TADEUSZ DłOTKO*

ON THE SOLUTIONS OF CERTAIN FUNCTIONAL-DIFFERENTIAL EQUATIONS OF THE n-TH ORDER

Abstract

The classes of solutions in $[0, \infty)$ of the general functional-differential equation (1) are studied. The equation (1) includes various types of functional-differential equations with deviated argument. The solutions are functions with discontinuous derivative of the n-th order.

In the earlier paper [2] the classes of solutions in [0, ∞] of an abstract functional-differential equation of the form

$$
\begin{equation*}
\varphi^{(\mathrm{n})}(t)=\Theta F \varphi(t), \quad \Theta^{2}=1 \tag{1}
\end{equation*}
$$

were studied. A solution φ of (1) was understood to be a function of the class $C^{(n)}$ in an interval $[a, b) \subset \mathbf{R}^{1}$.

Let us introduce certain spaces of functions:
$\Phi^{n}, n=0,1, \ldots$, denotes the space of functions $\varphi(t), t \geqslant 0$, with continuous derivatives $\varphi^{(0)}, \varphi^{\prime}, \ldots, \varphi^{(n)}$.

We write $\varphi(\mathrm{t}) \geqslant^{\prime} \alpha\left(\varphi(t) \leqslant^{\prime} \alpha\right)$ if there exists a number $b \geqslant 0$ such that $\varphi(t)$ $\geqslant \alpha(\varphi(t) \leqslant \alpha)$ for $t \geqslant b$ and $\varphi(t) \not \equiv \alpha$ in any subinterval of $[0, \infty)$. Instead of $\varphi(t) \geqslant{ }^{\prime} 0\left(\varphi(t) \leqslant^{\prime} 0\right)$ we write $S[\varphi]=1(S[\varphi]=-1)$. As the limit $\lim \varphi(t)$ we always understand $\lim \varphi(t)$ as $t \rightarrow \infty$.
Ψ^{n} denotes the subspace of Φ^{n} consisting of functions φ such that $\varphi^{(k)}(t)$ have determined signs for sufficiently large t and $k=0,1, \ldots, n$.
$\Psi^{n k}$ denotes the subspace of Ψ^{n} containing functions φ satisfying the following conditions:
$1^{\circ} \varphi \in \Psi^{n}$,
$2^{\circ} S\left[\varphi^{(i)}\right] S[\varphi]=1$ for $i=0,1, \ldots, k$,
$3^{\circ} S\left[\varphi^{(i)}\right] S[\varphi]=(-1)^{i-k}$ for $i=k+1, \ldots, n-1$, (when $k<n$),
$4^{\circ} \lim \varphi^{(m)}(t)=0$ for $m=k+1, \ldots, n-1$ (when $k<n-1$),
$5^{\circ} \lim \varphi^{(k)}(t)=g \neq \pm \infty$ exists and $g S[\varphi] \geqslant 0$ (when $k \leqslant n-1$).
$\mathscr{B}_{B^{n k}}$ is the subspace of Ψ^{nk} consisting of functions φ for which \lim $\varphi^{(k)}(t)=0$.
\mathscr{A}^{n} is the subspace of Φ^{n} consisting of functions φ for which

$$
\sup \{t: \varphi(t)=0\}=\infty
$$

Manuscript received January 5, 1988, and in final form April 5, 1989.
AMS (1991) subject classification: $34 \mathrm{~K} 15,34 \mathrm{C} 10$.
*Instytut Matematyki Uniwersytetu Śląskiego, ul. Bankowa 14, 40-007 Katowice, Poland.

The following theorem was demonstrated in [2]. If
1° for any $\varphi \in \Phi^{n}, S[\varphi]=1$ or $S[\varphi]=-1$ we have

$$
S[\varphi] S[F \varphi]=1
$$

and
2° for any $\varphi \in \Phi^{n}, S[\varphi]=1$ or $S[\varphi]=-1,|\varphi(t)| \geqslant{ }^{\prime} c t^{p}, c=$ const >0, $p \in \mathbf{N}, 0 \leqslant p<n-1$, we have

$$
\left|\int^{\infty} s^{n-p-2} F \varphi(s) \mathrm{d} s\right|=\infty,
$$

then all solutions of (1) which exist in $[0, \infty)$ belong to the following classes:

$\varphi^{(n)}=-F \varphi$	$\varphi^{(n)}=F \varphi$	
\mathscr{A}^{n}	$\mathscr{A}^{n}, \Psi^{n n}, \mathscr{B}^{n 0}$	n even
$\mathscr{A}^{n}, \mathscr{B}^{n 0}$	$\mathscr{A}^{n}, \Psi^{n n}$	n odd

The results formulated above will be extended to functional - differential equations of the form (1) but with a more general definition of a solution.

