
A N T O N I C H R O N O W S K I * 

ON A CERTAIN TYPE OF PEXIDER EQUATIONS 

Abstract. The present paper deals with general solutions of the following functional equations: 
f(xy) =fWM f(xy) = f(x)+M. ftxy) =fT(x)fT(y), f(xy) = fT(x)+fT(y), where the sym­
bols on the right-hand sides of these equations denote the conjugate of complex numbers (or 
quaternions) and the transpose of matrices, respectively. 

Let (X, +) be a semigroup and (Y, +) be a group. Let e:Y -» Y be an 
involutive group automorphism, i.e. e(u + v) = e{u) + e(v) and e(e(u)) = u for all 
u, veY. Conjugation in the additive group (C, +) or in the multiplicative 
group (C\{0}, ) of complex numbers, matrix transition in the additive group of 
n x n-matrices are examples of involutive group automorphisms. J. Tabor [2] 
considered the following alternative functional equation 

ftx + y) = ftx) + fty) or f(x + y) = e{ftx) + fty)) 

for all x, yeX, where f:X-*Y is an unknown function. 
The equation 

(*) ftx + y) = e(f(x) + fty)) 

is a certain type of the Pexider equation. As a particular case of equation (*) 
J. Tabor cosidered the equation 

ftx+y) =ftx)-fty), 

where / : Z - » C \ { 0 } is an unknown function from a group (X, + ) into the 
multiplicative group (C\{0}, •) of all non-zero complex numbers. The general 
solution of this equation is expressed by means of some real valued homomor-
phism from (X, + ) into (C\{0}, •) and the cube roots of unity. 

In this paper we shall consider the functional equations f{xy) =f(x)f(y), 
ftxy) =ftx)+fty), ftxy) =fT(x)fT(y), ftxy.) = fT(x) + fT(y), where / ;is an 
unknown function defined on some algebraic structures. These equations can 
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be considered as some type of Pexider equations. The general solutions of the 
above equations involve a real valued homomorphism and the cube roots of 
unity (in some cases there are other solutions). 

1. We begin with some general considerations connected with the Pexider 
equation. 

The Pexider equation on groupoids G1 and G 2 is said to be the functional 
equation 

(1) Axy) = g(x)h(y) 

for x, y c G j , where f, g, h: G 1 - + G 2 are unknown functions. A triple of 
functions (/, g, h) satisfying equation (1) will be called a solution of Pexider 
equation (1). 

A groupoid G is said to be a group with zero if there exists an element 0 e G 
such that G* = G\{0} is a group and Ox = xO = 0 for all x e G . 

T H E O R E M 1. Let G^be a groupoid with identity, and let G2 be a group with 
zero. A triple of functions f, g, h.G1-*G2 is a solution of Pexider equation (1) if 
and only if it has one of the following forms: 

(A) f(x) = a1ę(x)a2, g{x) = a^x), h(x) = <p(x)a2 

for xeG1, where cp:G 1 ->G 2 is a homomorphism from the groupoid G t with 
identity to the group G2 with zero, and a1, a2eG2\{0} are constants; 

(B) / = 0 and g, h.Gl-*G2 are arbitrary functions such that g(x) = 0 or 
h(x) = 0 for every xeGt. 

Proof . Let a triple of functions (/, g, h) be a solution of Pexider equation (1). 
Put at = #(1) and a2 = h(l). Consider the following two cases: 

(i) flj 0 and a2 0, 
(ii) a t = 0 or a2 = 0. 
Case (i). Put ę(x) = a i " 1 g(x) for x e G x . Note that f(x) = g(l) h(x) = ath(x) 

and f(x) = g(x)h{l) = g{x)a2 for xeGl. Hence f(x) — a^a\1 g{x))a2 = a1q>(x)a2 

for xeG1. Thus f(x) = ax ę(x)a2, g{x) = a± ę(x), h(x) = q>(x)a2 for x e G j . It is 
easy to check that cp: G t -> G 2 is a homomorphism. Thus the triple (f, g, h) has 
form (A). 

Case (ii). Note that if condition (ii) is satisfied then / = 0. Hence g(x) = 0 or 
h(x) = 0 for all x e G x . The triple (/, g, h) has form (B). 

It is easy to verify that any triple of functions (/, g, h) having form (A) or (B) 
is a solution of Pexider equation (1). 

