ALFRED CZOGAŁA*

THE FUNCTOR K_{2} FOR MULTIQUADRATIC NUMBER FIELDS

Abstract

Let F and O_{F} be a number field and its ring of integers respectively. Let K_{2} denote Milnor K-functor. In the paper we describe the structure of the group $K_{2} O_{F} / \Omega_{2} F$, where $\Omega_{2} F$ is the Hilbert kernel and F is multiquadratic extension of the rational number field. Moreover, we give some characterization of fields with trivial group $K_{2} O_{F} / \boldsymbol{\rho}_{2} F$. At the end we make some remarks on p-rank of $K_{2} O_{F}$ and divisibility of the ideal class group by 2.

1. Introduction. Let F be an algebraic number field, O_{F} the ring of integers in F and K_{2} the Milnor K-functor. In this paper we investigate the group $K_{2} O_{F} / \Omega_{2} F$, where $\Omega_{2} F$ is the Hilbert kernel, for multiquadratic extension F of the rational field \mathbf{Q}. In Section 2, we describe completely the structure of the group $K_{2} O_{F} / \Omega_{2} F$ for any multiquadratic extension F, thus extending the result of J. Browkin [1]. In section 3 we characterize the number fields F with $K_{2} O_{F} / \Omega_{2} F=0$. The concluding remarks are concerned with the p-rank of $K_{2} O_{F}$ in the case when $K_{2} O_{F} / \Omega_{2} F$ is trivial. We also estimate the 2 -rank of the group $K_{2} O_{F} / \mathcal{R}_{2} F$ is some special cases of multiquadratic number fields. This allows us to produce a series of examples of multiquadratic number fields with even order of the ideal class group.

We use the following notation, terminology and auxiliary facts. F_{v} denotes the completion of F with respect to the valuation v and μ_{v} is the group of roots of unity in F_{v}, m_{v} being the order of μ_{v}. Similarly μ and m are the group of roots of unity in F and the order of the group. As proved by D. Quillen in [4], $K_{2} O_{F}$ is the kernel of the homomorphism $\tau: K_{2} F \rightarrow \sqcup \bar{F}_{v}, v$ running through discrete valuations of F, where τ satisfies $\tau(\{\alpha, \beta\})=\left((\alpha, \beta)_{v}\right)_{v}$. Here $(,)_{v}$ is the tame symbol, as defined in Milnor [3]. The Hilbert kernel $\boldsymbol{S}_{2} F$ is defined to be the kernel of the homomorphism $\eta: K_{2} F \rightarrow \sqcup \mu_{v}(v$ runs through non real valuations of F), satisfying $\eta(\{\alpha, \beta\})=\left([\alpha, \beta]_{v}\right)_{v}$. Here $[,]_{v}$ is the Hilbert symbol according to [3]. The Hilbert symbol and the tame symbol are bound to satisfy $[a, b]_{v}^{m_{v} /(N v-1)}=(a, b)_{v}$ for any discrete valuation v. It follows that $\Omega_{2} F \subset K_{2} O_{F}$.
J. Browkin [1] has given the following presentation for $K_{2} O_{F} / \Omega_{2} F$ which will be also the basis for all the computations in this paper.

THEOREM. The group $K_{2} O_{F} / \Omega_{2} F$ is isomorphic to the Abelian group with generators g_{v}, where v runs through all the real valuations of F and these discrete
 generators are subject to the following relations:
(1) $g_{v}^{2}=1$ for real valuations v,
(2) $g_{v}^{m_{v} /(N v-1)}=1$ for discrete $v\left(\right.$ here $\left.N v=\left|\bar{F}_{v}\right|\right)$,

Received May 5, 1983.
AMS (MOS) Subject classification. Primary 12A62. Secondary 12B22.
*Instytut Matematyki Uniwersytetu Sląskiego, Katowice, ul. Bankowa 14, Poland.
2. The group $K_{2} O_{F} / \mathcal{R}_{2} F$ for multiquadratic extensions of the rationals. In this section we assume that $F=\mathbf{Q}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$, where a_{1}, \ldots, a_{n} are square-free integers and $[F: Q]=2^{n}$.

