
T A D E U S Z D Ł O T K O * 

ON THE SOLUTIONS OF CERTAIN 
FUNCTIONAL-DIFFERENTIAL EQUATIONS 

OF THE /7-TH ORDER 

Abstract. The classes of solutions in [0, oo) of the general functional-differential equation (1) are 
studied. The equation (1) includes various types of functional-differential equations with deviated 
argument. The solutions are functions with discontinuous derivative of the n-th order. 

In the earlier paper [2] the classes of solutions in [0, oo] of an abstract 
functional-differential equation of the form 

(1) ę(n)(i) = 0F(p(t), 02 = 1, 

were studied. A solution q> of (1) was understood to be a function of the class 
C ( n ) in an interval [a, i i j c R 1 . 

Let us introduce certain spaces of functions: 
0", n = 0, 1,..., denotes the space of functions ę(t), t^O, with continuous 

derivatives qm, e', ę(n). 
We write (jo(t)> 'a (ę(t)<'a) if there exists a number b>0 such that q(t) 

^ a (ę(t) < a) for t^b and ę(t) ^ a in any subinterval of [0, oo). Instead of 
q(t) ^ '0 (ę(t) ^ '0) we write S[>] = 1 (S|>] = -1) . As the limit lim ę(i) we 
always understand lim <p(i) as t -»oo. 

W" denotes the subspace of <£" consisting of functions cp such that <p(k){t) 
have determined signs for sufficiently large t and k = 0 ,1 , . . . , n. 

Wk denotes the subspace of W containing functions ę satisfying the 
following conditions: 

1° q>eW, 
2° S |> ( i ) ]S |>] = 1 for i = 0 , 1 , . . . , I k , 
3° S[(p(i)]S[<p] = (-lf~k for i = fe+l,...,n-l, (when k<n), 
4° lim c>(n,,(t) = 0 for m = fc + l , . . . , n - l (when k < n - l ) , 
5° lim (p(k){t) = g # +oo exists and g r S M ^ O (when k^n-1). 
3§nk is the subspace of !P n k consisting of functions ę for which lim 

ęik)(t) = 0. 
s/n is the subspace of & n consisting of functions q for which 

sup {t: ę(t) = 0} = GO. 

Manuscript received January 5, 1988, and in final form April 5, 1989. 
A M S (1991) subject classification: 34K15, 34C10. 
* Instytut Matematyki Uniwersytetu Śląskiego, ul. Bankowa 14, 40-007 Katowice, Poland. 

37 



The following theorem was demonstrated in [2]. 

1° for any ęe<P", S\_ę~\ = 1 or S[<p] = — 1 we have 

S|>] S[Fc,] = 1 

and 
2° for any ęe<P", S[ę] = 1 or S|>] = - 1 , \ę(t)\>' ct", c = const >0, 

p e N , 0^p<n—1, we have 
00 

I js"~p~2 Fę(s) ds\ = oo, 

then all solutions of (1) which exist in [0, oo) belong to the following classes: 
<p<»> = -Fę ę w = Fę 

sćn, Tm, @n0 n even 

sśn, @n0 n odd 

The results formulated above will be extended to functional - differential 
equations of the form (1) but with a more general definition of a solution. 

We define a solution ę of (1) as a real valued function which satisfies the 
following conditions: 

1° ę is continuous for t^O, 
2° the derivatives ę',...,ę(n~1} exist for t^0, 
3° ę(n)(t) exists at each point te[0, oo) with the possible exception of 

a sequence {t1,...,tn,...}a[0, oo) without any finite cluster point, 
4° the right-hand derivatives ę(n)(tj + ) exist, 
5° equation (1) is satisfied in every interval [t j ( t j + 1 ) c [ 0 , oo). 
R E M A R K 1. This type of generalization of a solution of (1) and n = 1 is 

necessary for a study of functional-differential equations which occur in 
mathematical models of certain biomedical phenomena ([6]). 

R E M A R K 2. Some examples of equations of the form (1) for which the 
above generalization of a solution is useful are given below: 
(a) <p<">(0 = 0f(t, ę{t-E(a(t))) + &9(t, <p(t-p(t))\ 
(b) ęM(t) = p(t)f(ę(E(t))), E(t) = Entier(t), 
(c) <?<">(*) c(t),...,ę<-»(t), <p{t±80),...,<plH-1)(t±óu_l), ę(E(t)),..., 

k(t) 

ę<"-»W))Y Svits) d,r(t, s), 
h(t) 

= const, h{i) < t < k(t), for fixed t the function r is non-decreasing in s. 
Now we shall give some definitions and lemmas. 
The expression ęM(t) ^ 'a (ę(tt)(t) ^ 'a) means here that ęin)(t)^a, for 

b sufficiently large (ę(n)(t) ^ a for t ̂  b) except possibly a sequence {tu t2, ...}<= 
[0, oo] for which ęM(ti + )^ a. (ęM{ti + ) ^a) . When a = 0, then we say that ę(t) 
is of constant sign in [0, oo). S[<p] = 1 or S[<p] = — 1. 