In the sequel we shall use the following. 
C O R O L L A R Y 1. Let G x be a groupoid with identity, and let G2 be a group 

with zero. If a triple offunctions f q,h.Gl-*G2is a solution of Pexider equation 
(I) such that g(\),h(\)eG^, then f(x) = a1(p(x)a2, g(x) = atę{x), h(x) = ę(x)a2 

for xeG1, where a x = g(l), a2 = h(l) and ę.G1->G2 is a homomorphism from 
the groupoid Gj with identity to the group G2 with zero. 

This corollary results immediately from the construction of the solution of 
Pexider equation (1) applied in the proof of Theorem 1. 
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2. Let G be a groupoid and let C denote the set of all complex numbers. 
Consider the functional equation 

(2) f(xy) =f(x)f(y) 

for all x, yeG, where / : G - > C is an unknown function. The symbol /(x) 
denotes here the complex conjugate of f(x). 

T H E O R E M 2. Let G be a groupoid with identity. The general solution of 
functional equation (2) has the form 

(3) f{x) = aę{x) 

for xeG, where (p:GeRis a homomorphismfrom the groupoid G with identity to 
the multiplicative semigroup R of real numbers, aeC and a3 = 1. 

Proof . Let a function / : G -+ C be a solution of equation (2). If / ( l ) = 0 
then f(x) = 0 for x e G. Thus / is of form (3), where ę: G -*• R is a zero 
homomorphism. 

Suppose that / ( l ) = a 0. By equation (2) we get a = a2. It is easy to 
check that a = a2 iff a 3 = 1. It follows from Corollary 1 that the function 
ę.G^C defined by cp(x) = a _ 1 / ( x ) for x e G is a homomorphism from the 
groupoid G to the multiplicative semigroup C of complex numbers. We shall 
show that <p(x)eR for x e G . From Corollary 1 we get f(x) = a2 ę(x) and so 
f(x) = acp(x) for x e G . Hence ę(x) = a - 1 / ^ ) = a~1aę(x) = ę{x) for x e G . 
Thus the function / is of form (3). 

It can be easily verified that each function / of form (3) satisfies equation 
(2). 

Let G be a groupoid. Consider the functional equation 

(4) f(xy)=f{x)+fiy) 
for all x, yeG, where / : G - > C is an unknown function. 

T H E O R E M 3. Let G be a groupoid with identity. A function f: G ->• C is 
a solution of equation (4) if and only if f is a homomorphism from the groupoid 
G with identity to the additive group R of all real numbers. 

Proof . Suppose that a function / : G - > C satisfies equation (4). We have 
/ ( l ) = f(j)+JV), whence f(l) = 0. By (4) we get f(x) = f(x) for x e G . More­
over, f(xy) = f(x) + f{y) for x, yeG. 

T H E O R E M 4. Let G be a semigroup. The general solution f:G->C of 
functional equation (2) has the form 

(5) /(x) = bcp(x) 

for xeG, where <p:G-»R is a homomorphism from the semigroup G to the 
multiplicative semigroup R of real numbers, beC and b3 = 1. 

Proof . Let a function f:G-*C be a solution of equation (2). Put Gx = 
{xeG: f(x) * 0} and G2 = G\Gt. Note that if G x * 0 (resp. G 2 # 0), then 
G t (resp. G 2 ) is a subsemigroup of the semigroup G. Furthermore, G 1 G 2 < r G 2 

and G2G1cz G 2 . 
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If Gj = 0 then / is of form (5), where ę: G->R is a zero homomorphism. 

Assume that Gy ^ 0. For an arbitrary element xeG^ we have /(x) = -^^-/(yj-

f(y)f(z) and /((xy)z) = /(x) f(y)f(z). Hence J ==- = -==- for x, z e G , . Thus 
/(x) f(z) 

k(x) = const = a for x e G l 5 where a e C and a # 0. Moreover, we have /(x) = 
a/(x) for x e G t . Note that aa = 1. We define a function c p i G ^ C * by the 
formula ę(x) = a _ 2 / ( x ) , x e G t . The function <p is a homomorphism from the 
semigroup Gl to the multiplicative group C* of all non-zero complex numbers. 
Indeed, ę(xy) = a~2f{xy) = a~2f(x)f{y) = a~*f{x)f{y) = ę(x)ę(y) for all x, 
y e G t . Observe that f{x) = aq5(x) for x e G x . From the above equalities we get 
/(x) = a <p(x) and so a2<p(x) = a ę(x) for x e Gx. Hence a3(?>(x) = cp(x) for x e G t . 
For x, ysGx we have a3(p(xy) = ćp(xy), a3ę{x)(p{y) = ę(x)ę{y), ę{x)ę{y) = ę{x) 
cp(y) and so ę(y) = <p(y) for all yeGt. Hence ę maps G t into R*. Since 
o3(p(x) = ę(x), xeGjWe get a 3 = 1. Define a function ę: G->R by the formula 

It is not difficult to check that the function ę is a homomorphism from the 
semigroup G to the multiplicative semigroup R of real numbers. Thus 
f(x) = a2ę(x) for x e G . Put b = a2. Observe that b3 = 1. Then / has form (5). 

