TADEUSZ DŁOTKO*

ON THE SOLUTIONS OF CERTAIN FUNCTIONAL-DIFFERENTIAL EQUATIONS OF THE *n*-TH ORDER

Abstract. The classes of solutions in $[0, \infty)$ of the general functional-differential equation (1) are studied. The equation (1) includes various types of functional-differential equations with deviated argument. The solutions are functions with discontinuous derivative of the *n*-th order.

In the earlier paper [2] the classes of solutions in $[0, \infty]$ of an abstract functional-differential equation of the form

(1)
$$\varphi^{(n)}(t) = \Theta F \varphi(t), \quad \Theta^2 = 1,$$

were studied. A solution φ of (1) was understood to be a function of the class $C^{(n)}$ in an interval $[a, b] \subset \mathbb{R}^1$.

Let us introduce certain spaces of functions:

 Φ^n , n = 0, 1, ..., denotes the space of functions $\varphi(t)$, $t \ge 0$, with continuous derivatives $\varphi^{(0)}$, φ' , ..., $\varphi^{(n)}$.

We write $\varphi(t) \ge \alpha \ (\varphi(t) \le \alpha)$ if there exists a number $b \ge 0$ such that $\varphi(t) \ge \alpha \ (\varphi(t) \le \alpha)$ for $t \ge b$ and $\varphi(t) \ne \alpha$ in any subinterval of $[0, \infty)$. Instead of $\varphi(t) \ge 0 \ (\varphi(t) \le 0)$ we write $S[\varphi] = 1 \ (S[\varphi] = -1)$. As the limit lim $\varphi(t)$ we always understand lim $\varphi(t)$ as $t \to \infty$.

 Ψ^n denotes the subspace of Φ^n consisting of functions φ such that $\varphi^{(k)}(t)$ have determined signs for sufficiently large t and k = 0, 1, ..., n.

 Ψ^{nk} denotes the subspace of Ψ^n containing functions φ satisfying the following conditions:

 $1^{\circ} \varphi \in \Psi^n$

2° $S[\varphi^{(i)}] S[\varphi] = 1$ for i = 0, 1, ..., k,

3° $S[\varphi^{(i)}] S[\varphi] = (-1)^{i-k}$ for i = k+1, ..., n-1, (when k < n),

4° lim $\varphi^{(m)}(t) = 0$ for m = k+1, ..., n-1 (when k < n-1),

5° lim $\varphi^{(k)}(t) = g \neq \pm \infty$ exists and $gS[\varphi] \ge 0$ (when $k \le n-1$).

 \mathscr{B}^{nk} is the subspace of Ψ^{nk} consisting of functions φ for which lim $\varphi^{(k)}(t) = 0$.

 \mathscr{A}^n is the subspace of Φ^n consisting of functions φ for which

$$\sup\left\{t:\varphi(t)=0\right\}=\infty.$$

Manuscript received January 5, 1988, and in final form April 5, 1989.

AMS (1991) subject classification: 34K15, 34C10.

^{*} Instytut Matematyki Uniwersytetu Śląskiego, ul. Bankowa 14, 40-007 Katowice, Poland.

The following theorem was demonstrated in [2].
If

$$1^{\circ}$$
 for any $\varphi \in \Phi^{n}$, $S[\varphi] = 1$ or $S[\varphi] = -1$ we have
 $S[\varphi] S[F\varphi] = 1$

and

2° for any $\varphi \in \Phi^n$, $S[\varphi] = 1$ or $S[\varphi] = -1$, $|\varphi(t)| \ge c t^p$, c = const > 0, $p \in \mathbb{N}, 0 \leq p < n-1$, we have

$$|\int_{0}^{\infty} s^{n-p-2} F \varphi(s) \, \mathrm{d}s| = \infty,$$

then all solutions of (1) which exist in $[0, \infty)$ belong to the following classes:

$\varphi^{(n)} = -F\varphi$	$\varphi^{(n)}=F\varphi$	
\mathscr{A}^n	$\mathscr{A}^n, \ \Psi^{nn}, \ \mathscr{B}^{n0}$	n even
A ⁿ , B ⁿ⁰	$\mathscr{A}^n, \ \Psi^{nn}$	n odd

The results formulated above will be extended to functional - differential equations of the form (1) but with a more general definition of a solution.

