,») = u2v2f(e2, ej) for u,veV, 

because f(u2e2,v2e2) = u2v2f(e2,e2). This completes the proof. 

D E F I N I T I O N 2.5. Let dim V = 2,feŚ£f2(V, F)\&2(V, F) and let < C l , e2> 
be a basis of K such that / is determined by the formula (2.2.6). The 
quasiorthogonal space (V,f) is said to be: 
(i) quasitotally degenerated (QTDS) iff f(e2, e2) = 0, 

(ii) quasiparabolic space (QPS) iff f{e2, e2) ^ 0. 
Now, we have 

C O R O L L A R Y 2.6. Let AimV = 2 and let fe&22(V, F). A quasiorthogonal 
space (V,f) is either TDS,PS,ES,HS,QTDS, or QPS. 

This implies that using the notions of isotropic, quasisingular and singular 
direction and the notions of orthogonal and degenerated spaces we may 
complete the properties of 2-dimensional quastiorthogonal linear spaces as in 
the following Table. 
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T A B L E 2.7. 
orthogonal 

spaces 
degenerated 

spaces 
isotropic 
directions 

quasisingular 
directions 

singular 
directions 

TDS + + all all all 

PS + + exactly 
one 

exactly 
one 

exactly 
one 

ES + - none none none 

HS + — exactly 
two 

none none 

QTDS — + all except 
one 

all all except 
one 

QPS - - none exactly one none 

Moreover, since charF ?*2 then we have the following 
L E M M A 2.8. If dimV = 2 then V contains at least four different directions. 
This makes it possible to recognize the type of an arbitrary 2-dimensional 

quasiorthogonal space (V,f) by the properties of a relation Lf. For example, if 
(V, / ) contains exactly two isotropic directions then (V, f) is an HS. Analogical­
ly we obtain: 

C O R O L L A R Y 2.9. IfdimV = 2,feM#2(V,F), u,veV, ID(u,v) and uJLv 
then there exists exactly one direction AedV such that u A. A. 

Note that 2-dimensional quasiorthogonal spaces which are not orthogonal 
may be defined as the spaces containing some quasisingular direction which is 
not singular. This suggests the following: 

D E F I N I T I O N 2.10. Let dimV=2 and fe£&2(V,F). A quasisingular 
direction AedV is called an axis of (V, f) iff A is not singular. 

Thus 
C O R O L L A R Y 2.11. IfdxmV= 2,fe2&2(V, F) and (V,f) contains an axis 

then (V,f) is either QTDS or QPS. 
Now, we consider a case of a 2-dimensional subspace U of a quasior­

thogonal space (V, f). It follows from Corollary 1.4 tha t / | £7 x Ue2Sf2(U, F). 
By virtue of Corollary 1.10, Table 2.7 and Definition 2.10 we obtain 

C O R O L L A R Y 2.12. J / fe 2&2(V, F), «, v, we V, ID (v, w), u l v , ulw, 
U = Lin(», w) and 

(i) (U,f\UxU) is an ES or an HS 
or 
(ii) ( U , / | U x U ) is a PS and w l w 
or 
(iii) (w) is an axis of {U,f\UxU) 
then ulU. 