We define a solution φ of (1) as a real valued function which satisfies the following conditions:
$1^{\circ} \varphi$ is continuous for $t \geqslant 0$,
2° the derivatives $\varphi^{\prime}, \ldots, \varphi^{(n-1)}$ exist for $t \geqslant 0$,
$3^{\circ} \varphi^{(n)}(t)$ exists at each point $t \in[0, \infty)$ with the possible exception of a sequence $\left\{t_{1}, \ldots, t_{n}, \ldots\right\} \subset[0, \infty)$ without any finite cluster point,
4° the right-hand derivatives $\varphi^{(n)}\left(t_{j}+\right)$ exist,
5° equation (1) is satisfied in every interval $\left[t_{i}, t_{i+1}\right) \subset[0, \infty)$.
REMARK 1. This type of generalization of a solution of (1) and $n=1$ is necessary for a study of functional-differential equations which occur in mathematical models of certain biomedical phenomena ([6]).

REMARK 2. Some examples of equations of the form (1) for which the above generalization of a solution is useful are given below:
(a) $\varphi^{(n)}(t)=\Theta f(t, \varphi(t-E(\alpha(t)))+\Theta g(t, \varphi(t-\beta(t)))$,
(b) $\varphi^{(n)}(t)=p(t) f(\varphi(E(t))), E(t)=\operatorname{Entier}(t)$,
(c) $\varphi^{(n)}(t)=f\left(t, \quad \varphi(t), \ldots, \varphi^{(n-1)}(t), \quad \varphi\left(t \pm \delta_{0}\right), \ldots, \varphi^{(n-1)}\left(t \pm \delta_{n-1}\right), \quad \varphi(E(t)), \ldots\right.$,

$$
\left.\varphi^{(n-1)}(E(t))\right) \cdot \int_{h(t)}^{k(t)} \varphi(t-s) \mathrm{d}_{s} r(t, s),
$$

$S[f]=$ const, $h(t) \leqslant t \leqslant k(t)$, for fixed t the function r is non-decreasing in s.
Now we shall give some definitions and lemmas.
The expression $\varphi^{(n)}(t) \geqslant{ }^{\prime} \alpha\left(\varphi^{(n)}(t) \leqslant{ }^{\prime} \alpha\right)$ means here that $\varphi^{(n)}(t) \geqslant \alpha$ for b sufficiently large $\left(\varphi^{(n)}(t) \leqslant \alpha\right.$ for $\left.t \geqslant b\right)$ except possibly a sequence $\left\{t_{1}, t_{2}, \ldots\right\} \subset$ $[0, \infty]$ for which $\varphi^{(n)}\left(t_{i}+\right) \geqslant \alpha\left(\varphi^{(n)}\left(t_{i}+\right) \leqslant \alpha\right)$. When $\alpha=0$, then we say that $\varphi(t)$ is of constant sign in $[0, \infty) . S[\varphi]=1$ or $S[\varphi]=-1$.