We define a solution φ of (1) as a real valued function which satisfies the following conditions:

1° φ is continuous for $t \ge 0$,

2° the derivatives $\varphi', \ldots, \varphi^{(n-1)}$ exist for $t \ge 0$,

3° $\varphi^{(n)}(t)$ exists at each point $t \in [0, \infty)$ with the possible exception of a sequence $\{t_1, \ldots, t_n, \ldots\} \subset [0, \infty)$ without any finite cluster point,

4° the right-hand derivatives $\varphi^{(n)}(t_i+)$ exist,

5° equation (1) is satisfied in every interval $[t_i, t_{i+1}] \subset [0, \infty)$.

REMARK 1. This type of generalization of a solution of (1) and n = 1 is necessary for a study of functional-differential equations which occur in mathematical models of certain biomedical phenomena ([6]).

REMARK 2. Some examples of equations of the form (1) for which the above generalization of a solution is useful are given below:

(a) $\varphi^{(n)}(t) = \Theta f(t, \varphi(t - E(\alpha(t))) + \Theta g(t, \varphi(t - \beta(t))),$

(b) $\varphi^{(n)}(t) = p(t)f(\varphi(E(t))), E(t) = \text{Entier}(t),$

$$\varphi^{(i'-1)}(E(t))) \cdot \int_{h(t)} \varphi(t-s) \, \mathsf{d}_s r(t, s),$$

 $S[f] = \text{const}, h(t) \le t \le k(t)$, for fixed t the function r is non-decreasing in s. Now we shall give some definitions and lemmas.

The expression $\varphi^{(n)}(t) \ge \alpha \ (\varphi^{(n)}(t) \le \alpha)$ means here that $\varphi^{(n)}(t) \ge \alpha$ for b sufficiently large $(\varphi^{(n)}(t) \leq \alpha \text{ for } t \geq b)$ except possibly a sequence $\{t_1, t_2, \ldots\} \subset$ $[0, \infty]$ for which $\varphi^{(n)}(t, +) \ge \alpha (\varphi^{(n)}(t, +) \le \alpha)$. When $\alpha = 0$, then we say that $\varphi(t)$ is of constant sign in $[0, \infty)$. $S[\varphi] = 1$ or $S[\varphi] = -1$.

Let us define the following spaces of functions:

 $\hat{\Phi}^n, n = 1, 2, ..., \text{ is the space of continuous functions } \varphi(t), t \ge 0, \text{ with continuous derivatives } \varphi', ..., \varphi^{(n-1)} \text{ for } t \ge 0.$ The derivative $\varphi^{(n)}$ exists for $t \ge 0$ possibly except for a sequence of points $\{t_1, t_2, ...\} \subset [0, \infty)$ for which the right derivatives $\varphi^{(n)}(t_i+)$ exist.

 $\hat{\Psi}^n$, n = 0, 1, ..., is the subspace of $\hat{\Phi}^n$ with functions φ such that $\varphi^{(i)}(t)$, i = 0, 1, ..., n-1 have determined signs for sufficiently large t and $\varphi^{(n)}(t) \ge 0$ or $i \le 0$.

 $\hat{\Psi}^{nk}$ is defined by the conditions: $\varphi \in \hat{\Psi}^{nk}$ if and only if $1^{\circ} \varphi \in \hat{\Psi}^{n}$,

2° $S[\varphi^{(i)}] S[\varphi] = 1$ for i = 0, 1, ..., k,

3° $S[\varphi^{(i)}] S[\varphi] = (-1)^{i-k}$ for i = k+1, ..., n-1 (when k < n),

4° lim $\varphi^{(m)}(t) = 0$ for m = k+1, ..., n-1 (when k < n-1),

5° the limit $\lim \varphi^{(k)}(t) = g \neq \pm \infty$ exists and $gS[\varphi] \ge 0$ (when $k \le n-1$). $\hat{\mathscr{B}}^{nk}$ is the subspace of $\hat{\mathscr{\Psi}}^{nk}$ consisting of functions φ for which $\lim \varphi(t) = 0$. $\hat{\mathscr{A}}^{n}$ is the subspace of $\hat{\varPhi}^{n}$ consisting of functions φ for which

$$\sup\{t: \varphi(t)=0\}=\infty.$$

LEMMA 1. If $\varphi \in \hat{\Phi}^n$ and $\varphi^{(n)}(t) \ge 0$ (≤ 0) in the set $[0, \infty) \setminus \{t_1, t_2, \ldots\}$, then $\varphi \in \hat{\Psi}^n$.

Proof. Let us consider the case $\varphi^{(n)}(t) \ge 0$ for $t \ge 0$ for $t \ge b$, except possibly for the points $\{t_1, t_2, \ldots\}$. From the formula

$$\varphi^{(n-1)}(t) = \varphi^{(n-1)}(a) + \int_{a}^{t} \varphi^{(n)}(s) \, \mathrm{d}s$$

it follows that $\varphi^{(n-1)}(t)$, $t \ge a$, is monotonic and therefore of constant sign for sufficiently large t. The same is true for $\varphi^{(n-2)}(t), \ldots, \varphi(t)$.