L E M M A 2.13. If fe £&2(V,F),u,v, weV,u±v,u±w and ujLv + w then 
there exists a subspace U < V and a direction AedU such that dimU = 2, 
U < L in (u, v, w) and A is an axis of (17, f\U x 17). 
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Proof . Suppose that this is not true, Le. there is no 2-dimensional subspace 
of Lin(u, v, w) which contains an axis. Hence, by Corollaries 2.6, 2.11 and 
Table 2.7, for every U < Lin(u,»,w), dim 17 = 2, the space (U,f\UxU) 
is orthogonal. Then from the hypotheses, Corollary 1.9 and Table 2.7 the 
vectors u,v,w are linearly independent and the direction (v+w) is singular 
in (Lin(v, w), / |L in (» , w) x Lin(«, w)). Therefore (Lin(u, v+w), / | L i n ( « , v+w) 
x Lin(u, v+w)) is an HS because uJLv+w and v + wlv+w. Hence there exist 
vectors t,seLm(u,v+w)\(v+w) such that t i t and sJLs. Moreover, from 
Corollary 2.12, for every peLin( t \ w)\(»+w) we have p i Lin(u, v+w). It 
follows from Table 2.7 that (Lin(», w), f\Lw(v, w) x Lin(», w)) is either a TDS 
or a PS. If this space is a TDS then for any peLin (» , w)\(»+w) the space 
(Lin(t, p), /|Lin(t,p) xL in( t , p)) is a TDS, and from Table 2.7 we obtain z l z 
for every zeL in (u ,» , w)\Lin(«, v+w). Hence (Lin(»,s) , / |Lin(u,s)xLin(w,s)) 
is a QTDS, because of sJLs. This contradicts the hypothesis. Now, let us 
assume that (Lin(o,w), / | L i n ( » , w)xLin(», w)) is a PS. Then for any 
peLin(i>, w)\(w+w) the space (Lin(t.p) x Lin(f, p)) is also parabolic, and from 
Table 2.7 we obtain zJLz for zeLin(u , v, w)\Lin(u, v + w). Analogically, for any 
z e Lin(u, v, w)\Lin(u, v+w) the space (Lin(»+w,z), f] L in (v+w,z)x Lin (v+w, z)) 
is also parabolic. Therefore, from Corollary 2.12, we have z J . L i n (u, v+w) and 
zJLz for zeLin(u , v, w)\Lin(u, v+w). Thus (Lin(s, v), / | L i n ( s , v) x Lin(s,»)) is 
a QPS which again contradicts the hypothesis. This completes the proof. 

This lemma suggests the following 

D E F I N I T I O N 2.14. L e t / e J i f 2 ( F , F). A direction AedV is called an axis 
°f (V, f) if and only if there exists a subspace U < V such that dim U = 2, 
AedU and A is an axis of the space (U,f\UxU). 

From Corollary 1.3, Definitions 1.12,2.10, 2.14 and Lemma 2.13 we deduce 
the following 

C O R O L L A R Y 115. Iffe£&2(V,F) then the space (V,f) is orthogonal if 
and only if (V, f) does not contain any axes. 

3. A relation of an axial orthogonality. In the preceding section we proved 
that the searching of all vectors u, v, we V such that u Lv, uLw and uJLv+w 
may be replaced by the searching of all axes. Moreover, it follows from 
Corollary 1.11 that an axis (s) of 2-dimensional space (V, f) may be defined as 
such direction (s)edV that u±s, s—u Is and sJLs for some ue V. This suggests 
the following 

D E F I N I T I O N 3.1. Let fe£&z{V,F). We say that a vector ueV is axially 
orthogonal to a vector seV and we write M L S if and only i f u l s , s—uls 
and sis. 

By virtue of Corollaries 1.7 and 1.11 we obtain the following 
C O R O L L A R Y 3.2. Iffe2&2(V, F),u,seV and uls then ID(u, s) and s i t 

for every teLin(u, s)\(s). 
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Since sjLs then the last condition means that (s) is an axis of the space 
(Lin(u, s) , / lLin(u, s) x Lin(u, s)). Moreover, from Table 2.7 and Corollary 2.9 
we, derive 

C O R O L L A R Y 3.3. Iffe£Se2{V,F),u,v,seV,ulv, uLs and ID(v,s) then 
ID(u,v,s). 

To illustrate the further considerations we shall give figures based on the 
following: 

R E M A R K 3.4. Let V be a linear space over a commutative field F and let 
d i m F = 3. A direction AedV may be represented by a line on the projective 
plane & over F. Then 2-dimensional subspaces U < V may be treated as points 
on 9. Moreover for an arbitrary 2-dimensional subspace U < V and a vector 
ueV\{Q} "the line" (u) passes through "the point" U iff ueU. The ort­
hogonality of the directions (u) and (») we denote as follows: 

(«) 
(i) ^^'^^XT K and u_L», 

to 

(ii) ^ («) if u ^ ® and u -Lu, 

GO 
if ZD(u,v) and t X v for teLin(u,t?)\(»). 

W 

Now we shall investigate further properties of the relation I . At the 
beginning, let us note that according to Corollaries 1.6, 3.2, Table 2.7 and 
Definition 3.1 the relation I is neither reflexive nor symmetric. However, it is 
transitive, i.e. we have 

C O R O L L A R Y 3.5. Iffe2&z(V,F),u,v,weV,ulv and vlw then ulw. 
Proof . It follows from Table 2.7, Definition 3.1 and Corollary 3.2 that 

ID(u, v, w), vJLv and wJLw. By virtue of Corollary 2.12 we obtain the following 
alternative 

(1) (V teLin(u,»)\(w) (w JL t)) v ( w l L i n (u,»)). 