Let us define the following spaces of functions:
$\hat{\Phi}^{n}, n=1,2, \ldots$, is the space of continuous functions $\varphi(t), t \geqslant 0$, with continuous derivatives $\varphi^{\prime}, \ldots, \varphi^{(n-1)}$ for $t \geqslant 0$. The derivative $\varphi^{(n)}$ exists for $t \geqslant 0$ possibly except for a sequence of points $\left\{t_{1}, t_{2}, \ldots\right\} \subset[0, \infty)$ for which the right derivatives $\varphi^{(n)}\left(t_{i}+\right)$ exist.
$\hat{\Psi}^{n}, n=0,1, \ldots$, is the subspace of $\hat{\Phi}^{n}$ with functions φ such that $\varphi^{(i)}(t)$, $i=0,1, \ldots, n-1$ have determined signs for sufficiently large t and $\varphi^{(n)}(t) \geqslant{ }^{\prime} 0$ or ${ }^{\prime} \leqslant 0$.
$\hat{\Psi}^{n k}$ is defined by the conditions: $\varphi \in \hat{\Psi}^{n k}$ if and only if
$1^{\circ} \varphi \in \hat{\Psi}^{n}$,
$2^{\circ} S\left[\varphi^{(i)}\right] S[\varphi]=1$ for $i=0,1, \ldots, k$,
$3^{\circ} S\left[\varphi^{(i)}\right] S[\varphi]=(-1)^{i-k}$ for $i=k+1, \ldots, n-1$ (when $k<n$),
$4^{\circ} \lim \varphi^{(m)}(t)=0$ for $m=k+1, \ldots, n-1$ (when $k<n-1$),
5° the limit $\lim \varphi^{(k)}(t)=g \neq \pm \infty$ exists and $g S[\varphi] \geqslant 0$ (when $k \leqslant n-1$). $\hat{B}^{n k}$ is the subspace of $\hat{\Psi}^{n k}$ consisting of functions φ for which $\lim \varphi(t)=0$. $\hat{\mathscr{A}}^{n}$ is the subspace of $\hat{\Phi}^{n}$ consisting of functions φ for which

$$
\sup \{t: \varphi(t)=0\}=\infty
$$

LEMMA 1. If $\varphi \in \hat{\Phi}^{n}$ and $\varphi^{(n)}(t) \geqslant{ }^{\prime} 0\left(\leqslant^{\prime} 0\right)$ in the set $[0, \infty) \backslash\left\{t_{1}, t_{2}, \ldots\right\}$, then $\varphi \in \hat{\Psi}^{n}$.

Proof. Let us consider the case $\varphi^{(n)}(t) \geqslant{ }^{\prime} 0$. Then $\varphi^{(n)}(t) \geqslant 0$ for $t \geqslant b$, except possibly for the points $\left\{t_{1}, t_{2}, \ldots\right\}$. From the formula

$$
\varphi^{(n-1)}(t)=\varphi^{(n-1)}(a)+\int_{a}^{\mathrm{t}} \varphi^{(n)}(s) \mathrm{d} s
$$

it follows that $\varphi^{(n-1)}(t), t \geqslant a$, is monotonic and therefore of constant sign for sufficiently large t. The same is true for $\varphi^{(n-2)}(t), \ldots, \varphi(t)$.

LEMMA 2. For every function $\varphi \in \hat{\Psi}^{n}$ there exists a number $b \geqslant 0$ and a natural number $k, 0 \leqslant k \leqslant n$, such that $\varphi \in \hat{\Psi}^{n k}$. (In fact the class $\hat{\Psi}^{n} \subset \hat{\Phi}^{n}$, so when $\varphi \in \hat{\Psi}^{n}$ the functions $\varphi, \varphi^{\prime}, \ldots, \varphi^{(n)}$ are of constatnt sign for $t \geqslant b$, when b is sufficiently large.)

Proof. The lemma is true for $n=1$. Let us suppose that it is for $n-1$. At first, when $S\left[\varphi^{(n-1)}\right] S\left[\varphi^{(n-2)}\right]=-1$ and $\varphi^{(n-2)}(t) \geqslant{ }^{\prime} 0,\left(\varphi^{(n-1)}(t) \leqslant^{\prime} 0\right)$, then $\varphi^{(n)}(t)$ is of constant sign and the limit $\lim \varphi^{(n-1)}(t)=g \leqslant 0$ exists. When $g<0$, then $\varphi^{(n-1)}(t) \leqslant ' c<0$ and for b sufficiently large

$$
0<\varphi^{(n-2)}(t)<\varphi^{(n-2)}(b)-c b+c t,
$$

which is impossible. So we have $\varphi^{(n-1)}(t) \leqslant{ }^{\prime} 0, \lim \varphi^{(n-1)}(t)=g=0$, from which it follows that $\varphi^{(n)}(t) \geqslant{ }^{\prime} 0$. We see that in this case the signs of $\varphi^{(n-2)}$, $\varphi^{(n-1)}, \varphi^{(n)}$ alternate. The existence of the integer k follows from our assumption on $k-1$.

