TADEUSZ DLOTKO*

ON THE SOLUTIONS OF CERTAIN
FUNCTIONAL-DIFFERENTIAL EQUATIONS
OF THE n-TH ORDER

Abstract. The classes of solutions in [0, o) of the general functional-differential equation (1) are
studied. The equation (1) includes various types of functional-differential equations with deviated
argument. The solutions are functions with discontinuous derivative of the n-th order.

In the earlier paper [2] the classes of solutions in [0, co] of an abstract
functional-differential equation of the form

(1) PP ({t)=0OFoe@), ©6*=1,

were studied. A solution ¢ of (1) was understood to be a function of the class
C™ in an interval [a, b)cR.

Let us introduce certain spaces of functions:

&, n=0,1,..., denotes the space of functions ¢(t), t > 0, with continuous
derivatives 0@, ¢/, ..., ™.

We write ¢(t) > 'a (¢(t) <'a) if there exists a number b >0 such that ¢(t)
2o (p(t)<a) for t>b and ¢(t) # « in any subinterval of [0, oo). Instead of
@(t) =0 (p(t) <'0) we write S[¢p] = 1 (S[¢] = —1). As the limit lim ¢(r) we
always understand lim ¢(t) as t — co.

¥" denotes the subspace of @" consisting of functions ¢ such that ¢®(r)
have determined signs for sufficiently large ¢ and k = 0,1,...,n.

Y™ denotes the subspace of ¥" containing functions ¢ satisfying the
following conditions:

1° e ",

2° S[e9]1S[@] =1 for i =0,1,...,k,

3° S[eW1S[@]l =(—1y"*for i = k+1,...,n—1, (when k <n),

4° lim ¢™(t) =0 for m = k+1,...,n—1 (when k<n—1),

5° lim @®(t) = g # + oo exists and gS[@]>0 (when k<n—1).

#™ is the subspace of ¥Y"* consisting of functions ¢ for which lim
®(t) = 0.

/" is the subspace of " consisting of functions ¢ for which

sup {t:¢(t) = 0} = o0.
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The following theorem was demonstrated in [2].
If
1° for any pe®", S[p] =1 or S[¢] = —1 we have

Sle] S[Fe] =1
and

2° for any pe®", S[p]l =1 or S[e]l = —1, |e@®)| =" ct?, ¢ = const >0,
peN, 0<p<n—1, we have

| fs""?72F @(s) ds| = oo,

then all solutions of (1) which exist in [0, co) belong to the following classes:

¢ =—Fp | ¢"=Fg
A" o, P B0 n even
A", B A", P n odd

The results formulated above will be extended to functional - differential
equations of the form (1) but with a more general definition of a solution.

We define a solution ¢ of (1) as a real valued function which satisfies the
following conditions:

1° ¢ is continuous for t >0,

2° the derivatives ¢’,...,0" 1 exist for t>0,

3° @™(¢) exists at each point te[0, co) with the possible exception of
a sequence {t,,...,t,...;<[0, o0) without any finite cluster point,

4° the right-hand derivatives ™ (t;+) exist,

5° equation (1) is satisfied in every interval [t;, ¢t;,,)<[0, o).

REMARK 1. This type of generalization of a solution of (1) and n = 1 is
necessary for a study of functional-differential equations which occur in
mathematical models of certain biomedical phenomena ([6]).

REMARK 2. Some examples of equations of the form (1) for which the
above generalization of a solution is useful are given below:
(@) ¢™(t) = Of(t, p(t—E@(®))+0Og(t, o(t—p0)
(b) o™ (t) = p()f(@(E(®)), E(r) = Entier (¢),

© o™ =1z <p(t),---,k:p)‘"“’(t), o(t+0;),...,0" Pt £d,-,), @ED),...,

" DEQR)- [ ot—s) d,r, 3),
h(t)

S[ ] = const, h(t) <t <k(r), for fixed ¢t the function r is non-decreasing in s.

Now we shall give some definitions and lemmas.