Suppose that 

(Hp) VteLin(u,w)\(i>) (wJLt). 

Then wJLu and by Corollary 2.9 there exists exactly one (s)edLin(u, w) such 
that wl(s). Let us put (Fig. 1): 

p e L i n (s, v+w) n L i n (u, w)\{©}, 

reLin(s , v—w) n Lin(u, u)\{®}, 

x e L i n (p, v+w) n L i n (w, r) \{©}, 

y e L i n (p, v—w) n L i n (w, r) \{®}. 
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w 
Since » + w l w l s and wJLp, then from Corollary 1.9 we have w l x . 

Analogically we derive wly. Thus x l w and consequently rlw, which 
contradicts (Hp). Therefore (1) implies 

(2) w_LLin(u, v). 

It follows from the assumptions, (2) and Corollary 2.12 that 

(3) u+»-LLin (B , w). 

Moreover, (Lin (», w), f\ L i n (», w) x L i n (», w)) is a QPS because v I w and vJLv. 
Hence by (3) and Corollary 1.10 we deduce w±Lin(w+i? ,»+w) . Now, for 
teLin(u , w)n L in (u+» , »+w)\{©} we have wit and ID(u, t). Therefore ulw, 
because ulw,tlw,wlw and teLin(«, w)\(u). 

In Definition 1.12 we introduced the notion of a quasisingular subspace. It 
is obvious that an axis of a 2-dimensional space (V, f) is such a subspace and it 
is not a singular subspace. The next example is given by the following 

L E M M A 3.6. If fe2&2(V,F),u,v, weV,ulv,ulw and ID(v,w) then 
£JLLin(w, w) for t eL in (« , v, w)\Lin(w, w). 

Proof . It follows from the assumptions and Corollary 3.3 that 

(1) ID(u,v,w). 

Consequently, from Corollary 3.2 we have 

(2) , V teLin(«,j>)\(») (tlv), 

(3) V teLin(w,w)\(w) (tlw). 
Moreover 
(4) vJLv 
and 
(5) wlw. 
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Since u l w then (2), Corollaries 1.10 and 1.11 imply the alternative 

(6) (VteLin(u,»)\(j ;) ( t lw)) v (V teLin(u , v)\(u) (tJLw)). 

Now, suppose that 

(Hp) VteLin(u ,» ) \ (u ) (tJLw). 

In particular vJLw and by Corollary 2.9 there is a unique (z) edLin(v, w) such 
that w l z . Moreover (5) implies ID(w,z). Let us put (Fig. 2): 

t e L in (u, w) n L i n (z, u+w)\{®}, 

seLin(u, w) n Lin(z, u—»)\{©}, 

re Lin(w, u—»)n L in (z, u+t>)\{©}, 

p6Lin(w, u+w) n Lin(z, u—«)\{0}, 

x e L i n ( w , u + » ) n L i n ( z , u)\{©}, 

y e L i n (w, u—») n L i n (z, u)\{@}, 

It follows from (3) and the definition of t that tlw and, since w l z and 
wjLu+v, then Corollary 1.10 implies r l w . Analogically we obtain 

(HI) plw. 

Moreover, by Corollary 1.10 we derive an alternative 

(H2) x l w v y l w 

because u l w and z l w . Now, with the help of (5), (HI), (H2) and 3.1 we obtain 
the alternative (xLw v ylw) which implies 
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(H3) u+vlw v u—vlw. 

Since the sentences (Hp) and (H3) are contradictory then from (6) we deduce 

(7) V te Lin(u, »)\(») ( t l w) 

and, from the symmetry of the assumptions with respect to v and w, we have 

(8) V t e L in (u,w)\(w) ( t l » ) . 

Now, let us put (Fig. 3): 

t e L i n (w, w) n L in (M+v , u+w)\{©}, 

zeLin(» , w)r\Lin(u+v,u—w)\{®}, 

x e Lin(u—», w) n L i n ( U + w , U + w ) \ { © } , 

yeLin(u—v, w ) n L i n ( u + » , u—w)\{®}, 

The conditions (7) and (8) give u+w±w and u+v±w, hence from 
Corollary 1.10 we obtain the alternative 

(9) tlw v x l w . 

Analogically we derive 

(10) z l w v j l w . 

The conjunction r l w A z l w implies o l w , and from the alternative 
x l w v y l w follows u —»Lw. Thus 

(11) » t w v u—v\_w 
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and from the symmetry of the assumptions 

(12) wL» v u—wL». 