Now let us discuss the case $S\left[\varphi^{(n-1)}\right] S\left[\varphi^{(n-2)}\right]=1$. We can take $k=n$, when $S\left[\varphi^{(n)}\right] S\left[\varphi^{(n-1)}\right]=1$, and $k=n-1$ when $S\left[\varphi^{(n)}\right] S\left[\varphi^{(n-1)}\right]=-1$ and the lemma is again true.

LEMMA 3. When $\varphi(t) \in \hat{\Psi}^{n k}, 0 \leqslant k \leqslant n, \varphi^{(n)}(t) \leqslant 0$ and $f(t)$ is a continuous and non-negative function in the interval $[b, \infty)$ such that for $b \leqslant t \leqslant v$

$$
S\left[\varphi^{(n)}\right] \int_{t}^{v} \varphi^{(n)}(s) \mathrm{d} s \geqslant \int_{t}^{v} f(s) \mathrm{d} s,
$$

then

$$
\begin{align*}
& S\left[\varphi^{(x)}\right] \varphi^{(x)}(t) \geqslant \frac{1}{(n-x-1)!} \int_{t}^{\infty}(s-t)^{n-x-1} f(s) \mathrm{d} s \tag{2}\\
& t \geqslant b, x=n-1, n-2, \ldots, k .
\end{align*}
$$

The last integral is convergent and

$$
S\left[\varphi^{(x)}\right]=(-1)^{n-x} S\left[\varphi^{(n)}\right]
$$

Proof. From the assumptions of the lemma it follows that $\varphi^{(n-1)} \geqslant{ }^{\prime} 0$ and

$$
-\int_{t}^{v} \varphi^{(n)}(s) \mathrm{d} s=-\varphi^{(n-1)}(v)+\varphi^{(n-1)}(t) \geqslant \int_{t}^{v} f(s) \mathrm{d} s
$$

So we have

$$
\varphi^{(n-1)}(t) \geqslant \int_{t}^{v} f(s) \mathrm{d} s
$$

The last formula is a particular case of (2) with $x=n-1$. Let us suppose that (2) is true for $x>k$. First we discuss the case $S\left[\varphi^{(x)}\right]=1$ and, for the induction proof, assume that the formula

$$
\varphi^{(x)}(t) \geqslant \frac{1}{(n-x-1)!} \int_{t}^{\infty}(s-t)^{n-x-1} f(s) \mathrm{d} s
$$

is true. By integration in the interval $[t, v]$ we get

$$
\begin{aligned}
& \varphi^{(x-1)}(v)-\varphi^{(x-1)}(t)=\frac{1}{(n-x-1)!} \int_{t}^{v} \varphi^{(x)}(s) \mathrm{d} s \\
& \geqslant \frac{1}{(n-x-1)!} \int_{t}^{v}\left(\int_{s}^{\infty}(u-s)^{n-x-1} f(u) \mathrm{d} u\right) \mathrm{d} s .
\end{aligned}
$$

But $S\left[\varphi^{(x-1)}\right]=-1$ for $\varphi \in \hat{\Psi}^{n k}$ and

$$
\varphi^{(x-1)}(t) \geqslant \frac{1}{(n-x-1)!} \int_{t}^{v}\left(\int_{s}^{\infty}(u-s)^{n-x-1} f(u) \mathrm{d} u\right) \mathrm{d} s \geqslant 0
$$

So we have

$$
\varphi^{(x-1)}(t) \geqslant \frac{1}{(n-x-1)!} \int_{t}^{\infty}\left(\int_{s}^{\infty}(u-s)^{n-x-1} f(u) \mathrm{d} u\right) \mathrm{d} s \geqslant 0 .
$$

Let us estimate the integral

$$
\begin{aligned}
& \lim _{v \rightarrow \infty} \int_{t}^{v}\left(\int_{s}^{\infty}(u-s)^{n-x-1} f(u) \mathrm{d} u\right) \mathrm{d} s=\lim _{v \rightarrow \infty} \int_{s}^{\infty}\left(\int_{t}^{v}(u-s)^{n-x-1} f(u) \mathrm{d} s\right) \mathrm{d} u \\
&=\lim \int_{u}^{\infty} f(u)\left(\int_{t}^{\infty}(u-s)^{n-x-1} \mathrm{~d} s\right) \mathrm{d} u=\lim _{v \rightarrow \infty} \int_{u}^{\infty} f(u) \frac{(u-t)^{n-x}-(u-v)^{n-x}}{n-x} \mathrm{~d} u \\
& \geqslant \int_{u}^{\infty} \frac{(u-t)^{n-x}}{n-x} f(u) \mathrm{d} u .
\end{aligned}
$$

This finishes the induction. The case $S\left[\varphi^{(x)}\right]=-1$ is similar.

