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A N O T E O N T H E C O R E T O P O L O G Y 

Abstract. In the paper examples are given of some plane sets peculiar with respect to the core 
topology. Some simple topological properties of the cartesian product of sets lying in linear spaces 
endowed with the core topology are also proved. 

Introduction. Let X be a real linear space and let AcX be a set. A point 
a e A is said to be algebraically interior to A iff for every b e X there exists 
a positive number e = s(a, b) such that 

(1) a + XbsA for Xe( — s, e). 

(In other words, in every direction A contains an open segment centered at a). 
The set of al l points which are algebraically interior to A is denoted core^ l : 

corev4 = {aeA\a is algebraically interior to A}, 

and a set A a X is called algebraically open whenever A = core A, that is, al l 
points of A are algebraically interior to A. The family 

£T{X) = {AcX\ A = core A} 

of al l algebraically open subsets of X is a topology in X and is called the core 
topology (cf. [1]—[3], [8]). 

In the present note we investigate the iteration of the operation core: 

(2) core 1 A = core A, c o r e " + 1 A = core core" A for n e N , 

and we exhibit some examples of sets with a peculiar behaviour under iteration 
(2) . In the last section we prove a few simple properties of cartesian products of 
sets in spaces endowed with the core topology. 

1. It would be reasonable to conjecture that actually core .4 = i n t ^ , the 
interior being meant in the sense of the core topology. This, however, is not the 
case. We always have (cf. [1], [3]) 

(3) int A c core A, 
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but the equality need not hold in (3). In general, the operation core is not 
necessarily idempotent. K . N i k o d e m gave an example (cf. [1], [3] and also 
Section 2 below) of a planar set A such that (see (2)) 

(4) core 2 A # core A. 

In the present section we are going to give another example of a planar set 
A with property (4). 

We take X = R 2 . In order to distinguish points in the plane from open 
intervals, in the sequel the point aeR2 with the coordinates £ and r\ wi l l be 
denoted a = <£, >/>. 

Let 

A = R 2 \ Q 2 and B = R 2 \ [ ( Q x R ) u ( R x Q)] 

be the set of points with at least one coordinate irrational and the set of points 
with both coordinates irrational, respectively. Clearly 

(5) coreB = 0 , 

no segment can consist only of points with both coordinates irrational. We are 
going to show that 

(6) c o r e ^ # 0 . 

Choose £, j / e R such that the numbers 1, C, r\ are linearly independent over 
Q and consider the point a = <£, i | ) e B c l The vertical line x = Ł, and the 
horizontal line y = r\ passing through a are contained in A, thus it is enough to 
investigate only the straight lines with the equation 

(7) y-t] = a{x-C), 

where a e R, a # 0. Let a be rational and suppose that a point (x, j;> e Q 2 fulfils 
(7). Then 

(y — ux) + ccC — r\ = 0, 

which is incompatible with the linear independence of 1, r\. Consequently the 
whole straight line (7) is contained in A. N o w consider the case of irrational 
a and suppose that points (xlt y^, <x 2 , y 2 ) e Q 2 m m l 0)- P u t x o = x1 — x2, 
y0 = y1 — y2- The numbers x 0 , y0 are rational and by (7) y0 = a x 0 , which 
implies x0 = y0 = 0 and consequently xt = x2, yt = y2. Thus in this case 
straight line (7) can intersect the set Q 2 at at most one point, say <x, y>, and 
the segment 

{<x, y > e R 2 | (7) holds and | x - f | < | 5 c - f | } 

is contained in A. 
The above considerations show that for every beR2 relation (1) is fulfilled, 

which means that a e core ,4. This proves (6). 
If one of the numbers r\ is rational, then the corresponding line x = C 

or y = r\ has a dense set of points in common with Q 2 and no segment of it 
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can be contained in A so that <<!;, n}$coreA. Consequently core Ac B, whence 
by (2) and (5) 

core 2 A = core core Acz core B = 0, 

i.e., c o r e 2 / ! = 0 . Together with (6) this yields (4). 

2. The natural question arises as to whether for every positive integer n a set 
AczX can be found such that 

(8) core n + 1 >4 # c o r e M . 

Observe that the sequence { c o r e M } n 6 N is decreasing and if for a positive integer 
m (m may even be nonnegative if we put core0 A: = A) we have 

(9) c o r e m + M = core m ^ , 

then this sequence is stationary: 

c o r e M = corem,4 for n^m 

and, moreover, 

(10) intA = coremA 

(the interior being taken in the sense of the core topology). In fact, since 
int A e &~(X), we have core int A = int A, whence i n view of (3) 

( 1 1 ) int A a core"1 A. 