Let seLin(u , v, w)\Lin(», w). Then s = Xu+pv+pw, where X,p,peF and 
X¥=0. If/* = 0 o r p = 0 then it follows from (2), (3), (7) and (8) that s i w and 
s l v . Now, let us assume that p^O and p¥=0, and let us consider two possible 
cases: 

(i) » l w . Since (3) and (8) imply Xu+pwlw and pvlXu+pw, respectively, 
then from (4) and Corollary 1.11 we deduce wlXu+pv+pw, Le. w i s . From 
the symmetry we also get v i s . 

(ii) vJLw. Then (11) and (12) imply u—»L,w and u—wL,», and consequently 
Xu—pv+pw±w. Now, since Xu+pwLw and pvJLw, then from Corollaries 1.10 
and 3.2 we have Xu+pwLpv. This implies s l » . Analogically we obtain s l w . 

Thus 
(13) V te Lin(u, v, w)\Lin (», w) (v 1 t l w). 

Now, let us fix arbitrary vectors teLin(u , o, w)\Lin(», w) and seLin(w, w). 
Suppose that 
(Hp) tls. 

Then (13) implies s^(i?) and s^(w), and by virtue of Corollary 2.9 there exists 
a unique (z)edLin(t, s) such that tL(z). Assuming additionally D(t,z), from 
Table 2.7 we derive that (Lin( t ,s ) , / |Lin( t ,s )xLin( t ,s ) ) is an HS and all 
the spaces (Lin(t, w), / |Lin(t , w)xLin(t,w)), (Lin(», t + w ) , / | L i n ( » , t+w) 
x L i n (», t+w)j, (Lin(», t—w), / |Lin(», t—w)xLin(«, t—w)) are quasitotally 
degenerated. Since the directions (t\ Lin(s, t ) n L i n ( » , t+w), Lin(s, t) 
nlAn(v,t—w) are three distinct isotropic directions in (Lin(s, t), 

/ | L i n ( s , t)xLin(s, t)), then from Table 2.7 this space cannot be an HS. This 
contradiction implies ID(t, z) and consequently tjLt. Now, let us put (Fig. 4): 
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reLin(w, z) n Lin(p, 

Since t l z l w l t and wJLw, then from Corollary 1.10 we have t i r and, 
because tlv, the space (Lin(t, w),/ |Lin(t, u)xLin(r ,»)) is a Q T D S and t i t . 
This contradiction gives 

V reLin(u,p, w)\Lin(p, w) VseLin(p,w) ( t l s ) . 

With the help of Corollary 3.5 we may generalize the above lemma as 
follows: 

L E M M A 3.7. J / fel&2(V,F),u,v,w,seV, ID(u,v,w), seLin(u,v,w), 
U L ' P and sLw tfien t l L i n ( p , w) /or epery teLin(u , v, w)\Lin(p, w). 

Moreover, 
L E M M A 3.8. / / / e ^ 2 ( F , F ) , « , v , w , s e V , , u l v , s l w and ID(u,v,w,s) 

then ulw or slv. 
Proof . We consider two possibilities: 
(i) p l w . Then u + s l w or » - s l w and without restricting the generality 

we may assume that p + s l w . From the assumptions we have w — s l w , hence 
(p+s)+(w—s)lw or (v+s)—(w—s)lw. If (p+s)+(w—s)lw (Le. p + w l w ) 
then P L , W , which from Corollary 3.S gives ulw. Not let us assume that 
(p+s)+(w—s)JLw (Le. p+w,£w). Then (v+s)—(w—s)lw and it follows from 
Corollary 1.9 that v+wlv+s and p+wlw—s. Further we infer that v+slv 
or P + W 1 P , and w — s l » or P + W 1 P . If P + W 1 P then wL,p, hence by virtue of 
Corollary 2.12 we deduce s i p , but now v+slv and vJLv imply sL,p. 

(ii) vJLw. Then, by virtue of Corollary 2.9, there exists a unique direction 
(z)edLin(p,w) such that wl(z) . Since s + z l w or s — z l w , then without 
restricting the generality we may assume that s + z l w . Moreover, sL,w implies 
s+w+z±w or s+w—z±w and analogically s—w+zl.w or s—w—zlw. 
If s+w—zlw and s—w—z±w then s—zLw and putting 
teLin(w, s—z)n Lin(p,s)\{®} we obtain t l w and further s U P . If s+w+z±w 
or s—w+zJ-w then s+zL,w and putting t e L i n ( w , s + z ) n L i n (w,s)\{©} we 
obtain tlw, which again implies sLv-

Now, applying the above lemmas, by induction on a number of axes we 
may prove the three lemmas. 