The expression @™(t)='a (¢™(f)<'c) means here that ¢™(f)=oa for
b sufficiently large (9™ (t) < « for ¢ > b) except possibly a sequence {t,, t,,...} <
[0, o] for which o™(t;+) = a (p™(¢t;+) <a). When a = 0, then we say that ¢(¢)
is of constant sign in [0, o). S[¢] =1 or S[¢] = —1.

Let us define the following spaces of functions:
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é" n=12,..., is the space of continuous functions ¢(t), t >0, with
continuous derivatives ¢, ..., "~V for ¢t > 0. The derivative ¢™ exists for t > 0
possibly except for a sequence of points {t,, t,, ...} =[0, o) for which the right
derivatives @™(t;+) exist.

¥" n=0,1,..., is the subspace of ¢" with functions ¢ such that @®(),
i=0,1,...,n—1 have determined signs for sufficiently large t and ¢™(t)>="'0
or ‘<0.

P js defined by the conditions: ¢ ¥™ if and only if

1° pe P,

2° S[(p"’] Sfel=1fori=0, 1, ..., k,

3° S[eW]S[e] = (—1)"* for i = k+1, ..., n—1 (when k<n),

4° lim ¢™(t) =0 for m=k+1, ..., n—1 (when k<n—1),

5° the limit lim ¢®(t) = g # + © exists and gS[¢]1=0 (when k<n— 1)

48" is the subspace of ¥™ consisting of functions ¢ for which lim o(t) =

/" is the subspace of #” consisting of functions ¢ for which

sup{t: o(t) =0} =

LEMMA 1. If e &" and ¢™(t) > ' 0 (<'0) in the set [0, o)\{t,, t,, ...}, then
peP".

Proof. Let us consider the case ¢™(¢f) >’0. Then ¢™(t) > 0 for t > b, except
possibly for the points {¢,,t,,...}. From the formula

t
") = ¢ V(@) +] () ds

it follows that ¢~ 1(t), t > a, is monotonic and therefore of constant sign for
sufficiently large ¢. The same is true for @~ 2(z),..., ().

LEMMA 2. For every function peP" there exists a number b>0 and
a natural number k, 0 <k <n, such that ¢ € ™. (In fact the class "< é" |
when @ € P the functions ¢, @', ..., ™ are of constatnt sign for t > b, when b is
sufficiently large.)

Proof. The lemma is true for n = 1. Let us suppose that it is for n—1. At
first, when S[p®~ 1] S[(p(" D)= —1and ¢" 2@1)='0, (¢ V() <'0), then

("’(t) is of constant sign and the limit lim ¢®~ V() = g <0 exists. When g <0,

then " Y(f)<’c<0 and for b sufficiently large

0< ¢ 2(t) < 9"~ D(b)—ch +ct,

which is impossible. So we have " 1(t)<’0, lim ¢® V() =g =0, from
which it follows that @™ (¢) >’0. We see that in this case the signs of ¢”~ 2,
e" ™D, @™ alternate. The existence of the integer k follows from our
assumptlon on k—1.

Now let us discuss the case S[o" V]S[¢" 2] = 1. We can take k = n,
when S[¢™]S[e® V] =1, and k = n—1 when S[¢™]S[e" V] = —1 and
the lemma is again true.

LEMMA 3. When o(t)e $™, 0 < k<n, "™ (t) <0 and f(t) is a continuous and
non-negative function in the interval [b, o0) such that for b<t<v
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STo™1[ p™(s)ds > [ £(5)ds,
then
) SO 160> o= | T(s— i1 f(s)ds,

t=2b, x=n—-1,n-2,..., k.

(n—

The last integral is convergent and

S[e®] = (=1)"*S[e™].
Proof. From the assumptions of the lemma it follows that ¢®~ % >’0 and

T o) ds = — ¢ V(e)+ ¢ V0 > [ ().