Now we impose some hypotheses for the operation F in (1).
The operation F is in the space $\hat{\Phi}^{n}$ with values in the same space, $n \geqslant 1$.
Hypothesis H_{1}. For $\varphi \in \hat{\Phi}^{n}, S[\varphi] S[F \varphi]=1$.
Hypothesis H_{2}. When $\varphi \in \hat{\Phi}^{n}, S[\varphi]=1$ or $S[\varphi]=-1,|\varphi(t)| \geqslant{ }^{\prime} c t^{p}, c=$ const $>0, p \in \mathbf{N}, 0 \leqslant p<n-1$, then

$$
\int^{\infty}\left|s^{n-p-2} F \varphi(s) \mathrm{d} s\right|=\infty
$$

THEOREM 1. When the hypothesis \mathbf{H}_{1} is true, then every solution φ of equation (1) which exists in the interval $[b, \infty)$ belongs to one of the classes $\mathscr{\mathscr { A }}^{n}$ or $\hat{\Psi}^{n k}$ i.e.

$$
\begin{aligned}
& \text { if } \varphi^{(n)}=-F \varphi \text {, then } \varphi \in \hat{\mathscr{A}}^{n} \text { or } \varphi \in \hat{\Psi}^{n k}, 0 \leqslant k<n, \\
& \text { if } \varphi^{(n)}=F \varphi \text {, then } \varphi \in \hat{\mathscr{A}}^{n} \text { or } \varphi \in \hat{\Psi}^{n k}, 0 \leqslant k \leqslant n .
\end{aligned}
$$

Proof. Suppose that $\varphi \notin \hat{A}^{n}$. Then $S[\varphi]=1$ or $S[\varphi]=-1$ and from Lemmas 1 and 2 it follows that $\varphi \in \hat{\Psi}^{n k}, 0 \leqslant k \leqslant n$.

THEOREM 2. When the hypotheses H_{1} and H_{2} are satisfied, then every solution φ of equation (1) which exists in the interyal $[b, \infty)$ belongs to one of the classes $\hat{\mathscr{A}}^{n}, \hat{\Psi}^{n n}, \hat{\mathscr{B}}^{n 0}$, i.e.

$\varphi^{(n)}=-F \varphi$	$\varphi^{(n)}=F \varphi$	
$\hat{\mathscr{A}}^{n}$	$\hat{\mathscr{A}}^{n}, \hat{\Psi}^{n n}, \hat{\mathscr{B}}^{n 0}$	n even
$\hat{\mathscr{A}}^{n}, \hat{\mathscr{B}}^{n 0}$	$\hat{\mathscr{A}}^{n}, \hat{\Psi}^{n n}$	n odd

Proof. Let us consider a solution φ of equation (1) in the interval $[b, \infty)$, such that $\varphi \notin \mathscr{A}^{n}$. From Theorem 1 it follows that $\varphi \in \hat{\Psi}^{n k}, 0 \leqslant k \leqslant n$. It is sufficient to demonstrate that the index k is equal to zero. When $\varphi \in \hat{\Psi}^{n k}$ then $S\left[\varphi^{(k)}\right]=1$ or $S\left[\varphi^{(k)}\right]=-1$. Suppose that $S\left[\varphi^{(k)}\right]=1, \varphi^{(k)} \geqslant{ }^{\prime} 0$ and $\varphi^{(k-1)}(t)$ is positive and non-decreasing. There exists an $\alpha>0$ such that $\varphi^{(k-1)} \geqslant^{\prime} 2 \alpha$. The last inequality gives $\varphi(t) \geqslant t^{k-1}$ for $t \geqslant b$ and b sufficiently large. Let us take $f(t)=F \varphi(t)$. From the form of equation (1) and the hypothesis H_{2}, for $p=$ $k-1$ we get