L E M M A 3.9. If fe M#2(V, F), feeN, ux uk, vx,...,vke V,ID(vx,...,v^ 
and uxlvx uklvk then 

1 me{l,...,fc} V i e { l k} (umlv^. 

L E M M A 3.10. If fe£&2(V,F), fceN, u, vlt...,vkeV, IDfa,...^ and 
ulv1,...,ulvk then u l L i n ( p 1 , . . . , p J k ) l u + t for teLin(p 1 , . . . ,p J k). 

L E M M A 3.11. If feM&2(V,F), ke*i,u,vl,...,vkeV,ID(vl,...,vk) and 
M L P I ul*w* then ID(u,pj,...^. 

4. The representation theorem. In this section we shall investigate connec­
tions between quasisingular supspaces of (V, f) defined in Definition 1.12 and 
the relation L - At the beginning we have. 
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D E F I N I T I O N 4.1. Let fe&&2(V, F). The set of all vectors of axes is the set 

(4.1.1) q(V,f):= {veV: 3 ueV(ulv)}. 

We recall that dim V = n. Now, from Lemma 3.11 we have 
C O R O L L A R Y 4 . 2 . Iffe£#2(V,F) and q(V, f)*0then d i m L i n f e ( K / ) ) < n. 
Moreover, Definitions 1.12, 2.10, 2.14, 3.1, 4.1 and Corollaries 2.15, 3.2,4.2 

imply the following important 
C O R O L L A R Y 4.3. If fe2&2(V,F) then the following conditions are 

equivalent: 
(i) (V>f) w not orthogonal, 
(ii) 1 < dimLin(q(V, f)) < n-1. 

Consequently, with the help of the lemmas given in the preceding section 
we may easily deduce the following 

C O R O L L A R Y 4.4. If feM&2(V,F) and q(V,f) * 0 then t±Lin(q(V, f)) 
for every teV\Ua(q(V,f)). 

The above corollary shows that the subspace Lin(q(V,f)) is quasisingular 
in (V, f). Moreover, this subspace is not singular because all vectors veq(V, f) 
are not isotropic. More precisely: if dimLin (q (V, f)) = k then there are vectors 

,vkeq(V,f) such that vlJLvl,...,vkJLvk and Lin(» 1,...,w l k) = Lm(q(V,/)). 
This suggests the following 

D E F I N I T I O N 4.5. L e t / e JJSf 2 (K F). A subspace W<Vis called a proper­
ly quasisingular subspace of (V,f) if and only if either W—0, or W is 
a quasisingular subspace of (V, f) generated by nonisotropic vectors. A maxi­
mal (in the sense of inclusion) properly quasisingular subspace of (V, f) will be 
denoted by S(V,f). 

As a simple consequence of Definitions 1.12, 4.1, 4.5 and Corollaries 
4.2—4.4 we obtain the following important corollary. 

C O R O L L A R Y 4.6. If fe£&2(V,F) then 

(4.6.1) S(V,f)<V, 

(4.6.2) V*0=*S(V,f)*V, 

fLin(q(V, f)) if q(V,f)* 0, 
(4.6.3) S(V,f) = -l J*y>J> w> 

\0 ifq(V,f) = 0, 

(4.6.4) dim V < 1 => S (V, f) = 0, 

(4.6.5) VueV\S(V,f) (u±S(V,f)) 

and 
(4.6.6) VueV\S{V,f) VveS(V,f) (vJLv=>ulv). 

Moreover, we may easily verify the following 
C O R O L L A R Y 4.7. Iffe&22{V,F),u,v,weV then 

(4.7.1) v,w,v+w$S(V, f) =>/(u,v+w) = f(u, v) +/(«, w) 
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and 

(4.7.2) u,v*S(V,f) A weS[V,f)=>f(u,v+w) =/(«,»). 

Since by virtue of Corollary 1.4 and Definition 4.5 for any fe£&2(V,F) 
a pair (S(V, f), f\S(V, f) x S(V, /)) is a quasiorthogonal space as well, then we 
may consider S (S (V, / ) , f\S(V,f)xS (V, f)). Thus we may define the following 
family of subspaces of V: 

{ V when i = 0, 

S ( S , . 1 ( K / ) , / | S I - I ( V ; / ) X S , _ 1 ( V , / ) ) when i e N . 