(If m = 0 relation ( 1 1 ) is trivial). O n the other hand, (9) means that core m /4e 
3~{X), and clearly core"1 Ac A, whence 

(12) c o r e m ^ c inL4. 

Relations ( 1 1 ) and (12 ) yield (10) . 
N o w again we take X = R 2 and let ^ c R 2 be Nikodem's set fulfilling (4): 

At = {<£, > ? > e R 2 | ( £ - l ) 2 + , 7 2 < l } 
u { < £ , f / > G R 2 | ( ^ + l ) 2 + f / 2 < l } u / , 

where 

/ = {<£, i / > e R 2 | £ = 0 , -Kn<l}. 

Let { a n } n e N be a decreasing sequence of numbers from the interval (0, 1) 
converging to zero: 

(13 ) 0 < a n + 1 < a „ < l for H E N , l i m ^ a , , = 0 , 

let {/?„}„eN be an arbitrary sequence of positive numbers and put 

ln = ^(a„ + a„+ i ) , K = ^ ( a n - « n + i ) > n e N -

O n the segment I of the set Al we build a "ladder" 
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st = U"-i[{<«. "> e R 2l -Pn<Z<P.> n = «„} 
u{<& * > e R 2 | - / ? „ < £ < / ? „ , n = - a „ } 

u { < £ , f ^ e R ' K ' + fo-y.)2^} 

u{<{, W > e R 2 | £ 2 + (n + r n ) 2 <(5 2 }] . 

(If we chose the sequences {<*„} and {/?„} more thoroughly, we could make S x to 
fulfil S 1 n(^ 1 \ JT) = 0 , but this condition is not essential for our construction. 

We write 
A2 = A1uSl. 

The points of the "rungs" 

{<£, W > e R 2 | - P „ < t < P „ , n = + «„}, » e N , 
(except for these contained i n A^) clearly are not algebraically interior to A2 

and consequently are not i n co reA 2 . Therefore the latter contains no horizontal 
segments centered at the points <0, ± a n > , n e N , so that these points are not in 
core 2 ;4 2 . In view of (13) c o r e 2 ^ 2 contains no vertical segment centered at the 
origin. Thus <0, 0> 4 c o r e 3 4 2 and the set A2 fulfils (8) with n = 2. 

We can proceed further i n the same manner. O n the "rungs" of St we bui ld 
(horizontal) "ladders" of the second generation according to the same pattern. 
W e denote by S2 the union of all the "ladders" of the second generation and we 
write A3 = A 2 \ J S 2 . Arguing similarly as above we check that the set A3 fulfils 
(8) with n = 3. 

Hav ing defined in this way the set An for an n e N we bui ld "ladders" of the 
n-th generation on al l the "rungs" of the "ladders" of the (n — l)-st generation 
and we denote by Sn the union of a l l the "ladders" of the n-th generation. It is 
readily seen that the set 

(14) AH+1 = AHvS„ 

fulfils (8) with n replaced by n + 1 . 
In this way, using formula (14), we define by induction an increasing 

sequence {Aa}neN of sets An<=R2 fulfilling the condition 

c o r e " + 1 / 4 „ ^ c o r e M „ , n e N . 

It is also easy to see that every set An fulfils (9), and hence also (10) with 
m = n +1. 

We can carry on this construction ad infinitum arriving thus at the set 

(15) A = {J^lA„. 

But, contrary to what one could expect, set (15) does not fulfil (8) for al l n e N . 
In fact, we have core A = A and thus the set A is algebraically open providing 
another example of an algebraically open subset of the plane with a rather 
peculiar structure from the point of view of the natural topology of R 2 . 

However, by a slight modification of definition (15) we can obtain a set 
AczR2 fulfilling relation (8) for al l n e N . We assume a 0 = 1 and define the set 
A by the formula 
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(16) A = U n ° 0 = i K + i n [ R x ( - a „ _ 1 , O. . .J] ) . 

In other words, to each point <0, ± a „ > there is affixed the system of "ladders" 
up to the n-th generation. Consequently 

(17) <0, ± a „ > e c o r e M \ c o r e n + 1 ^ , n e N , 

and 

(18) <0, 0 > e c o r e M , n e N . 

Relation (17) shows that (8) holds for all n e N . 
We consider also the set 

E = f) i C o r e M , 

where A is given by (16), and encounter yet another surprise. We might have 
expected that E = int A (this is true, in particular, when A is replaced by any 
one of the sets 4 m ) , which, however, is not the case. B y virtue of (18) we have 
<0, 0>eE, whereas relation (17) implies that <0, ± a „ > <£E, n e N . In view of (13) 
this means that E cannot contain any vertical segment centered at the origin. 
Consequently <0,0> ^ c o r e £ , which shows that E c o r e £ and thus the set E is 
not algebraically open. 

