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Abstract The strength of two axioms placed on a quaternionic mapping is compared. The first 
is the linkage axiom (L), and the second is the structure of the basic part axiom (X). It is shown here 
that (L) is strictly stronger than (X). 

Let q: G x G - » B be a quaternionic mapping in the terminology of [2]. 
Recall that this means G and В are groups of exponent two, G has 
a distinguished element —1 and q is a symmetric bilinear mapping satisfying 
q(a, — a)=\ for every aeG. For aeG, let D<1, a> = {beG\ q( — a, b) 
= 1}. D <1, a> is a subgroup of G containing both 1 and a. If D<1, a> = {1, a} 
then a is called rigid and if both a and — a are rigid a is said to be 2-sided rigid. 
The basic part of G is the set 

BG = { ± 1 } u {aeG| a is not 2-sided rigid} 

and for any aeG we define the sets X^a) as in [1]. We let Xt(a) = D<1,—a> 
and inductively define 

Xt{a) = \J{D<l-z>\l*zeXl_1{a)} 

for i > l . 
If a quaternionic mapping q also satisfies: 

(L) q{a, b) = q(c, d)=>3 x e G with <ji(a, b) = g(a, x) and q(c, d) = g(c, x) 

then q is said to be a Zinfced quaternionic mapping. (L) is the most powerful of 
the axioms placed on q. Its full strength has yet to be determined. 

In [1] it is shown that if q is a quaternionic mapping with |G| < oo then (L) 
implies 

(X) BG = ±Xl(a)X3(a)KjX1(a)X2(a)2 for every aeflG\{l}. 
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This result is quite strong and requires several clever usages of (L). Indeed it 
was thought that perhaps (X) was strong enough to imply (L) when |G| < со. 
The purpose of this note is to provide an example showing the contrary. 

We begin with G any finite group of exponent two of dimension n^4 over 
F 2 and we fix a basis A = {ava2,... ,a„) for G. Let В be any other group of ex­
ponent two of dimension n—2 over F 2 with fixed basis say Q — {q2, q3, q„-i}-
Define q on Ax A by 

q{ait aj) = < 

4j> 

1Л 

if i = 1 and 2^ j < n —1, 

if j = 1 and 2< n— 1, 

if i = n and 2< j n — 1, 

if j = n and l^i^n — l, 

otherwise, 

and extend q to q: G x G 
matrix [g(af, a,)]: 

•B by bilinearity. For future reference we display the 

1 

«3 

1 

4 2 «з • 9„-i 1 

•1 In-

1n-l Qn-2 

1 
42 

<l2 
1 

Notice that q(a, a) = 1 for every ae G hence g is a quaternionic mapping with 
•1 = 1. Also notice that D <1, a 2 • an_!> is spanned by a 2 , a 3 a n 

hence D<1, a 2

- a 3

- . . - a n - i > has index 2 in G. 
T H E O R E M , q is a quaternionic mapping which satisfies (X) but not (L). 
Proof . For asG let G((a) = {beG\q(a, b) = qt}, i = 2, 3,..., n - 1 . 

Hence G 2 ( a J = {a2, a x a 2 , a 2 a„ ( a^a2an\ and G 2 (a„) = { a „ _ l f axa„_lt an„xan, 
axan^xa^. Notice that q{ax, a2) = q(an, a„_j) = q2 but there is no xeG with 

aa) = qifli. x) = ^f(«n. x) = IK- an-i) s m c e G2(a1)nG2(a„) = 0 for 
n ^ 4. Consequently (L) is not satisfied. We now show that (X) does hold. 

Step 1. There are no rigid elements in G thus BG = G. 
Let xeG and write x = ahai2...ais, it < i2 < ... < is. If it = 1 and is = n 

then a2 • я 3 • — • on_ 16D (1, x^\{l, x}. If exactly one of — 1 or is — n holds 

then fl,-i1 + i , W i , - ' V i . + i 6 f l < 1 > *>\{U *}• I f ' l ^ 1 a n d ' s ^ n t h e n 

а 2 - а 3 - . . . - а 1 1 _ 1 е / ) < 1 , х > \ { 1 , x} unless x = a 2 - a 3 - . . . - a n _ 1 in which case 
Z)<1, x> has index 2 in G. Consequently, x is not rigid. 

Step 2. D<1, x>nD<l, a 2 - a 3 - . . . • « „ _ ! > ф {1} for every x e G . 
If x = 1 or xeZ)<1, o 2 • a 3 • . . . • a„_ j> the result is clear so assume otherwise. 

By Step 1 there is yeD(l, х > \ { 1 , x}. SinceZ><1, a2-a3-...-an_1} has index 2 in 
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G either yeD(l, a 2 - a 3 - a n _ t } or х у е / ) < 1 , a 2 -a 3 - . . . -a n _ 1 >. Hence one of 
у or xy is in the intersection. 

Step 3. G = X 1(a)X 3(a) for every aeG. 
First suppose aeD<l, a2-a3-a„_Ł>. Then a 2 a 3 - . . . a n _ 1 e D < l , a> and 

thus D<1, а2-а3-...-а„_1У^Х2(а). Let xeG. By Step 2 there exists ye.D<l, x> 
ni)<l, a 2 ' f l 3 ' -" ' an - i ) \{^} hence xeD(l, y> and ye/)<l, a2-a3-...•a„_1} 
gX 2 (4 This implies x e X 3 ( a ) and G = X3{a). Suppose now that a 
£ D < 1 , а 2 - а 3 - . . . - а „ _ 1 > . By Step 2 there exists уе£><1, a>nD<l, a2-a3-... 
•ап_1У\{1}. Consequently, a 2 - a 3 - . . . - a „ _ 1 e D < l , y> and yeZ)<l, a> so a 2 - a 3 

••..•fl.-ieI 2W and Z)<1, а 2 - а 3 - . . . - а в _ 1 > С ^ 3 ( а ) . Since Z)<1, а 2 - а 3 • . . . • « „ _ J 
has index 2 in G, G = {1, a}D{\, a2-a3-...-a„_1}^X1(a)X3{a). 

R E F E R E N C E S 

[1] A. C A R S O N and M . M A R S H A L L , Decomposition of Witt rings, Canad. J. Math. 34 (1982), 
1276—1302. 

[2] M . M A R S H A L L and J. Y U C A S , linked quaternionic mappings and their associated Witt rings, 
Pacific J. Math. 95 (1981), 411—425. 

9 