Now, the conditions (4.6.1)—(4.6.4) imply 

(4.8.2) F = S0(V, f) > S^V, f) > S2(V, f) > ... 

and 
(4.8.3) V i e N (S^V,/) # 0=>S , . 1 (F , / ) * S,(V,/)), 
whence one can deduce (because the dimension of V is finite) that there exists 
a unique natural number x such that S t (F , / ) & 0 and S t +i (P» / ) = 0. 

D E F I N I T I O N 4.8. Let/e££r 2(V, F). The natural number x[f) determined 
by the condition 

(4.8.4) x(f) := min { i e N : St(V, f) = 0} 

is called the type of the functional f 
Note that 

(4.8.5) l < T ( / ) < d i m F 

and by Corollaries 4.3 and 4.6 

(4.8.6) x(f)=lofe&2(V,F). 

Now, for the simplicity, for a given functional fe£&2(V, F) we put 

(4.8.7) T : = T ( / ) , 

(4.8.8) V, := S T - , ( K / ) for i = 0, 1 , . . . , T , 

(4.8.9) /,:=f\Vt x Vt for i = 1 T . 

According to (4.8.2), (4.8.4), (4.8.7) and (4.8.8) we have 

(4.8.10) 0 = Vo<Vl<...<Vt-1<VT = V. 

Note that (4.8.6) and (4.8.9) imply 

(4.8.11) f^X^F). 

D E F I N I T I O N 4.9. Let fe2S?2{V,F) and let x{f) = x. The mappings 
f1:V1xV1->F fx: Vz x VT -»F uniquely determined by 
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when u ś V, , or v i V, <. 
(4.9.1) / ' ( « , » ) : = i _ . r , 

when u . u e ^ . ! , 

for i '= 1 , . . . ,T , are called components of the Junctional f. 
Now, using Corollaries 4.6, 4.7, relations (4.8.1)—(4.8.4), (4.8.7), (4.8.8) and 

Definition 4.9 we easily obtain the following 
C O R O L L A R Y 4.10. The components of a quasibilinear functional are 

bilinear. 
Moreover, from Definition 4.5, Corollary 4.6, relations (4.8.7)—(4.8.9) and 

Definition 4.9 we derive. 
C O R O L L A R Y 4.11. Iffe£&2(V,F), x = T ( / ) , x>\and ie{2,... ,x} then 

is the singular subspace of the orthogonal space (Pj,/*). 
Finally we can formulate the following representation theorem. 
T H E O R E M 4.12. Let V be an n-dimensional vector space over a commutative 

field, F of characteristic different from 2. A mapping f: VxV-*Fisa quasibiline­
ar Junctional on V if and only if there exist a natural number x, subspaces 
V0,Vit...,Vx of V and symmetric bilinear Junctionals f1: VixV1-*F,..., 
f1: VzxVt-*F such that the following conditions are satisfied: 

(i) 1 < T < dim K 

(ii) 0=Vo<V1<...<Vz-t<Vx=V, 

(iii) dimV> l ^ d i m ^ > 1, 

(iv) V Ż 6 { 2 , . . . , T } rc-^K). 
(v) V i e { 2 T} V u e ^ V r e K , (/'(«,v) = 0), 

(vi) V i e { l , . . . , T - l } 3u,veVt (f'(u,v)*0) 

and 

(vii) if u,veVit u^Vi_1 or v^Vl_1, then f(u, v) = fl(u, v) 

for i= 1 x and u,veV. 

Proof . The implication "=*•" results from Definitions 4.5, 4.9, Corollaries 
4.10, 4.11, relations (4.8.3), (4.8.7), (4.8.8) and (4.8.10). On the other hand, the 
implication "<=" can be obtained by an easy verification of Definition 1.1. 

Moreover, by an easy verification, one can obtain the following 
C O R O L L A R Y 4.13. Let fe2#2(V,F),n = dimV,x = x(f) and let 

fl fx be components off. If rit...,rt are the ranges of the bilinear functionals 
f\...,P then 

feJr2&2(V,F)or1+ ... +rx = n. 