3. Let X and Y be real linear spaces and consider the product X x Y as 
a real linear space with algebraic operations defined in the usual manner 
(coordinatewise). We consider X, Y and X x Y as topological spaces endowed 
with the core topology F(X), 5~(Y) and J ( I x Y ) , respectively. 

It was shown in [6] that 3~(X x Y) is not the product (Tychonov) topology 
determined by ST(X) and ST^Y). Thus simple theorems connecting the 
topological properties of sets AczX and B a Y with those of A x B a priori need 
not be valid in the present situation. Therefore it may come as a surprise that 
nevertheless a number of such results remain true also for the core topologies 
as may be seen from the theorem below. 

In the sequel points aeXx Y are represented as a = <a x, ay} with axeX 
and aye Y. The functions (projections) nx:X x Y -> X and ny:X x Y -> Y a rę 
defined by nx(a) = ax and ny(a) = ay. F o r every set EcXxY and points 
axeX, ayeY the sets (sections) £ x [ a x ] c Y and E^a^czX are defined by 

(19) Ex[axy.= {ayeY\ <ax, ay}eE}, £ ' [ a , ] : = {axeX\ <ax, ay}eE}. 

T H E O R E M 1. (i) If AeF{X) and BeF{Y), then AxBe3T{XxY). (The 
product of algebraically open sets is algebraically open). 

(ii) IfX\Ae#~{X) and Y\Be$~(Y), then (X x Y)\(A x B)e2T(X x Y). (The 
product of algebraically closed sets is algebraically closed). 

(hi) IfEe^(X x Y), then nx(E)e$~(X) and ny(E)e$~(Y). (The projections of 
an algebraically open set are algebraically open). 

(iv) If Ee3T(XxY), then £ x [ a Je3T(Y) and Ey\_ay~\e$~(X) for arbitrary 
points axeX and ay e Y. (Sections of an algebraically open set are algebraically 
open). 

32 



(v) int(A x B) — (inL4) x (intS) for arbitrary sets AczX and BczY (int 
denotes the interior in the sense of the respective core topology). 

(vi) cl(A x B) = (dA) x (clfl) for arbitrary sets A<=X and B c Y (cl denotes 
the closure in the sense of respective core topology). 

P r o o f , (i) Take arbitrary points a = (ax, ay}eAxB and b = (bx, by}e 
XxY. Thus axeA, ayeB, bxeX, byeY. Since the sets A and B are 
algebraically open there exist positive numbers e x and e 2 such that (cf. (1)) 

ax + kbxeA for Ae( —e l 5 e x) 

and 

ay + XbyeB for Xe( — E 2 , e2). 

Hence 

a + Ab = (ax,ayy + A(bx,byy = (ax + A.bx,ay + Aby}eAxB for Ae( — e,e), 

where e = min (sx, e2) > 0. Due to the unrestricted choice of beXxY this 
means that the point a is algebraically interior to A x B. Because of the 
arbitrariness of aeAxB we get hence AxB = coie(AxB), that is, Ax Be 
ST{X x Y). 

(ii) results from (i) in view of the relation 

(X x Y)\(A x B) = [{X\A) x ( 7 \ B ) ] u [ Z x (Y\B) ]u [ (*V4) x Y]. 

(iii) Write A = nx{E) and take arbitrary points axeA,bxeX and bye Y. B y 
the definition of A there exists a point aye Y such that <a x, ayyeE. Further, 
since E is algebraically open, there exists an e>0 such that 

(ax + Xbx, ay + Xbyy = <a x, ay} + l(bx, by}eE for Xe{ — s, e). 

Hence 

ax-\-kbxenx{E) = ,4 for / l e (—E, E), 

which implies, in view of the arbitrariness of axeA and bxeX, that the set 
A = nx(E) is algebraically open. The proof for the set ny(E) is similar. 

(iv) Take an dyeExlax2 and a byeY. We have <a x, dyyeE and (0X, by}e 
XxY, where 0^ denotes the zero in X. Since E is algebraically open, there 
exists an e>0 such that 

(ax, ay + Xby} = (ax, ay} + X(0x, by}eE for Xe(-s, e). 

In other words 

dy + AbyEE^a^ for Xe{—e, E). 

Due to the arbitrariness first of bye Y and then of dyeEx[_ax~\ this means that 
the set is algebraically open. The proof for the sets Ey is similar. 

(v) We have (inL4) x ( in tB)c A x B, and since by virtue of (i) the set (int A) 
x(intB) is algebraically open this implies that actually 
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(20) ( i n U ) x (intB) e in t (^ x B). 