PROPOSITION 2.1. Suppose p is a prime, $p \neq 2$ and v is a valuation of F with $v \mid p$. Then
(i) F_{v} is one of the following extensions of the p-adic field: $\mathbf{Q}_{p}, \mathbf{Q}_{p}(\sqrt{p}), \mathbf{Q}_{p}(\sqrt{3 p})$, $\mathbf{Q}_{p}(\sqrt{3}), \mathbf{Q}_{p}(\sqrt{p}, \sqrt{3})$, where 3 is a primitive root of unity of degree $p-1$.
(ii) $e\left(F_{v} / Q_{p}\right) \leqslant 2$.

Proof. (i) First observe that $F_{v}=\mathbf{Q}_{p}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$ so that F_{v} is a multiquadratic extension of \mathbf{Q}_{p}. There are only three quadratic extensions of \mathbf{Q}_{p} and these are $\mathbf{Q}_{p}(\sqrt{p}), \mathbf{Q}_{p}(\sqrt{3 p}), \mathbf{Q}_{p}(\sqrt{3})$. Adjoining to anyone of these a square root of any element of \mathbf{Q}_{p} we get either one of the three fields or the unique biquadratic extension of \mathbf{Q}_{p} equal to $\mathbf{Q}_{p}(\sqrt{p}, \sqrt{3})$. Since $\mathbf{Q}_{p}(\sqrt{p}, \sqrt{3})$ cannot be further extended by adjoining a square root of an element of \mathbf{Q}_{p}, we get (i).
(ii) Each of the fields in (i) has ramification index $\leqslant 2$.

LEMMA 2.2. If $v \mid p$ and $3_{p} \in F_{v}$, then $p=2$ or $p=3$.
Proof. Corollary 2 in [1] implies that $p-1 \mid e\left(F_{v} / Q_{p}\right)$ and $e \leqslant 2$ by 2.1. (ii).
The above lemma shows that the generators for $K_{2} O_{F} / \boldsymbol{R}_{2} F$ can come only from real valuations and those discrete ones that divide 2 or 3.

LEMMA 2.3. If $v \mid 3$ and ${ }_{3} \in F_{v}$, then $F_{v}=\mathbf{Q}_{3}(\sqrt{-3})$ or $F_{v}=\mathbf{Q}_{3}(\sqrt{-3}, \sqrt{3})$.
Proof. The result follows by inspecting which ones of the fields in 2.1. (i) contain the third root of unity.

PROPOSITION 2.4. If $v \mid 2$, then
(i) F_{v} is one of the following fields: $\mathbf{Q}_{2}, \mathbf{Q}_{2}(\sqrt{3}), \mathbf{Q}_{2}(\sqrt{-3}), \mathbf{Q}_{2}(\sqrt{-1})$, $\mathbf{Q}_{2}(\sqrt{2}), \quad \mathbf{Q}_{2}(\sqrt{-2}), \quad \mathbf{Q}_{2}(\sqrt{6}), \quad \mathbf{Q}_{2}(\sqrt{-6}), \quad \mathbf{Q}_{2}(\sqrt{-1}, \sqrt{3}), \quad \mathbf{Q}_{2}(\sqrt{-1}, \sqrt{2})$, $\mathbf{Q}_{\mathbf{2}}(\sqrt{-1}, \sqrt{6}), \mathbf{Q}_{2}(\sqrt{2}, \sqrt{3}), \mathbf{Q}_{\mathbf{2}}(\sqrt{-2}, \sqrt{3}), \mathbf{Q}_{2}(\sqrt{2}, \sqrt{-3}), \mathbf{Q}_{2}(\sqrt{-2}, \sqrt{-3})$, $\mathbf{Q}_{2}(\sqrt{-1}, \sqrt{2}, \sqrt{3})$.
(ii) $e\left(F_{v} / \mathbf{Q}_{2}\right) \leqslant 4, f\left(F_{v} / \mathbf{Q}_{2}\right) \leqslant 2$.

Proof. We have $F_{v}=\mathbf{Q}_{2}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$. It is easy to see that the list of fields contains all quadratic and biquadratic extension of \mathbf{Q}_{2}. And $\mathbf{Q}_{2}(\sqrt{-1}$, $\sqrt{2}, \sqrt{3}$) is the unique multiquadratic extension of \mathbf{Q}_{2} of degree 8. It contains all the square roots of elements of \mathbf{Q}_{2} so that it cannot be extended properly by adjoining square roots of elements of \mathbf{Q}_{2}. This proves (i).
(ii) follows inmediately from (i) by direct computing the degree and ramification index of all the fields listed in (i).