LEMMA 2. For every function $\varphi \in \hat{\Psi}^n$ there exists a number $b \ge 0$ and a natural number k, $0 \le k \le n$, such that $\varphi \in \hat{\Psi}^{nk}$. (In fact the class $\hat{\Psi}^n \subset \hat{\Phi}^n$, so when $\varphi \in \hat{\Psi}^n$ the functions $\varphi, \varphi', \ldots, \varphi^{(n)}$ are of constatut sign for $t \ge b$, when b is sufficiently large.)

Proof. The lemma is true for n = 1. Let us suppose that it is for n-1. At first, when $S[\varphi^{(n-1)}] S[\varphi^{(n-2)}] = -1$ and $\varphi^{(n-2)}(t) \ge 0$, $(\varphi^{(n-1)}(t) \le 0)$, then $\varphi^{(n)}(t)$ is of constant sign and the limit lim $\varphi^{(n-1)}(t) = g \le 0$ exists. When g < 0, then $\varphi^{(n-1)}(t) \le c < 0$ and for b sufficiently large

$$0 < \varphi^{(n-2)}(t) < \varphi^{(n-2)}(b) - cb + ct,$$

which is impossible. So we have $\varphi^{(n-1)}(t) \leq 0$, $\lim \varphi^{(n-1)}(t) = g = 0$, from which it follows that $\varphi^{(n)}(t) \geq 0$. We see that in this case the signs of $\varphi^{(n-2)}$, $\varphi^{(n-1)}$, $\varphi^{(n)}$ alternate. The existence of the integer k follows from our assumption on k-1.

Now let us discuss the case $S[\varphi^{(n-1)}]S[\varphi^{(n-2)}] = 1$. We can take k = n, when $S[\varphi^{(n)}]S[\varphi^{(n-1)}] = 1$, and k = n-1 when $S[\varphi^{(n)}]S[\varphi^{(n-1)}] = -1$ and the lemma is again true.

LEMMA 3. When $\varphi(t) \in \hat{\Psi}^{nk}$, $0 \leq k \leq n$, $\varphi^{(n)}(t) \leq 0$ and f(t) is a continuous and non-negative function in the interval $[b, \infty)$ such that for $b \leq t \leq v$

$$S[\varphi^{(n)}] \int_{t}^{v} \varphi^{(n)}(s) \, \mathrm{d}s \ge \int_{t}^{v} f(s) \, \mathrm{d}s,$$

then

(2)
$$S[\varphi^{(x)}] \varphi^{(x)}(t) \ge \frac{1}{(n-\varkappa-1)!} \int_{t}^{\infty} (s-t)^{n-\varkappa-1} f(s) \, \mathrm{d}s,$$
$$t \ge b, \ \varkappa = n-1, \ n-2, \dots, \ k.$$

The last integral is convergent and

$$S[\varphi^{(\varkappa)}] = (-1)^{n-\varkappa} S[\varphi^{(n)}]$$

Proof. From the assumptions of the lemma it follows that $\varphi^{(n-1)} \ge 0$ and

$$-\int_{t}^{v} \varphi^{(n)}(s) \, \mathrm{d}s = -\varphi^{(n-1)}(v) + \varphi^{(n-1)}(t) \ge \int_{t}^{v} f(s) \, \mathrm{d}s.$$

So we have

$$\varphi^{(n-1)}(t) \ge \int_{t}^{v} f(s) \,\mathrm{d}s$$

The last formula is a particular case of (2) with $\kappa = n-1$. Let us suppose that (2) is true for $\kappa > k$. First we discuss the case $S[\varphi^{(\kappa)}] = 1$ and, for the induction proof, assume that the formula

$$\varphi^{(\varkappa)}(t) \ge \frac{1}{(n-\varkappa-1)!} \int_{t}^{\infty} (s-t)^{n-\varkappa-1} f(s) \, \mathrm{d}s$$

is true. By integration in the interval [t, v] we get

$$\varphi^{(\varkappa-1)}(v) - \varphi^{(\varkappa-1)}(t) = \frac{1}{(n-\varkappa-1)!} \int_{t}^{v} \varphi^{(\varkappa)}(s) \, \mathrm{d}s$$

$$\geq \frac{1}{(n-\varkappa-1)!} \int_{t}^{v} \left(\int_{s}^{\infty} (u-s)^{n-\varkappa-1} f(u) \, \mathrm{d}u \right) \mathrm{d}s.$$