Let us define the following spaces of functions: 
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Ón, n = 1,2,..., is the space of continuous functions (p(t), t^O, with 
continuous derivatives e',..., q(n~11 for t ̂  0. The derivative qM exists for t ̂  0 
possibly except for a sequence of points {tl,t2, [0, oo) for which the right 
derivatives ęM(ti + ) exist. 

W", n = 0,1, . . . , is the subspace of Ó" with functions <p such that qM(t), 
i = 0, 1, . . . , n— 1 have determined signs for sufficiently large t and qM(t) ^ ' 0 
or ' ^ 0 . 

IP"11 is defined by the conditions: qeT"k if and only if 
1° qef", 
2° SO ( i )]S[c>] = 1 for i = 0, 1, k, 
3° S[>(i)]S[c>] = ( - I ) ' - * for i = fc+1, n - 1 (when fc<n), 
4° lim (p(m,(0 = 0 for m = fc+1, . . . . n - 1 (when k < n - l ) , 
5° the limit lim q(k)(t) = g ±oo exists and 0S[>]>O (when k ^ n - 1 ) . 

is the subspace of Wnk consisting of functions q for which lim q(i) = 0. 
jłn is the subspace of <P" consisting of functions q for which 

sup{£: q(t) = 0} = oo. 

L E M M A l.IfqeS" and qM{t)>'0 (sj'0) in the set [0, o o ^ l ^ , t2,...}, then 
qe$n. 

Proof . Let us consider the case q(n)(t) ^ '0. Then qM(t) ^ 0 for t ̂  b, except 
possibly for the points {tltt2,...}. From the formula 

c>("_1)(t) = ę<n-l){a) + jęM{s) ds 
a 

it follows that (p (" - 1 )(£), t ̂  a, is monotonie and therefore of constant sign for 
sufficiently large t. The same is true for q{n~2){t),...,q(i). 

L E M M A 2. For every function qeW" there exists a number b^0 and 
a natural number k, 0 < k < n, such that q e Wnk. (In fact the class Wn c d>" , so 
when qsW" the functions q, q', q{n) are of constatnt sign for t^b, when b is 
sufficiently large.) 

Proo f . The lemma is true for n = 1. Let us suppose that it is for n — 1. At 
first, when S[<p ( n _ 1 ) ]S[ę> ( "~ 2 ) ] = - 1 and q<"-2)(t)^'0, (^ ( n _ 1 ) ( t )^ '0 ) , then 
qia)(t) is of constant sign and the limit lim q(n~ 1 )(t) = g ̂  0 exists. When g <0, 
then c) ( , ,~ 1 )(0^ 'c<0 and for b sufficiently large 

0 < <p<" ~ 2) (t) < q(n ~ 2\b) - cb + ct, 

which is impossible. So we have <p(n-1>(t) < '0, lim q(n~X)(t) = g = 0, from 
which it follows that q(n)(t) ^ '0. We see that in this case the signs of q(n~2\ 
(p ( n - 1 ) , q(n) alternate. The existence of the integer k follows from our 
assumption on k — l. 

Now let us discuss the case S[(p (" _ 1 )]S[(p (" _ 2 )] = 1. We can take k = n, 
when S i y ^ S i y " - 1 * ] = 1, and k = n - 1 when Sr><">] S [c» ( " - 1 ) ] = - 1 and 
the lemma is again true. 

L E M M A 3. Wien q(t)e Wnk, 0 < fcsjn, (p(n)(t) <0 andf(t) is a continuous and 
non-negative function in the interval [b, oo) such that for b^t^v 
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Sl<pM~tfęM{s)ds^$f(s)ds, 
t t 

then 
1 0 0 

(2) S[g><«>]c><»>(t)> _ / ( s - t r " - 1 / ^ 
t^fe, x = n — l, n — 2,..., k. 