COROLLARY 2.5. For any valuation v such that $v \mid 2$ we have
(i) if $3_{n} \in F_{v}$ and $2 \nmid n$, then $n=3$,
(ii) if $3_{2^{k}} \in F_{v}$, then $k \leqslant 3$,
(iii) $m_{v} \mid 24$.

Proof. (i) We have g.c.d. $(n, N v)=1$, hence $n \mid N v-1$. Since $N v=2^{f}$ and $f \leqslant 2$ we must have $n=3$.
(ii) Consider the tower $\mathbf{Q}_{2} \subseteq \mathbf{Q}_{2}\left(\boldsymbol{3}_{2 k}\right) \subseteq F_{1}$. It follows that $e\left(\mathbf{Q}_{2}\left(\mathbf{3}_{2^{k}}\right) / \mathbf{Q}_{2}\right)$) $\mid e\left(F_{v} / \mathbf{Q}_{2}\right)$. Since $e\left(\mathbf{Q}_{2}\left({ }_{2^{k}}\right) / \mathbf{Q}_{2}\right)=2^{k-1}$ and $e\left(F_{v} / \mathbf{Q}_{2}\right) \leqslant 4$ we get $k \leqslant 3$.
(iii) This follows directly from (i) and (ii).

The number of generators of the group $K_{2} O_{F} / \mathcal{H}_{2} F$ equals the total number of pairwise inequivalent real valuations, the valuations dividing 2 and those valuations v dividing 3 for which $\mathcal{3}_{3} \in F_{v}$. The relations depend on the values of $N v, m_{v}$ and m for these valuations. The theorems below show how all these numbers depend on a_{1}, \ldots, a_{n}. In order to state the results in a concise form we introduce the following notation:
r - the number of real valuations of the field F,
$g(2)$ - the number of pairwise inequivalent valuations dividing 2 ,
$g(3)$ - the number of pairwise inequivalent valuations dividing 3 and satisfying $3_{3} \in F_{v}$.

THEOREM 2.6.
2.6.1. If $a_{i}<0$ for a certain $i, 1 \leqslant i \leqslant n$, then $r=0$.
2.6.2. If $a_{i}>0$ for every $i, 1 \leqslant i \leqslant n$, then $r=2^{n}$.

Proof. This is obvious.
THEOREM 2.7.
2.7.1. If $a_{i} \equiv 1(\bmod 8)$ for every $i, 1 \leqslant i \leqslant n$, then $g(2)=2^{n}$ and for every valuation v dividing 2 we have $m_{v}=2$ and $N v=2$.
2.7.2. Suppose $a_{k} \not \equiv 1(\bmod 8)$ for a certain $k, 1 \leqslant k \leqslant n$ and either $a_{i} \equiv 1$ $(\bmod 8)$ for all $i \neq k$ or $a_{i} \equiv a_{k}(\bmod 8)$ for all $i \neq k$ and $2 \nmid a_{k}$ or $a_{i} \equiv a_{k}(\bmod 16)$ for all $i \neq k$ and $2 \mid a_{k}$. Then $g(2)=2^{n-1}$ and for every valuation v dividing 2 we have:
a) $m_{v}=2, N v=2$, if $a_{k} \equiv 3(\bmod 8)$,
b) $m_{v}=6, N v=4$, if $a_{k} \equiv 5(\bmod 8)$,
c) $m_{v}=4, N v=2$, if $a_{k} \equiv 7(\bmod 8)$,
d) $m_{v}=2, N v=2$, if $a_{k} \equiv 2(\bmod 4)$.
2.7.3. Suppose there are $k, l, 1 \leqslant k, l \leqslant n$ with $a_{k} \not \equiv 1 \not \equiv a_{l}(\bmod 8), a_{k} \not \equiv a_{l}$ $(\bmod 8)$. Let v be any valuation dividing 2.
a) If $a_{i} \not \equiv 1,3,5,7(\bmod 8)$ for every $i, 1 \leqslant i \leqslant n$, then $m_{v}=12, N v=4$.
b) If $a_{i}=1,7(\bmod 8)$ or $a_{i} \equiv 2,14(\bmod 16)$ for every $i, 1 \leqslant i \leqslant n$, then $m_{v}=8, N v=2$.
c) If $a_{i} \equiv 1,7(\bmod 8)$ or $a_{i} \equiv 6,10(\bmod 16)$ for every $i, 1 \leqslant i \leqslant n$, then $m_{v}=4$, $N v=2$.
d) If $a_{i} \equiv 1,3(\bmod 8)$ or $a_{i} \equiv 2,6(\bmod 16)$ for every $i, 1 \leqslant i \leqslant n$, then $m_{v}=2$, $N v=2$.
e) If $a_{i} \equiv 1,3(\bmod 8)$ or $a_{i} \equiv 10,14(\bmod 16)$ for every $i, 1 \leqslant i \leqslant n$, then $m_{v}=2, N v=2$.
f) If $a_{i} \equiv 1,5(\bmod 8)$ or $a_{i} \equiv 2,10(\bmod 16)$ for every $i, 1 \leqslant i \leqslant n$, then $m_{v}=6$, $N v=4$.
g) If $a_{i} \equiv 1,5(\bmod 8)$ or $a_{i} \equiv 6,14(\bmod 16)$ for every $i, 1 \leqslant i \leqslant n$, then $m_{v}=6, N v=4$.
In all the cases a) through g) one has $g(2)=2^{n-2}$.
2.7.4. For all the remaining possible values of residues of $a_{i} s \bmod 8$ we have $g(2)=2^{n-3}$ and for any valuation $v \mid 2, m_{v}=24$ and $N v=4$.