It is easy to see that any function of form (5) satisfies equation (2). 
T H E O R E M 5. Let G be a semigroup. A function f: G-*C is a solution of 

equation (4) if and only if f is a homomorphism from the semigroup G to the 
additive group R of real numbers. 

Proof . Let / : G - > C be a solution of equation (4). We have f(x) = (/(x) — 
7(x))+7(x) for xeG. Put k(x) = f{x)-f(x) for x e G . Note that f(x(yz)) =f(x) + 
f{y)+m and f({xy)z) = f(x)+f(y)+]\z) for x, y, zeG. Hence / ( x ) - / ( x ) = 
/(z)—f(z) for all x, z e G and so k(x) — const = a, aeC. We get f(x) = a + 
f(x) for x e G . Since / satisfies equation (4) we obtain f(xy) = a + f(xy) = 
a + f(x) + f(y) and /(xy) =f(x) + f(y) = -2a+f(x)+f(y) for x, y,eG and so 
a = 0. Hence /(x) = /(x) for x e G . Therefore / : G - > R is a homomorphism 
from the semigroup G to the additive group R of real numbers. 

R E M A R K 1. Let the groupoid G be the additive group R of real numbers. 
Taking into account Theorem 2 and [1, Theorem 13.1.4] we get that a function 
/ : R - > C is a continuous solution of equation (2) if and only if it has one 
of the forms 

/(*) 

Put fc(x) = -==- for x e G x . Suppose that x, y, zeG^ Then f(x(yz))=f(x) 

for x e G j , 

for x e G 2 . 
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/=o, 
fix) = aecx for x e R , 

where aeC, c e R are constants and a3 = 1. 
R E M A R K 2. Let the groupoid G be the multiplicative semigroup R of real 

numbers. By Theorem 4 and [1, Theorem 13.1.6] we infer that a function 
/ : R-+C is a continuous solution of equation (2) if and only if it has one of the 
forms 

f{x) = a\x\c, 

fix) = a |x| c sgnx, x e R , 

where a e C , c e R + are constants and a3 = 1. 
R E M A R K 3. Let the groupoid G be the additive group of real numbers. 

Taking into account Theorem 3 and [1, Theorem 5.4.2] we obtain that 
a function / : R->C is a continuous solution of equation (4) if and only if it has 
the form fix) = ex, x e R , where c e R is a constant. 

R E M A R K 4. Let the groupoid G be the multiplicative group R* of all 
non-zero real numbers. In virtue of Theorem 3 and [1, Theorem 13.1.5] we 
infer that a function / : R * - > C is a continuous solution of equation (4) if and 
only if it has the form fix) = c ln |x | , xeR*, where c e R is a constant. 

3. Let G be a groupoid and let H denote the set of quaternions. Consider 
the functional equation 

(6) fixy) =mJiy) 
for x, yeG where / :G-»H is an unknown function. The symbol fix) denotes 
here the quaternion conjugate of fix). 

T H E O R E M 6. Let G be a groupoid with identity. The general solution of 
functional equation (6) has the form 

(7) fix) = qeix) 

for xeG, where c>:G->R is a homomorphism from the groupoid G with identity 
to the multiplicative semigroup R of real numbers, qeH and q3 = 1. 

Proof . Let a function / : G - * H be a solution of equation (6). If / ( l ) =0 
then fix) = 0 for xeG. Thus / has form (7), where c>:G-*R is a zero 
homomorphism. 

Now, suppose that / ( l ) = q # 0. By (6) we get q = q2. It is easy to check 
that q = q2 iff q3 = 1. It follows from Corollary 1 that the function (p:G-»H 
defined by the formula q>ix) = <?_1/M> xeG, is a homomorphism from the 
groupoid G to the multiplicative semigroup H of quaternions. We shall show 
that ę is a real valued function. Note that q_1 = q. From Corollary 1 we have 
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<P(x) = qf(x), 

ę(x) = f(x)q, 

<P(x) = qf(x)q 

for xeG. One can verify that aj? = j3a iff aj? = /Fa for all a, j?eH. From the 
above equalities we get ę{x) = q2 f(x) for xeG. Hence <p(x) = f{x)q2 = f(x)q = 
<p(x) for xeG. Thus f{x) = qę(x) whence f(x) = qq>(x) for x e G , i.e. the 
function / is of form (7). 