Appendix 1. Congruent quasibilinear functionals. Since for any bilinear 
functional there exists an orthogonal basis of V then we can formulate the 
representation theorem in the analytical manner as follows: 
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C O R O L L A R Y . A mapping f: Vx V-* F is a quasibilinar Junctional on V if 
and only if there exist a natural number x(f) = x called the type oj f, a basis 
{ e j J = 1 „ of V, natural numbers n±,...,nx and scalars e 1 , . . . ,B 1 I GF such that 

(i) K T < n, 
(ii) 0 = : n 0 < nt <... < n t = n, 

(iii) Vfee{l T - l } 3iG{n k_ 1 + l,...,n l l} (e,#0) 
and 
(iv) if ut = vt = 0 for i = nk+l,...,n and there exists i e { n J t _ 1 + l,...,nj such 

that u, 0 or », * 0 tnen / (u ,» ) = eBk_ t + 1 u B k _ , + 1 » B k _ l + 1 + ... +fiM TM n i tt7 B f c 

/or k= 1 T and u-^ «„), w = ( » 1 , . . . , 0 B ) e K 
Moreover, f is nondegenerated if and only if et ̂  0 for i — 1 n. 
Each quasibilinear functional / in an orthogonal (with respect to / ) basis 

{e,}j= i „ is uniquely determined by the sequence ((6X eni) (aBt_ t + i ej) 
and we denote shortly this canonical form of the functional/by (/)< e i e„>, Le. 

(/)<ei e»> = ((el>"->eni)> — >(Bn»-i + l >-~>Et))-
Now we adopt the following 
D E F I N I T I O N . We say that two quasibilinear functional / , g of V are 

congruent and we write / g if and only if / and gf determine the same relation 
of orthogonality of vectors, Le. 

f^go±f=±to\fu, veV(f(u, v) = 0og(u,v) = 0). 

In other words congruent functionals determine the same structure (V, ±), 
where l = l f = l t , called a weakly quasiorthogonal linear space. Since 
a functional/is bilinear if and only if the conjunction u ±fv and uLfw implies 
uLj-v+w for every u, v, we V, then for any congruent quasibilinear functionals 
/, g on V the bilinearity of / i s equivalent to the bilinearity of g. Moreover, it is 
evident that if quasibilinear functionals fg on V are congruent and if 
{eji=i „ is some basis of V orthogonal with respect to / , then this basis is 
orthogonal with respect to g as well. 

Let / , g be congruent quasibilinear functionals on V and let {CJ}J=I „ be 
a basis of V orthogonal with respect to / By virtue of Corollary there are 
natural numbers x = T ( / ) , a = x(g), n l 5 . . . , n t , ml,...,ma and scalars et eB, 
^.. . . .co,, such that (/)<e i e n > = ((«!,...,eB l) ...,«„)) and (g)<tl «„> = 

rcmi),...,(com._1+1,...,a>B)). Now putting / t : = / | ( L i n ( g B k _ 1 + 1 , . . . , e B ) ) 2 

and gk:= g | (Lin(e B k _ 1 + 1 , . . . ,e B )) 2 for fc=l x we see that functionals 
/J (Lin(e B k _ 1 + 1 , . . . ,e B k )) 2 , gk\(Lm(e 

nk-i+1 >--> enk)) are bilinear and the func­
tionals fk I (Lin (e„k _, + e „ k , eBk + 1 ))2, gk | (Lin (e„k _, +1 eB k, e^+1 ))2 are not 
bilinear for k = l,...,x—1 from which we deduce in turn 
n t »»!, . . . ,«,_! < m, - ! , n t < m t and analogically m x < ^ . . . . . m . - ! < n . - ! , 
m a < n a and consequently x = a and n t = mfc for k = 1,... ,T . Thus we have 
(/)<«! «»> = ((«i « « , ) ' • • - ' ( e » « - i «•)) and (0) < e i „„> = (((»! coB l),..., 
(o ) l i c _ l + 1 , . . . , tB 1 I ) ) . Let us note that the restrictions f1 :=/ | (Lin(e 1 , . . . ,e l l l )) 2 , 
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gl := g|(Lin(e 1 , . . . ,e ł l l)) 2 are bilinear a n d / 1 « 0 1 . Moreover ( / % , e i u > = 
((«i eBl)) fe1)^ «»!> = ( ( » i > - . « , J ) . If «i = ... = fiBl = 0 then of cour­
se tOj = ... = coni = 0 and = A 1 s 1 , . . . ,o) B l = for any Xt eF\{0}. Now, 
let us assume additionally that Sj # 0 for some j e ^ l , . . . ^ ! } . Therefore cô  # 0 
as well and we may put Xx := cofaj)'We consider two possibilities. If n x = 1 
then of course g1 = Xtfl. In the second case, if n A > 1, then for every 
i e f l , . . . , ^ } ^ ' } the inequality et^0 implies co, #0, fL{et—e},eje,+c,gj) = 0 
and gi{ei — ei,Eiel+elej) = Q because f1 — gl. Since g1(el—ej,Ejei+siej) = 
ojjfij—COJ£J = £ j ( a ) , — = 0 then to, = ^ s , . Thus for every i e{ l , . . . , n 1 } we 
have co, = A t e, and consequently gx = Xxfx. 