Proof. 2.7.1. If $a_{i} \equiv 1(\bmod 8)$ for every i, then $F_{v}=\mathbf{Q}_{2}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)=$ $=\mathbf{Q}_{2}$. Hence $e\left(F_{v} / \mathbf{Q}_{2}\right)=f\left(F_{v} / \mathbf{Q}_{2}\right)=1$. Thus $g(2)=2^{n}$.
2.7.2. If $a_{i} \equiv a_{k}(\bmod 8)$ and $2 \nmid a_{k}$ or $a_{i} \equiv a_{k}(\bmod 16)$ and $2 \mid a_{k}$, then $a_{i} a_{k}$ is a square in \mathbf{Q}_{2}. It follows that under the assumptions of 2.7.2 F_{v} is a quadratic extension of \mathbf{Q}_{2} and in the cases a), b), c) we find out that F_{v} is $\mathbf{Q}_{2}(\sqrt{3}), \mathbf{Q}_{2}(\sqrt{-3})$, $\mathbf{Q}_{2}(\sqrt{-1})$, respectively and in the case d) it is one of the fields $\mathbf{Q}_{2}(\sqrt{-2})$, $\mathbf{Q}_{2}(\sqrt{-6}), \mathbf{Q}_{2}(\sqrt{6}), \mathbf{Q}_{2}(\sqrt{2})$. Since $\left[F_{v}: \mathbf{Q}_{2}\right]=2, g(2)=2^{n-1}$. It is routine to determine the values of m_{v} and $N v$ for the given fields.
2.7.3. As in the case of 2.7.2 we conclude that now F_{v} contains a biquadratic extension of \mathbf{Q}_{2}. Consider the case a). Since $a_{i} \equiv 1,3,5,7(\bmod 8)$ we have $a_{i} \in \mathbf{Q}_{2}^{2}$, $3 a_{i} \in \mathbf{Q}_{2}^{2},-3 a_{i} \in \mathbf{Q}_{2}^{2},-a_{i} \in \mathbf{Q}_{2}^{2}$, respectively. Hence for every i, a_{i} is a square in the field $\mathbf{Q}_{2}(\sqrt{-1}, \sqrt{3})$. It follows that $F_{v}=\mathbf{Q}_{2}(\sqrt{-1}, \sqrt{3})$. Thus $\left[F_{v}: \mathbf{Q}_{2}\right]=4$ and $g(2)=2^{n-2}$. Moreover, we observe that ${ }_{3} \in F_{v}, \jmath_{4} \in F_{v}$ and ${ }_{\mathcal{J}_{8}} \notin F_{v}$ (otherwise $\sqrt{2} \in \mathbf{Q}_{2}(\sqrt{-1}, \sqrt{3})$ which is impossible). It follows that $m_{v}=12$. Since both the residue degree and ramification index are equal 2 we conclude $N v=4$. This finishes the proof of a). In the remaining cases we prove analogously that F_{v} is $\mathbf{Q}_{\mathbf{2}}(\sqrt{-1}, \sqrt{2}), \mathbf{Q}_{\mathbf{2}}(\sqrt{-1}, \sqrt{6}), \mathbf{Q}_{\mathbf{2}}(\sqrt{2}, \sqrt{3}), \mathbf{Q}_{\mathbf{2}}(\sqrt{-2}, \sqrt{3}), \mathbf{Q}_{\mathbf{2}}(\sqrt{2}, \sqrt{-3})$, $\mathbf{Q}_{2}(\sqrt{-2}, \sqrt{-3})$ respectively. In all the cases $\left[F_{v}: \mathbf{Q}_{2}\right]=4$, hence $g(2)=2^{n-2}$. As in a) we determine m_{v} and $N v$.
2.7.4. All the cases when F_{v} is a quadratic extension of \mathbf{Q}_{2} have been discussed in 2.7.2 and when F_{v} is biquadratic extension of \mathbf{Q}_{2} - in 2.7.3. Now F_{v} is a unique multiquadratic extension of \mathbf{Q}_{2} of degree 8, that is $F_{v}=$ $=\mathbf{Q}_{2}(\sqrt{-1}, \sqrt{2}, \sqrt{3})$. Hence $g(2)=2^{n-3}$. Since $3_{3} \in F_{v}$ and $3_{8} \in F_{v}$, we get $m_{v}=24$. Further $e\left(F_{v} / \mathbf{Q}_{2}\right)=4, f\left(F_{v} / \mathbf{Q}_{2}\right)=2$ so that $N v \doteq 4$. This finishes the proof of the Theorem 2.7.