O n the other hand, the inclusion int(/4xB)czAxB implies the relations 

7tx(int(^ x B))cz nx(A xB) = A, 7c,,(int(^ x B))czny(AxB) = B, 

which i n turn imply, by virtue of (iii), 

(21) rcx(int(^ x B)) cz i n U , ny(int(A x B)) cz in tB. 

Since 

int(A x B)cnx{mt(A x B)) x ny(int(A x B)), 

relation (21) yields 

(22) i n t ( ^ x B ) c (mtA) x (intB). 

Assertion (v) is an immediate consequence of (20) and (21). 
(vi) Obviously A x B cz (c\A) x (clB), whence by virtue of (ii) we obtain 

(23) c l ( 4 x B ) c ( c L 4 ) x ( c l B ) . 

In order to prove the converse inclusion take an arbitrary point a = <a x , 
a , ,>G(cL4)x(clB) so that 

(24) axec\A, ayec\B 

and let EczXxY be an arbitrary algebraically open neighbourhood of a: 

(25) a = (ax, ay}eEe2T(Xx Y). 

B y virtue of (iv) the set Ey\_ay~\ is an algebraically open neighbourhood of ax 

(cf. (19)) so that by (24) Ar\Ey{ay] # 0 . Consequently there exists an axe 
AnEy[_ay]. In particular, in view of (19), we have (ax, ay}sE. Thus, again by 
(iv) and (24), we have Br\Ex[ax~] J= 0 and consequently there exists an aye 
B n E J a J . We have according to (19) <a x, ay}eE and clearly <a x, dy}e 
AxB. This means that 

(26) (AxB)nE*0, 

and (26) holds for every set EczXxY fulfilling (25). This implies that ae 
d(AxB), whence it follows, due to the arbitrariness of aG(cL4)x(cLB), that 

(clA) x (clB) czcl{Ax B), 

which together with (23) yields (vi). 
This completes the proof of the theorem. 
A C K N O W L E D G E M E N T . I owe the above proof of property (vi) to 

D r . A . Kuc i a . I use this opportunity to thank her for her consent to include this 
proof into the present paper. 

T H E O R E M 2. Assume that d i m Y = 1 and let EczXxY be a set of the first 
category in the topological space (X x Y, &~{X x Y)). Then the set 

(27) {axeX\Ex[ax\ is of the second category in (Y, ^"(Y))} 

is of the first category in the topological space (X, 3~{X)). 
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The proof of the above theorem does not differ from the proof of the 
analogous result i n the case, where X and Y are arbitrary topological spaces 
and X x Y is endowed with the product (Tychonov) topology (cf., e.g., [5; pp. 
29—30] or [7; p. 222]). The assumption that d i m Y = 1 replaces the 
assumption that the topological space (Y, 3T(Y)) has a countable neighbour­
hood base appearing in the theorem referred to, because as A . K u c i a has 
observed the topological space (Y, $~{Y)) has a countable neighbourhood base 
if and only if d im Y = 1. 

W e derive yet from Theorem 2 a known theorem ([4] contains a more 
general result). Recall that a topological space is called a Baire space whenever 
the Baire category theorem (to the effect that every set of the first category is 
a frontier set) is true in this space. 

T H E O R E M 3. For every positive integer n the topological space (R", ^"(R")) 
is a Baire space. 

P r o o f . As in [4] the proof runs by induction on n. F o r n = 1 the theorem 
is true by virtue of the Baire category theorem, since ^~(R) coincides with the 
natural topology of the real line (cf. [1], [2]). N o w suppose that for an ne 
N the topological space (R", ^"(R n)) is a Baire space, but ( R " + 1 , ^ " ( R " + 1 ) ) is 
not. We represent R " + 1 a s I x F , where X = R" and Y = R . O u r supposition 
about R " + 1 implies that there exists a non-empty algebraically open set 
EczX x Y of the first category i n the topological space {X x Y, 3~(X x Y)). By 
(iv) of Theorem 1 for every axenx(E) the set £ x [ a x ] c 7 is non-empty and 
(algebraically) open and hence, by virtue of the Baire theorem, is of the second 
category in the topological space (Y, 3~{Y)). Thus nx{E) is contained in set (27), 
whence it follows by Theorem 2 that the set nx(E) is of the first category in the 
topological space (X, &~(X)). Evidently it is also non-empty and by Theorem 
l(iii) it is algebraically open. But this is incompatible with the condition that 
(X, &~(X)) = (R", ^"(R")) is a Baire space. Consequently our supposition must 
have been false and together with (R", ^ ( R n ) ) also ( R n + 1 , ^ " ( R " + 1 ) ) is a Baire 
space, n e N . Induction ends the proof. 
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