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Abstract. In the paper oscillatory properties of solutions of a second order differential equation 
with piecewise constant argument are studied. In particular, a version of Kneser Oscillation 
Theorem for such equation is proved. 

1. Oscillatory solutions of a differential equations with deviating argument 
have been subject of many recent papers. A special case of delay in first order 
differential equations, caused by piecewise constant argument was first 
reported in [1], [3], [4]. Oscillatory and periodic solutions of such equations 
were derived in [1], [2]. Oscillatory and nonoscillatory properties of certain 
equations of this type were also investigated in [5]. 

In this paper we study certain properties of solutions of a second order 
differential equation with piecewise constant argument of the type 

(1.1) u " W +&( t I M > M ( M ) ,M ' ( M ) )M ' W + a ( t , M , u ( m ) , u ' ( m ) ) M ( t ) = 0, 

where [£] denotes the greatest-integer function and a, b:[0, o o ) x N x R 2 - > R 
are such that for every fixed n e N , x, y e R functions a(-, n, x, y) and b{-, n, x, y) 
are continuous in [0, oo). 

By a solution of Eq. (1.1) we mean a real-valued function u(t) that satisfies 
the conditions: 

(i) u{t) has a continuous derivative u'(t) in [0, oo). 
(ii) The second order derivative u"(t) exists at each point te [0, oo) with the 

possible exception of the points [ t ] e [0 , oo), where one-sided second order 
derivatives exist. 

(hi) Eq. (1.1) is satisfied in each interval [n, n + l)c:[0, oo) with integral 
endpoints. 

Within intervals [n, n+1), Eq. (1.1) turns into a second order linear 
equation of the type 

(1.2) u"(t) + p(t) u'(t) + q(t)u(i) = 0. 
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Equations (1.1) and (1.2) have a number of common properties but the 
nonlinearity in Eq. (1.1) can cause certain effects which cannot occure for 
solutions of Eq. (1.2). As an illustration we may give equation 

u"(t) + u(lf])u'(t) + 2nu'([_t'])u(t) = 0 

with two solutions, u(t) = s\n2nt and w(t) = 1 for t^O, given by initial value 
conditions u(0) = 0, u'(0) = 2n and w(0) = 1, w'(0) = 0, respectively. According 
to the Sturm Oscillation Theorem Eq. (1.2) cannot have two solutions such that 
one is oscillatory while the other is not. 

The aim of the present paper is to show the similarities between equations 
(1.1) and (1.2). In particular, certain conditions for oscillation and nonoscilla-
tion of solutions of a second order differential equation with piecewise constant 
argument are given. 

2. It is obvious that with step by step use of the Picard Fixed Point 
Theorem we may prove the existence of a unique solution of Eq. (1.1) satisfying 
the initial-value conditions: 

u(0) = u o , u'(0) = v0, 

where u0, v0 are arbitrary real constants. 
The following lemmas show two simple properties of solutions of Eq. (1.1). 
L E M M A 2.1. Let u(i) be a solution of Eq. (1.1). //for some t0^0 u(t0) 

= u'(t0) - 0, then u(t) = 0 for all t^O. 
Proof . Let u(t0) = u'(t0) = 0 for some t 0 >0. We define 

t = inf {t^O: u(t) = u'(t) = 0}. 

Suppose that F>0. Let u ^ R - ^ R be the solution of the problem 

(2.1) z"(t) + b(t, k, u(k), u'(k))z'(t) + a(t, k, u(k), u'(k))z(t) = 0 

(2.2) z(k) = u{k), z'{k) = u'(k), 

where k is an integer such that Te[k, k + l). Using the Picard Fixed Point 
Theorem for (2.1), (2.2) and knowing that u(t) is the solution of Eq. (1.1), we 
obtain the equality 

uk(t) = u{t) for te[k, k + l). 

From this we have uk(t) = u'k(T) = 0, which means that uk(t) = 0 for all teR. In 
particular, we have 

(2.3) u(k) = uk(k) = 0 and u'(k) = u'k(k) = 0. 