THEOREM 2.8.
2.8.1. If there is $a k, 1 \leqslant k \leqslant n$, with $a_{k} \equiv 6(\bmod 9)$ and for every $i \neq k$ either $a_{i} \equiv 1(\bmod 3)$ or $a_{i} \equiv 6(\bmod 9)$, then $g(3)=2^{n-1}$ and for any valuation v dividing 3 we have $m_{v}=6$ and $N v=3$.
2.8.2. If there are $k, l, 1 \leqslant k, l \leqslant n$, with $a_{k} \equiv 2(\bmod 3)$ and $a_{l} \equiv 3,6(\bmod 9)$ or $a_{k} \equiv 3(\bmod 9)$ and $a_{l} \equiv 6(\bmod 9)$, then $g(3)=2^{n-2}$ and $m_{v}=24, N v=9$ for any valuation $v \mid 3$.
2.8.3. For all the remaining possible values of $a_{i}^{\prime} s \bmod 3$ we have $g(3)=0$.

Proof. As in the proof of Theorem 2.7 it easy to establish that $F_{v}=$ $=\mathbf{Q}_{3}(\sqrt{-3})$ in the case 2.8.1 and $F_{v}=\mathbf{Q}_{3}(\sqrt{-1}, \sqrt{3})$ in the case 2.8.2 Lemma 2.3 implies that these are unique possible fields with ${ }_{3} \in F_{v}$. Thus in all other cases $g(3)=0$. Now if $F_{v}=\mathbf{Q}_{3}(\sqrt{-3})$, then $\left[F_{v}: \mathbf{Q}_{3}\right]=2$ and so $g(3)=2^{n-1}$. Moreover, $\boldsymbol{3}_{9} \notin F_{v}$, since $e\left(\mathbf{Q}_{3}\left(\boldsymbol{3}_{9}\right) / \mathbf{Q}_{3}\right)=6$ and $e\left(F_{v} / \mathbf{Q}_{3}\right)=2$. Also $\boldsymbol{3}_{4} \notin F_{v}$.

Hence $m_{v}=6$. If $F_{v}=\mathbf{Q}_{3}(\sqrt{-1}, \sqrt{3})$, then $e\left(F_{v} / \mathbf{Q}_{3}\right)=f\left(F_{v} / \mathbf{Q}_{3}\right)=2$, hence $N v=9$. Further $\left[F_{v}: \mathbf{Q}_{3}\right]=4$, hence $g(3)=2^{n-2}$ and as above we prove ${ }_{39} \notin F_{v}$. Hence $m_{v}=24$.