$$
\int^{\infty} s^{n-k-1} f(s) \mathrm{d} s=\infty
$$

Integrating "per partes" the integral

$$
\int_{\tau}^{t} s^{n-k-1} \varphi^{(n)}(s) \mathrm{d} s
$$

we get

$$
\begin{aligned}
& \int_{\tau}^{t} s^{n-k-1} \varphi^{(n)}(s) \mathrm{d} s= t^{n-k-1} \varphi^{(n-1)}(t)-(n-k-1)(n-k-2) t^{n-k-2} \\
& \cdot \varphi^{(n-2)}(t)+\ldots \pm(n-k-1)!\varphi^{(k)}(t)+\int_{\tau}^{t} \varphi^{(k)}(s) \mathrm{d} s+C \\
&> \\
&>(n-k-1)!\varphi^{(k)}(t)+C=C+\int_{\tau}^{t}(s-\tau)^{n-k-1} \varphi^{(n)}(s) \mathrm{d} s .
\end{aligned}
$$

For $t \rightarrow \infty$ these inequalities lead to a contradiction $\infty<\infty$ and hence our assumptions about $k: k \geqslant 1$ is false. A similar contradiction is obtained when $S\left[\varphi^{(k)}\right]=-1$.

Suppose now that $\varphi(t) \geqslant{ }^{\prime} \alpha>0$. From the hypothesis \mathbf{H}_{2}, with $p=0$, it follows that

$$
\begin{equation*}
\infty=\int^{\infty} s^{n-2} F \varphi(s) \mathrm{d} s<\int^{\infty} s^{n-1} F \varphi(s) \mathrm{d} s . \tag{3}
\end{equation*}
$$

But from Lemma 3 and $f(t)=\alpha>0, x=0$ it follows that

$$
\varphi(t) \geqslant \frac{1}{(n-1)!} \int_{t}^{\infty}(s-t)^{n-1} \alpha \mathrm{~d} s \geqslant 0 .
$$

From the last inequality and Lemma 3 we get

$$
\begin{equation*}
\infty>\frac{1}{(n-1)!} \int^{\infty} s^{n-1} F \varphi(s) \mathrm{d} s . \tag{4}
\end{equation*}
$$

Conditions (3) and (4) leads to

$$
\infty=\int^{\infty} s^{n-2} F \varphi(s) \mathrm{d} s<\int^{\infty} s^{n-1} F \varphi(s) \mathrm{d} s<\infty .
$$

This contradiction finishes the demonstration.
REMARK. Equation (1) is a generalization of a great number of functional--differential equations with or without deviation of the argument. The formulation of Theorem 2 is very general. The theorem includes not only the classical results of W. B. Fite [4], J. G. Mikusiński [5], A. Bielecki and T. Dłotko [2], T. Dłotko [3], but also the newest results reported by B. G. Zhang and N. Parhi [6], A. R. Aftabizadeh and J. Wiener [1], B. G. Zhang [7].

REFERENCES

[1] A. R. AFTABIZADEH and J. WIENER, Oscillatory properties of first order linear functional differential equations, Applicable Anal. 20 (1985), 165-187.
[2] A. BIELECKI and T. DŁOTKO, Sur certaines équations fonctionnelles, Ann. Univ. Mariae Curie-Skłodowska 158 (1961), 97-106.
[3] T. DŁOTKO, Sur certaines équations integro-differentielles du n-ième ordre, Prace Nauk. Uniw. Ślaskiego, Prace Mat. 1 (1969), 103-107.
[4] W.B. FITE, Concerning the zeros of solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), 341-352.
[5] J. G. MIKUSINSKI, On Fite's Oscillation theorems, Colloq. Math. 2 (1951), 34-38.
[6] B.G. ZHANG and N. PARHI, Oscillatory and nonoscillatory properties of first order differential equations with piecewise constant deviating argument, United Nations Educat. Scientific and Cultural Org., Internat. Atomic Energy Agency, Miramare-Trieste, 1986, p. 16.
[7] B. G. ZHANG, A survey of oscillation of solutions to first order differential equations with deviating argument, Trends in the Theory and Practice of Nonlinear Analysis, Ed. V. Lakhsmikantham, 1985, 475-483.