So we have
e~ D() = § f(s)ds.
t

The last formula is a particular case of (2) with ¥ = n— 1. Let us suppose that
(2) is true for x> k. First we discuss the case S[¢p*] = 1 and, for the induction
proof, assume that the formula

1
(p(u)(t)>(__—1)' j' (S—t)" x— 1f(s)ds

is true. By integration in the interval [t, v] we get

9" D) -0 = J o) ds

1
(n o 1)‘§<§(u——s)" x— lf(u)du>

—x—1)

But S[¢®* Y] = —1 for pe¥P™ and
<p<~—1>(t)>(—1—1),j(j(u )"‘“‘lf(u)du>ds>0.
So we have o
<p<~-1>(t)>( 5 j(!(u—s)""‘"‘f(u)du)ds?O.
Let us estimate the integral
lim f(? (=~ ) du> ds = tim T(y (=91 1) ds) du

wu—0""*—(u—vy"*

= lim jf(u)(j'(u ) 1ds>du = lim ff( ) — du
> T i du
This finishes the induction . The case S[¢™] = —1 is similar.
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Now we impose some hypotheses for the operatlon F in (1).

The operation F is in the ' space &" with values in the same space, n>1.

Hypothesis H,. For (petp" S[e]S[Fe] = 1.

Hypothesis H,. When pe®”, S[¢] =1 or S[¢] = —1, le@)|=Z"ct?, ¢ =
const>0, peN, 0<p<n 1, then

fl5"~7=2 Fo(s)ds| =

THEOREM 1. When the hypothesis H, is true, then every solution ¢ of
equation (1) which exists in the interval [b, co) belongs to one of the classes s/™ or
Pk e,

if™ = —Fe, then ped" or pe¥P™ 0<k<n,
ifo™ = Fo, then pe 4" or e P™ 0<k<n.

Proof Suppose that ¢p¢.o/™ Then S[¢] =1 or S[¢] = —1 and from
Lemmas 1 and 2 it follows that pe ¥™, 0<k<n.

THEOREM 2. When the hypotheses H, and H, are satisfied, then every
solution @ of equation (1) which exists in the mteryal [b o) belongs to one of the
classes A", O™, B, ie.

" =—F¢p | ¢"=F¢
A A" P Ggno n even

Py

A", B EYANR L n odd

Proof. Let us consider a solution ¢ of equation (1) in the interval [b, co),
such that @¢.&/". From Theorem 1 it follows that pe¥P™ 0<k<n.
It is sufficient to demonstrate that the index k is equal to zero. When ¢ € ¥ then
S[e™] = 1 or S[p™] = —1. Suppose that S[p™] = 1, p® >0 and ¢*~V(¥) is
positive and non-decreasing. There exists an o > 0 such that %~ >'24. The
last inequality gives ¢(t) =t*~! for t > b and b sufficiently large. Let us take
f(©) = Fo(t). From the form of equation (1) and the hypothesis H,, for p =
k—1 we get

fs" % 1f(s)ds = o0
Integrating “per partes” the integral

t
[s" k1" (s)ds
we get

t
fs"F L oM(s)ds = "LV —(n—k—1) (n—k—2)¢" ¥ 2

t
0" PO+ £(r—k—1)!o®()+ [ ¢®(s)ds+C

>m—k—1)!o®()+C = c+i(s—r)"-k-1 @™ (s) ds.
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For t — oo these inequalities lead to a contradiction oo <oo and hence our
assumptions about k:k>1 is false. A similar contradiction is obtained when
S[e™] = —1.

Suppose now that ¢(f) >’a>0. From the hypothesis H,, with p = 0, it
follows that

(3) 0 = [s" 2Fp(s)ds< | s" ' Fo(s)ds.
But from Lemma 3 and f(f) = «a>0, ¥ = 0 it follows that
1 [>¢]
>— _ 41 ? .
o(t) (n—l)!'!(s )" lads=0

From the last inequality and Lemma 3 we get

@ >(n—1)! [s" 1Fo(s)ds.

Conditions (3) and (4) leads to
0 = [s" 2Fo(s)ds< [ s" ' Fo(s)ds < 0.

This contradiction finishes the demonstration.

REMARK. Equation (1) is a generalization of a great number of functional-
-differential equations with or without deviation of the argument. The
formulation of Theorem 2 is very general. The theorem includes not only the clas-
sical results of W. B. Fite [4], J. G. Mikusinski [S], A. Bielecki and T. Diotko [2],
T. Diotko [3], but also the newest results reported by B. G. Zhang and N.
Parhi [6], A.R. Aftabizadeh and J. Wiener [1], B.G. Zhang [7].
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