In order to determine the relations between generators we need to know the order of the group of roots of unity in F denoted by m. Since $m \mid m_{v}$ for any valuation v of F, we note that $m \mid 24$. Moreover,
$3_{3} \in F$ if and only if F contains $\mathbf{Q}(\sqrt{-3})$,
$3_{4} \in F$ if and only if F contains $\mathbf{Q}(\sqrt{-1})$,
$3_{8} \in F$ if and only if F contains $\mathbf{Q}(\sqrt{-1})$ and $\mathbf{Q}(\sqrt{2})$,
$\mathbf{x}_{12} \in F$ if and only if F contains $\mathbf{Q}(\sqrt{-1})$ and $\mathbf{Q}(\sqrt{3})$,
$\boldsymbol{j}_{24} \in F$ if and only if F contains $\mathbf{Q}(\sqrt{-1}), \mathbf{Q}(\sqrt{2}), \mathbf{Q}(\sqrt{3})$.
It follows that m can take only the following values: $2,4,6$ (when $n \geqslant 1$), 8,12 (when $n \geqslant 2$), and 24 (when $n \geqslant 3$).

The theorem below gives necessary and sufficient conditions for various roots of unity to belong to F.

THEOREM 2.9 .
2.9.1. $\exists_{3} \in F$ if and only if there are distinct indices i_{1}, \ldots, i_{k} such that $a_{i_{1}} \cdot \ldots \cdot a_{i_{k}}=-3 c^{2} \cdot$ for an integer c.
2.9.2. $3_{4} \in F$ if and only if there are distinct indices i_{1}, \ldots, i_{k} such that $a_{i_{1}} \cdot \ldots \cdot a_{i_{k}}=-c^{2}$ for an integer c.
2.9.3. $\mathcal{3}_{8} \in F$ if and only if there are two sets of distinct indices i_{1}, \ldots, i_{k} and j_{1}, \ldots, j_{l} such that $a_{i_{1}} \cdot \ldots \cdot a_{i_{k}}=-c_{1}^{2}$ and $a_{j_{1}} \cdot \ldots \cdot a_{j_{1}}=2 c_{2}^{2}$ for some integers c_{1} and c_{2}.
2.9.4. $3_{12} \in F$ if and only if there are two sets of distinct indices i_{1}, \ldots, i_{k} and j_{1}, \ldots, j_{l} such that $a_{i_{1}} \cdot \ldots \cdot a_{i_{k}}=-c_{1}^{2}$ and $a_{j_{1}} \cdot \ldots \cdot a_{j_{1}}=3 c_{2}^{2}$ for some integers c_{1} and c_{2}.
2.9.5. $\mathcal{3}_{24} \in F$ if and only if there are three sets of distinct indices i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{l} and k_{1}, \ldots, k_{q} such that $a_{i_{1}} \cdot \ldots \cdot a_{i_{k}}=-c_{1}^{2}, \quad a_{j_{1}} \cdot \ldots \cdot a_{j_{l}}=2 c_{2}^{2}$, $a_{k_{1}} \cdot \ldots \cdot a_{k_{q}}=3 c_{3}^{2} \cdot f$ for some integers c_{1}, c_{2} and c_{3}.

Proof. Everything follows from the remark preceding the statement of the theorem and from the lemma below.

LEMMA 2.10. Suppose K is a subfield of $F=\mathbf{Q}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right),[F: \mathbf{Q}]=2^{n}$ and $[K: \mathbf{Q}]=2$. Then there are distinct indices i_{1}, \ldots, i_{k} such that $K=$ $=\mathbf{Q}\left(\sqrt{a_{i_{1}} \cdot \ldots \cdot a_{i_{k}}}\right)$.