But $S[\varphi^{(\varkappa-1)}] = -1$ for $\varphi \in \hat{\Psi}^{nk}$ and

$$\varphi^{(\varkappa-1)}(t) \geq \frac{1}{(n-\varkappa-1)!} \int_{t}^{v} \left(\int_{s}^{\infty} (u-s)^{n-\varkappa-1} f(u) \, \mathrm{d}u \right) \mathrm{d}s \geq 0.$$

So we have

$$\varphi^{(\varkappa-1)}(t) \geq \frac{1}{(n-\varkappa-1)!} \int_{t}^{\infty} \left(\int_{s}^{\infty} (u-s)^{n-\varkappa-1} f(u) \, \mathrm{d}u \right) \mathrm{d}s \geq 0.$$

Let us estimate the integral

$$\lim_{v \to \infty} \int_{t}^{v} \left(\int_{s}^{\infty} (u-s)^{n-\varkappa-1} f(u) \, \mathrm{d}u \right) \mathrm{d}s = \lim_{v \to \infty} \int_{s}^{\infty} \left(\int_{t}^{v} (u-s)^{n-\varkappa-1} f(u) \, \mathrm{d}s \right) \mathrm{d}u$$
$$= \lim_{u \to \infty} \int_{u}^{\infty} f(u) \left(\int_{t}^{\infty} (u-s)^{n-\varkappa-1} \, \mathrm{d}s \right) \mathrm{d}u = \lim_{v \to \infty} \int_{u}^{\infty} f(u) \frac{(u-t)^{n-\varkappa} - (u-v)^{n-\varkappa}}{n-\varkappa} \, \mathrm{d}u$$
$$\geqslant \int_{u}^{\infty} \frac{(u-t)^{n-\varkappa}}{n-\varkappa} f(u) \, \mathrm{d}u.$$

This finishes the induction . The case $S[\varphi^{(*)}] = -1$ is similar.

Now we impose some hypotheses for the operation F in (1).

The operation F is in the space $\hat{\Phi}^n$ with values in the same space, $n \ge 1$. Hypothesis H₁. For $\varphi \in \hat{\Phi}^n$, $S[\varphi] S[F\varphi] = 1$.

Hypothesis H₂. When $\varphi \in \hat{\Phi}^n$, $S[\varphi] = 1$ or $S[\varphi] = -1$, $|\varphi(t)| \ge c t^p$, c = const > 0, $p \in \mathbb{N}$, $0 \le p < n-1$, then

$$\int_{0}^{\infty} |s^{n-p-2} F\varphi(s) \, \mathrm{d}s| = \infty.$$

THEOREM 1. When the hypothesis H_1 is true, then every solution φ of equation (1) which exists in the interval $[b, \infty)$ belongs to one of the classes $\hat{\mathscr{A}}^n$ or Ψ^{nk} i.e.

if
$$\varphi^{(n)} = -F\varphi$$
, then $\varphi \in \hat{\mathscr{A}}^n$ or $\varphi \in \hat{\Psi}^{nk}$, $0 \le k < n$,
if $\varphi^{(n)} = F\varphi$, then $\varphi \in \hat{\mathscr{A}}^n$ or $\varphi \in \hat{\Psi}^{nk}$, $0 \le k \le n$.

Proof. Suppose that $\varphi \notin \hat{\mathscr{A}}^n$. Then $S[\varphi] = 1$ or $S[\varphi] = -1$ and from Lemmas 1 and 2 it follows that $\varphi \in \hat{\mathscr{\Psi}}^{nk}$, $0 \leq k \leq n$.

THEOREM 2. When the hypotheses H_1 and H_2 are satisfied, then every solution φ of equation (1) which exists in the interval $[b, \infty)$ belongs to one of the classes $\hat{\mathcal{A}}^n$, $\hat{\Psi}^{nn}$, $\hat{\mathscr{B}}^{n0}$, i.e.

$\varphi^{(n)}=-F\varphi$	$\varphi^{(n)}=F\varphi$	
Ân	$\hat{\mathscr{A}}^n$, $\hat{\Psi}^{nn}$, $\hat{\mathscr{B}}^{n0}$	n even
$\hat{\mathscr{A}}^n, \hat{\mathscr{B}}^{n0}$	$\hat{\mathscr{A}^n}, \hat{\Psi}^{nn}$	n odd