It is not difficult to check that every function / of form (7) satisfies equation 

R E M A R K 5. The quaternion qeH such that q3 = 1 has the form q=\ or 
1 , . 3 q = --+bi + cj + dk, where b, c, deR and b2 + c2 + d2 =-. I 4 

Let G be a groupoid. Consider the functional equation 

for x, yeG, where / :G->H is an unknown function. 
T H E O R E M 7. Let G be a groupoid with identity. A function f :G-»H is 

a solution of equation (8) if and only if f is a homomorphism from the groupoid 
G with identity to the additive group R of real numbers. 

We omit the easy proof. 

4. Let GL(2, R) be the full linear group of square matrices of order 2 over 
the real field R. The mapping 

is an isomorphic embedding of the multiplicative group C* of all non-zero 
complex numbers into the full linear group GL (2, R). Thus we can regard C* 
and R* as subsets of GL(2, R). Let S c G L ( 2 , R) be the set of all symmetric 
matrices, i.e. AeS iff A = AT, where AT is the transpose of A. 

Let G be a groupoid. Consider the functional equation 

for all x, yeG, where / : G-»GL(2, R) is an unknown function. The symbol fT(x) 
denotes the transpose of the martix f(x). It turns out that equation (9) has also 
solutions of a form different from that occurring in the preceding cases. 

T H E O R E M 8. Let G be a groupoid with identity. A function f :G->GL(2, R) 
is a solution of equation (9) if and only if f has one of the following forms: 

(A) f(x) = if/(x) for x e G , where i/f: G->GL(2, R) is a homomorphism from the 
groupoid G with identity to the full linear group GL(2, R) such that i/^(G)c:S; 

(B) f(x) = aę(x) for xeG, where cp:G->R* is a homomorpism from the 
groupoid G with identity to the multiplicative group R* of all non-zero real 
numbers, aeC and a3 = 1. 

(6). 

(8) Rxy) = f(x)+f(y) 

(9) f(xy) = fT(x)fT(y) 
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Proof . Assume that a function f:G-+GL(2, R) is a solution of equation (9). 
Put 

Since / ( l ) 

/(I) Oil
 U12 

a,, a-
eGL(2, R). 

*21 " 2 2 . 

/ r ( l ) / T ( l ) , we have A = ( / l 2 ) r . The matrices 

1 0 

0 1 

are the only ones satisfying the condition A = (A2)T. 
"1 0 
0 1 

enough to take i/f(x) = /(x) for xeG, to get (A). 
Now, suppose that 

1 

" I V 3 " " 1 v/31 
2 2 ~2 2 
V3 1 y3 1 
2 2. _~2~ ~2 

Suppose that A = . Then f(x) = fT(l)fT(x) = / r ( x ) for x e G . It is 

A = 
2 

2 
Note that (AT)'1 = A It is not difficult to check that AX = XA iff X e C* and 
AXT = XTA iff Z e C * for an arbitrary XeGL(2, R). It follows from Corollary 
1 that the function cp:G->GL(2, R) defined by the formula 

ę(x) = (ATr1fT(x), xeG, 
is a homomorphism. 

We shall show that qr has all its values in R*. By virtue of Corollary 1 we 
have 

cp(x) = AfT(x), 

ę(x) = fT(x)A, 

q>(x) = Af(x)A 
for x e G . It follows from the above equalities that f(x), fT(x)eC* for x e G . 
Hence ę(x) = A2f(x) for x e G . Furthermore, g>T{x) = (A2)TfT(x) = A fT(x) = 
ę(x) for x e G . Since q>(x)eC*, we get ęT(x) = ę(x) and so (p(x)eR* for an 
arbitrary element x e G . Moreover, fT(x) = ATę(x) then /(x) = Aę(x) for x e G . 
The case where 

" 1 V 3 1 
~2 2 

1 
_ ~Y ~2 

is quite analogous. Then the function / is of form (B). 
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It is easy to verify that every function of form (A) or (B) satisfies equation (9). 
Let G be a groupoid. Let M(2, R) be the group of all square real matrices of 

order 2 under matrix addition. Consider the functional equation 

(10) /(xy) = fT{x)+fT(y) 

for all x, yeG, where f:G-*M{2, R) is an unknown function. 
T H E O R E M 9. Let G be a groupoid with identity. A function f: G-»M(2, R) 

is a solution of equation (10) if and only iff is a homomorphism from the groupoid 
G with identity to the additive group M(2, R) such that / ( G ) c S . 

We omit an easy proof of this theorem. 
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