Proof. We use elementary Galois theory. For distinct sets of indices i_{1}, \ldots, i_{k}, the quadratic fields $\mathbf{Q}\left(\sqrt{a_{i_{1}} \cdot \ldots \cdot a_{i_{k}}}\right)$ are distinct and their total number is $2^{n}-1$. On the other hand if $[K: \mathbf{Q}]=2$ and $K \subset F$, then K is the fixed field of a subgroup of index two in $\operatorname{Gal}(F / \mathbf{Q})=(\mathbf{Z} / 2 \mathbf{Z})^{n}$. But subgroups of index 2 in $(\mathbf{Z} / 2 \mathbf{Z})^{n}$ can be viewed as hyperplanes in n-dimensional vector space $(\mathbf{Z} / 2 \mathbf{Z})^{n}$ over the field $\mathbf{Z} / 2 \mathbf{Z}$. These hyperplanes are in one-to-one corespondence with homogenous linear equations in n indeterminats over $\mathbf{Z} / 2 \mathbf{Z}$. Since there are $2^{n}-1$ such equations, this is the number of hyperplanes and the number of quadratic
extensions of \mathbf{Q} contained in F. But we have specified $2^{n}-1$ distinct quadratic extensions contained in F at the beginning of the proof. It follows these are all quadratic extensions in F and the lemma is proved.

We proceed to determine the group $K_{2} O_{F} / \boldsymbol{\Omega}_{2} F$. Recall that $F=\mathbf{Q}\left(\sqrt{a_{1}}, \ldots\right.$, $\sqrt{a_{n}}$), where a_{1}, \ldots, a_{n} are square-free integers and $[F: \mathbf{Q}]=2^{n}$. The r generators of the group coming real valuations of F will be denoted z_{1}, \ldots, z_{r}, the $g(2)$ generators coming from discrete valuation dividing 2 will be written $g_{1}, \ldots, g_{g(2)}$ and the $g(3)$ generators coming from discrete valuations dividing 3 will be written $h_{1}, \ldots, h_{g(3)}$.

The classification of possible groups $K_{2} O_{F} / \mathcal{S}_{2} F$ given below is divided into 6 parts depending on the value of m, the order of the group of roots of unity in F. Each part is seperated into several cases depending on the residues of a_{i}^{\prime} s considered in Theorem 2.6 through 2.9. We use the notation of cases introduced in the theorems.

Part I. $m=2$. The table below gives the number of generators, the relations and the structure of the group $K_{2} O_{F} / \boldsymbol{\Omega}_{2} F$ in the case when $g(3)=0$, that is, in the case 2.8.3. The other two possibilities 2.8.1 and 2.8.2 are discussed below the table.