Defining u ^ . ^ R ^ R as the solution of the problem 

z"(t) + bit, k-\,u(k-1), u'(k - l))z'(t) + a(t, k -1, u(k -1), u'(k - l))z(t) = 0 

z(k-l) = u(k-l), z'(k-l) = u'(k-l) 
and using similar arguments as above we obtain 

(2.4) u(k-l) = u'{k-l) = 0. 
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The definitions of Fand k together with (2.3), (2.4) contradict our assumption 
that F>0. Equalities u(0) = u'(0) = 0 imply immediately that u{t) = 0 for t^O. 

L E M M A 2.2. Let u(t) # 0 be a solution of Eq. (1.1). Then zeros of the 
solution u(t) are isolated. 

Proof . Suppose, on the contrary, that u(t„) = 0 for a sequence ( t„ :neN) 
such that lim tn = c and tn c for n = 0, 1, 2, . . . . Then we have 

u'(c) = l i m ^ ^ = 0. 
n-*co tn C 

On the other hand 
u(c) = 0. 

Now from Lemma 2.1 we obtain a contradiction, which completes the proof. 

3. In this section we will study the oscillatory properties of solutions of the 
equation 

(3.1) u"(t) + a(t, [i], u([f|), «'([t]))u(0 = 0 

which is a particular case of Eq. (1.1). 
T H E O R E M 3.1. Suppose that for all t^O and x, yeR the inequality 

(3.2) a(t,[t],x,y)<0 

holds true. Then every nontrivial solution of Eq. (3.1) can vanish at one point at 
most. 

Proof . Let u(t) be a nontrivial solution of Eq. (3.1) for which we have 
u(t0) = u(tx) = 0 where 0 ^ t 0 < t 1 . Then from Lemma 2.2 we can assume that 
u(t) # 0 for te(t0, tj). We will consider the situation where u(i)>0 for te (t0, 
t t). Then using the definition of a derivative and also Lemma 2.1 we obtain the 
inequalities 

(3.3) w'('o)>0 and « '( t 1 )<0. 

On the other hand, from (3.1) and (3.2) it follows that the function u'(t) is 
nondecreasing in the interval [t0, tj] which contradicts (3.3) and completes the 
proof. 

Our next theorem may be a useful tool for investigating the oscillatory 
properties of solutions of one equation by comparing it with another. We will 
consider two equations 

(3.4) u"(t) + ai(t, ltlu([_f]),u'(lt]))u(t) = 0, 

(3.5) w"{t) + a2(t, [t], w([t]), w'mMt) = 0, 

in which functions ax, a 2 fulfil the assumptions made in Section 1 for the 
function a. 

T H E O R E M 3.2. Denoting u{t) and w(t) as solutions of Eq. (3.4) and Eq. (3.5), 
respectively, let 0 ^ t 0 < t 1 be points such that 

(i) u(t0) = u(tt) = 0 
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and 

(ii) u(t) ^ O for te(t 0 , tx). 

Let us suppose that functions at and a2 satisfy the following hypotheses 

(3.6) a2(t,\_t],x,y)^a1{t,[i],x,y) for all te(t0, tj) and x,x,y,yeR, 

(3.7) a2(t,[f],x,y)>a1(t,[f],x,y) for at least one te(t0, tx) 

and for all x, x,y,ye R. 

Then there exists t*e(t0, tj) such that w(t*) = 0. 
R E M A R K . As an example of functions a1 and a2 we may take a2{t, [f] x, y) — 

ai(t>[t~\) + n{x>y), where p,{x, y)>Q for x, yeR. 
Proof . We will consider the case when u(t)>0 for te(t0, tj. Let w(f)>0 for 

te(r 0 , tj). Multiplying Eq. (3.4) by w(t), Eq. (3.5) by u(t) and subtracting one 
from the other we obtain 

(3.8) (u'(t)w(t)-w'(t)u(t))' = u"{t)w(t)-w"(t)u(t) 

= {a2(t, M , w([t]), w'([f])) - M , "(MX u'([t]))}«(0w(0 

for te(t0, t j)\N. After integrating (3.8) from t0 to tx it takes the form 

(3.9) u '^MrJ -u '^oM'o) 

= J {a2(s- M , M M ) , w'([s]))- a i(s, [s], u([s]), M'([s]))}«(s)w(S) ds. 
lo 

Similarly as in the proof of Theorem 3.1 we have 

u'(t1)<0 and u'(t0)>0 

which implies that the left-hand side of (3.9) is nonpositive while the right-hand 
side is positive. A similar contradiction can be obtained when w(t) is negative. 