Proof. Let us consider a solution φ of equation (1) in the interval $[b, \infty)$, such that $\varphi \notin \hat{\mathscr{A}}^n$. From Theorem 1 it follows that $\varphi \in \hat{\mathscr{Y}}^{nk}$, $0 \leq k \leq n$. It is sufficient to demonstrate that the index k is equal to zero. When $\varphi \in \hat{\mathscr{Y}}^{nk}$ then $S[\varphi^{(k)}] = 1$ or $S[\varphi^{(k)}] = -1$. Suppose that $S[\varphi^{(k)}] = 1$, $\varphi^{(k)} \geq 0$ and $\varphi^{(k-1)}(t)$ is positive and non-decreasing. There exists an $\alpha > 0$ such that $\varphi^{(k-1)} \geq 2\alpha$. The last inequality gives $\varphi(t) \geq t^{k-1}$ for $t \geq b$ and b sufficiently large. Let us take $f(t) = F\varphi(t)$. From the form of equation (1) and the hypothesis H_2 , for p = k-1 we get

$$\int_{0}^{\infty} s^{n-k-1} f(s) \, \mathrm{d}s = \infty.$$

Integrating "per partes" the integral

$$\int_{\tau}^{t} s^{n-k-1} \varphi^{(n)}(s) \,\mathrm{d}s$$

$$\int_{\tau}^{t} s^{n-k-1} \varphi^{(n)}(s) \, \mathrm{d}s = t^{n-k-1} \varphi^{(n-1)}(t) - (n-k-1)(n-k-2)t^{n-k-2}$$
$$\cdot \varphi^{(n-2)}(t) + \dots \pm (n-k-1)! \varphi^{(k)}(t) + \int_{\tau}^{t} \varphi^{(k)}(s) \, \mathrm{d}s + C$$

>
$$(n-k-1)! \varphi^{(k)}(t) + C = C + \int_{\tau}^{t} (s-\tau)^{n-k-1} \varphi^{(n)}(s) ds.$$

For $t \to \infty$ these inequalities lead to a contradiction $\infty < \infty$ and hence our assumptions about $k: k \ge 1$ is false. A similar contradiction is obtained when $S[\varphi^{(k)}] = -1$.

Suppose now that $\varphi(t) \ge '\alpha > 0$. From the hypothesis H₂, with p = 0, it follows that

But from Lemma 3 and $f(t) = \alpha > 0$, $\varkappa = 0$ it follows that

$$\varphi(t) \geq \frac{1}{(n-1)!} \int_{t}^{\infty} (s-t)^{n-1} \alpha \, \mathrm{d}s \geq 0.$$

From the last inequality and Lemma 3 we get

(4)
$$\infty > \frac{1}{(n-1)!} \int_{0}^{\infty} s^{n-1} F \varphi(s) \, \mathrm{d}s.$$

Conditions (3) and (4) leads to

$$\infty = \int_{0}^{\infty} s^{n-2} F \varphi(s) \, \mathrm{d} s < \int_{0}^{\infty} s^{n-1} F \varphi(s) \, \mathrm{d} s < \infty.$$

This contradiction finishes the demonstration.

REMARK. Equation (1) is a generalization of a great number of functionaldifferential equations with or without deviation of the argument. The formulation of Theorem 2 is very general. The theorem includes not only the classical results of W. B. Fite [4], J. G. Mikusiński [5], A. Bielecki and T. Dłotko [2], T. Dłotko [3], but also the newest results reported by B. G. Zhang and N. Parhi [6], A. R. Aftabizadeh and J. Wiener [1], B. G. Zhang [7].

REFERENCES

- [1] A. R. AFTABIZADEH and J. WIENER, Oscillatory properties of first order linear functional differential equations, Applicable Anal. 20 (1985), 165–187.
- [2] A. BIELECKI and T. DŁOTKO, Sur certaines équations fonctionnelles, Ann. Univ. Mariae Curie-Skłodowska 15 8 (1961), 97-106.
- [3] T. DŁOTKO, Sur certaines équations integro-differentielles du n-ième ordre, Prace Nauk. Uniw. Śląskiego, Prace Mat. 1 (1969), 103---107.
- [4] W. B. FITE, Concerning the zeros of solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), 341-352.
- [5] J.G. MIKUSIŃSKI, On Fite's Oscillation theorems, Colloq. Math. 2 (1951), 34-38.
- [6] B. G. ZHANG and N. PARHI, Oscillatory and nonoscillatory properties of first order differential equations with piecewise constant deviating argument, United Nations Educat. Scientific and Cultural Org., Internat. Atomic Energy Agency, Miramare-Trieste, 1986, p. 16.
- [7] B.G. ZHANG, A survey of oscillation of solutions to first order differential equations with deviating argument, Trends in the Theory and Practice of Nonlinear Analysis, Ed. V. Lakhsmikantham, 1985, 475-483.