The last integral is convergent and 

S|>(x)] = (-iy-xsięMi 

Proof . From the assumptions of the lemma it follows that ( p ( n _ 1 ) > ' 0 and 

-}ę(n){s)ds = -<p ( , ,-1)(t;) + <p <"- 1 )(t)>}/(s)ds. 
t t 

So we have 

c> (" - 1 )(0H/(s)<k. 
t 

The last formula is a particular case of (2) with x = n — 1. Let us suppose that 
(2) is true for x>k. First we discuss the case S[<p(x>] = 1 and, for the induction 
proof, assume that the formula 

<PWW > 7
 1-^T, I -«r x _ 1 /(s)ds 

( n - x - 1 ) ! J

( 

is true. By integration in the interval \t, v] we get 

ę*-V{v)-ę*-l\t) = 1 ]ę(x)(s)ds 
(n x i). t 

>(n-x-l)\s, 

But S[c>("_1)] = - 1 for ęeWnk and 

So we have 

Let us estimate the integral 
w / o o \ o o / K \ 

limfl J(u-s)"- x -7( i i )dtt)ds= lim j( J ( « - s ) " - * - V ( « ) d s ) d i i 
» - > o o , \ s / l ) - » a o 5 \ , / 

o o / o o \ » ( u _ t y - * _ ( „ _ „ ) " - * 
= lim J/(u) J ( u - s ) " - x _ 1 d s du = lim J / (» ) dw 

n —x 

>fl ' f{u)du. 
u n-x 

This finishes the induction . The case S[<plxr\ = - 1 is similar. 
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Now we impose some hypotheses for the operation F in (1). 
The operation F is in the space &" with values in the same space, n ^ l . 
Hypothesis For qeótt, S[<p]S[F<p] = 1. 
Hypothesis H 2 . When c>e$", S|>] = 1 or S[>] = - 1 , \q(t)\^'ctp, c = 

const>0, p e N , 0<p<n—1, then 

l\sn-p-2F(P{s)ds\ = oo. 

T H E O R E M 1. When the hypothesis H t is true, then every solution q of 
equation (1) which exists in the interval [b, oo) belongs to one of the classes $4n or 
*Pnk i.e. 

ifcpW = -Fq, then qesł" or qefnk, 0^k<n, 
ifęW = fę^ t n e n (f>eJ" o r ęeWnk, O^k^n. 

Proof . Suppose that q$sin. Then S{_q~\ = 1 or S[>] = — 1 and from 
Lemmas 1 and 2 it follows that qe*Fnk, O^k^n. 

T H E O R E M 2. When the hypotheses H1 and H 2 are satisfied, then every 
solution q of equation (1) which exists in the interyal [b, oo) belongs to one of the 
classes J", Wm, Śn0, i.e. 

c><»> = -Fq = Fq 

J" Ja, Wm, J"° n even 

J", Wm n odd 

Proof . Let us consider a solution q of equation (1) in the interval [b, oo), 
such that q $ s£n. From Theorem 1 it follows that q e xPnk, 0 ̂  k ^ n. 
It is sufficient to demonstrate that the index k is equal to zero. When q e CP"* then 
S[<pw] = 1 or S|> ( k )] = - 1 . Suppose that S[c>(,[)] = 1, q(k) >' 0 and q(k~ "(t) is 
positive and non-decreasing. There exists an a > 0 such that q(k~l) ^ '2a. The 
last inequality gives <jp(t)>t*-1 for t^b and b sufficiently large. Let us take 
/(f) = Fq(t). From the form of equation (1) and the hypothesis H 2 , for p = 
k— 1 we get 

00 

Js"~* - 1/(s)ds = oo. 

Integrating "per partes" the integral 

\s"-k-1qM{s)ds 

we get 

j s " - * - V W s = tn-k-lq(n-1\t)-{n-k-\){n-k-2)tn'k-2 

X 

• ql" ~ 2)(t) +... ± (n - k - 1 ) ! q(k\t) + } qm(s) ds + C 
X 

t 
>(n-k-l)\qm(t) + C = C + Hs-xy-^1 ęw(s)ds. 
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For t -> oo these inequalities lead to a contradiction oo < oo and hence our 
assumptions about k: fe> 1 is false. A similar contradiction is obtained when 
Sfy**] = - 1 . 

Suppose now that e(i)^'a.>0. From the hypothesis H 2 , with p = 0, it 
follows that 

00 00 

(3) oo = $sn-2Fq>{s)ds< J s ^ F c ^ d s . 

But from Lemma 3 and f{t) = <x>0, x = 0 it follows that 

1 0 0 

(n i). t 

From the last inequality and Lemma 3 we get 

(4) co>-^-^Jsn-1Fę(s)ds. 

Conditions (3) and (4) leads to 
00 00 

oo = $s"~2Fę(s)ds< j' s"~1Fę(s)ds<co. 

This contradiction finishes the demonstration. 
R E M A R K . Equation (1) is a generalization of a great number of functional-

-differential equations with or without deviation of the argument. The 
formulation of Theorem 2 is very general. The theorem includes not only the clas
sical results of W. B. Fite [4], J. G . Mikusiński [5], A. Bielecki and T. Dlotko [2], 
T. Dłotko [3], but also the newest results reported by B. G . Zhang and N . 
Parhi [6], A. R. Aftabizadeh and J. Wiener [1], B. G . Zhang [7]. 
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