R E M A R K . With a similar reasoning we may prove the existence of t* e 
[t 0 , t j such that w(t*) = 0 without assumption (3.7). 

E X A M P L E 3.1. A l l solutions of the equation 

(3.10) W'{t) + a(t, [t], w([t]), w'([t])H0 = 0, 

where a(t,[t],x,y)^k2>0 for all t^O, x, yeR and some constant k, are 
oscillatory. Moreover, the distance between two consecutive zeros of a solution 
of Eq. (3.10) cannot be greater than n/k. To prove this it is sufficient to compare 
Eq. (3.10) with the equation u"(t) + k2u(t) = 0. 

Our next theorem is a generalization of the Kneser Theorem. 
T H E O R E M 3.3. Consider Eq. (3.1). 
If the function a fulfils the inequality 

(3.11) a(t,lf],x.y)^-^ for t^t0, x, y e R , 

where t0 is a constant, then every nontrivial solution of Eq. (3.1) is nonoscillatory. 
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If we have 

(3.12) a{t,[t],x,y)>^^ for t>t0, x, yeR, 

where t0 and a are positive constants, then every nontrivial solution ofEq. (3.1) is 
oscillatory. 

Proof . We will apply Theorem 3.2 by comparing Eq. (3.1) with the Euler 
equation 

a2 

(3.13) u"{t) + -Iu(t) = 0 for £>0. 

Let us suppose that inequality (3.11) holds true and take a = 1/2. Then an 
arbitrary solution w(t) of Eq. (3.13) has, at most, one point t*>0 at which 
w(t*) = 0. This means that a solution u(t) of Eq. (3.1) cannot vanish at an 
infinite number of positive points. Hence the first thesis of the theorem is 
proved. 

To prove the second part of Theorem 3.3 we assume (3.12) and compare Eq. 
(3.1) with Eq. (3.13) with the constant a = y/l+a/2. The solution u(t) 

t c o s ^ ^ l n t j of Eq. (3.13) vanishes at an infinite sequence of positive 

numbers. From Theorem 3.2 it follows that any nontrivial solution w(t) of Eq. 
(3.1) must also vanish at an infinite sequence of positive numbers, This proves 
that w(t) is oscillatory. 

4. Theorems given in Section 3 can be employed for investigating the 
oscillatory properties of solutions of the equation 

(4.1) u"(t) + p(t)u'(t) + q(t, [f], u(M), u'dtJMt) = 0, 

where the function p: [0, oo) -* R has a continuous derivative p'(t) and for every 
fixed weN, x, yeR the function q(-,n,x,y) is continuous on [0, oo). 

To show this we will put 

(4.2) w(t) = n'\t)u(t), 

where u(t) denotes a solution of Eq. (4.1) and /i(t) = exp^—^ Jp(s)dsj. The 

function w(t) is a solution of the equation 

(4.3) w"(t) + A(t, [t], w([t]), w'(|>]))w(r) = 0, 

in which the function A is given by the formula 

(4.4) A{t,s,x,y)= -^pXt)-^p2(t) + q(^t,s,xti(s),^y-^pis)x^(s) 

Note that for every n e N , x, y e R the function A(-, n, x, y) is continuous on [0, 
oo) and that functions u(t) and w(t) are simultaneously equal to zero. This 
allows us to study the oscillatory properties of solutions of Eq. (4.1) by 
investigating Eq. (4.3). 
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E X A M P L E 4.1. Every nontrivial solution of the equation 

""W+"'W+(^2+" 2(M)) « ( 0 = o, t >o, 

is oscillatory. 
Putting w(t) = /z_1(r)u(f) we obtain the equation 

"rw+{25Ti?+i+",,(Ki»(^Tr},,,w - °-
which fulfils the assumptions of Theorem 3.3. 

E X A M P L E 4.2. Let p(t) be a nondecreasing function. If q(t, [t], x, y)<0 for 
t^O, x, y eR, then every nontrivial solution of Eq. (4.1) can vanish at no more 
than one point. Using the method shown at the beginning of this section we 
obtain Eq. (4.3), in which the function A fulfils the assumptions of Theorem 3.1. 
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