Analogically, putting ( / 2 ) < « i «„2> = ((0 , . . . ,0 , f i ) , l + 1 , . . . , s B J) and 
(fl2)<ei «ni> = ((0,...,oi l l l + 1,...,Q) l lJ) we deduce t h a t / 2 « #2 and that there is 
^ 2 eF \{0} such that c o B 1 + 1 = A 2 e B l + 1 , . . . , c o B l = ^ 2 s B l . Continuing this proce­
dure we obtain the following: 

T H E O R E M . Iff, g are quasibilinear junctionals on V, {e,},= x „ is a basis of 
V orthogonal with respect to fund i / ( / ) < e i ^ = ( ( e 1 , . . . , e B l ) , . . . , ( ą l t _ 1 + 1 , ...,£„)) 
thenfg are congruent if, and only if, the basis {et}i=l „ is orthogonal with 
respect to g and there exist scalars Xt ^ ,eF\{0} such that (g) < e i e„> = 

Appendix 2. Independence of axioms. 
T H E O R E M . The axioms QB1, . . . ,QB6 are independent. 
Proof . To prove our theorem, for each Q B i , where i e{ l , . . . , 6} , we 

give a suitable field Flt a vector space V, and a mapping/,: Vt x Vt -* F , such 
that / satisfies all the axioms QB1, . . . ,QB6 except Q B i . Since for every 
i e { l 6} it is easy to verify that {Vt,Jj) is a model of the axiom system 
{QBI QB6}\{QBi}, then we show only that / does not satisfy QBi . 

Firstly, for Q B I we adopt F t = R, Vv = R x R and/^u, v) = ulv2-u2vl for 
u = (u 1 ,u 2 ), v = ( B 1 , v2)e Vt. Then putting u = (1,0) and v = (0,1) we have 
fl(u,v) = 1 and fx(v,u) = —1. Thus Q B I does not hold. 

For QB2 we put F 2 = Q(^2), V2 = F2xF2 and/2(u,v) = u1vt + u2v2 for 

u,veV2, where a+6^/2 = a—b^/2 for a , oeQ . Now, putting u = w = (l,0) 
and ^ = 1+ V 2 we obtain f2(u, Xv) =1—^/2 and Xf2(u, v) = 1+yJ2 in spite of 
QB2. 

In all the remaining cases we adopt F = R and K = R x R, Le. F , = R, 
F, = R x R for i = 3,4,5,6. Moreover, we put /,(«,v) = Vfa^+t"2)2-

vV^+faY 'SgnfuV+uV) for u, » e F 3 and u = v = (1,0), w = (1,1) and we 
see that / 3 (u , w) = 1 # 0, / 3 (u , w) = y/2*0 and / 3 ( u , u+w) = J5 * / 3 ( u , « ) + 

/ 3(w, w). Consequently, if we adopt 

'0 when u2v2 0 

u 2 when v2 = 0 

j ; 2 when u2 = 0 
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for u, ve V+, u = ( 0 , 1 ) , v = (0 ,1 ) , w = (1 , - 1 ) we obtain/ 4(u, v) =/ 4 (u, w) = 0, 
Mu, v+w) = 1 # 0 and / 4 (w,»+w) = 1 # 0. Further, putting 

for u,veV5, u = ( 1 , 0 ) , » = ( 1 , - 1 ) , w = ( 0 , 1 ) and we see that/ 5(u,t?) = 
/ 5 (u , w) =/ 5(o, w) = 0,jf s(», v) = 2 # 0 and/ 5(u, 0+w) = 1 * 0. Finally, a map­
ping f6 such that / 6(u,p) = 0 for u,veV6 is a degenerated quasibilinear 
functional. This completes the proof of our theorem. 
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