TABLE 1

Case	$g(2)$	Relations	Structure of $K_{2} O_{F} / \mathcal{S}_{2} F$
$2.6 .1(r=0)$			
2.7.1	2^{n}	$g_{i}^{2}=1, \Pi g_{i}=1$	$(\mathbf{Z} / 2 \mathbf{Z})^{\mathbf{2 n - 1}}$
2.7.2a, 2.7.2d	2^{n-1}	$g_{i}^{2}=1, \Pi g_{i}=1$	($\mathbf{Z} / 2 \mathbf{Z})^{2 n-1-1}$
2.7.2b	2^{n-1}	$g_{i}^{2}=1, \Pi g_{i}^{3}=1$	$(\mathbf{Z} / 2 \mathbf{Z})^{2 n-1-1}$
2.7.2c	2^{n-1}	$g_{i}^{4}=1, \Pi g_{i}^{2}=1$	$(\mathbf{Z} / 4 \mathbf{Z})^{2 n-1-1} \oplus(\mathbf{Z} / 2 \mathbf{Z})$
2.7.3a	2^{n-2}	$g_{i}^{4}=1, \Pi g_{i}^{6}=1$	$(\mathbf{Z} / 4 \mathbf{Z})^{2 n-2-1} \oplus(\mathbf{Z} / 2 \mathbf{Z})$
2.7.3b	2^{n-2}	$g_{i}^{8}=1, \Pi g_{i}^{4}=1$	$(\mathbf{Z} / 8 \mathbf{Z})^{2 n-2-1} \oplus(\mathbf{Z} / 4 \mathbf{Z})$
2.7.3c	2^{n-2}	$g_{i}^{4}=1, \Pi g_{i}^{2}=1$	$(\mathbf{Z} / 4 \mathbf{Z})^{2-2-1} \oplus(\mathbf{Z} / 2 \mathbf{Z})$
2.7.3d, 2.7.3e	2^{n-2}	$g_{i}^{2}=1, \Pi g_{i}=1$	$(\mathbf{Z} / \mathbf{Z} \mathbf{Z})^{\mathbf{2 n - 2}-1}$
2.7.3f, 2.7 .3 g	2^{n-2}	$g_{i}^{2}=1, \Pi g_{i}^{3}=1$	$(\mathbf{Z} / \mathbf{2 Z})^{2 n-2-1}$
2.7.4	2^{n-3}	$g_{i}^{8}=1, \Pi g_{i}^{12}=1$	$(\mathbf{Z} / 8 \mathbf{Z})^{2 n-3-1} \oplus(\mathbf{Z} / 4 Z)$
$2.6 .2\left(r=2^{n}\right)$			
2.7.1	2^{n}	$g_{i}^{2}=z_{j}^{2}=1,\left\lceil g_{i} \Pi z_{j}=1\right.$	$(\mathbf{Z} / 2 \mathbf{Z})^{\mathbf{2 n}^{\text {+1-1}}}$
2.7.2a, 2.7.2d	2^{n-1}	$g_{i}^{2}=z_{j}^{2}=1, \Pi g_{i} \Pi z_{j}=1$	$(\mathbf{Z} / 2 \mathbf{Z})^{3 \cdot 2^{n-1}-1}$
2.7.2b	2^{n-1}	$g_{i}^{2}=z_{j}^{2}=1, \Pi g_{i}^{3} \Pi z_{j}=1$	$(\mathbf{Z} / \mathbf{2} \mathbf{Z})^{3 \cdot 2^{n-1-1}}$
2.7.2c	2^{n-1}	$g_{i}^{4}=z_{j}^{2}=1, \Pi g_{i}^{2} \Pi z_{j}=1$	$(\mathbf{Z} / 4 \mathbf{Z})^{2 n-1} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{2 n-1}$
2.7.3a	2^{n-2}	$g_{i}^{4}=z_{j}^{2}=1, \Pi g_{i}^{6} \Pi z_{j}=1$	$(\mathbf{Z} / 4 \mathbf{Z})^{2^{n-2}} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{2 n-1}$
2.7.3b	2^{n-2}	$g_{i}^{8}=z_{j}^{2}=1, \Pi g_{i}^{4} \Pi z_{j}=1$	$(\mathbf{Z} / 8 \mathbf{Z})^{2^{n-2}} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{2 n-1}$
2.7.3c	$2^{\text {n-2 }}$	$g_{i}^{4}=z_{j}^{2}=1, \Pi g_{i}^{2} \Pi z_{j}=1$	$(\mathbf{Z} / 4 \mathbf{Z})^{2 n-2} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{2 n-1}$
2.7.3d, 2.7.3e	2^{n-2}	$g_{i}^{2}=z_{j}^{2}=1, \Pi g_{i} \Pi z_{j}=1$	$(\mathbf{Z} / \mathbf{2} \mathbf{Z})^{5 \cdot 2^{n-2}-1}$
2.7.3f, 2.7 .3 g	2^{n-2}	$g_{i}^{2}=z_{j}^{2}=1, \Pi g_{i}^{3} \Pi z_{j}=1$	$(\mathbf{Z} / \mathbf{2} \mathbf{Z})^{5 \cdot 2^{n-2}-1}$
2.7.4	2^{n-3}	$g_{i}^{8}=z_{j}^{2}=1, \Pi g_{i}^{12} \Pi z_{j}=1$	$(\mathbf{Z} / 8 \mathbf{Z})^{2^{n-3}} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{2^{-1}}$

When $m=2$ and 2.8 .1 holds, in every case considered above we have $g(3)=2^{n-1}$ and the additional generators satisfy $h_{i}^{3}=1$. These generators do not appear in relation (3) stated in Introduction. Hence the group $K_{2} O_{F} / \Omega_{2} F$ acquires additional direct summand $(\mathbf{Z} / 3 \mathbf{Z})^{\mathbf{n}^{n-1}}$ in every case. When $m=2$ and 2.8.2 holds, in every case considered in the table $g(3)=2^{n-2}$ and the group in the table should be enlarged by a direct summand $(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-2}}$.

Part II. $m=4$. Of the two cases of Theorem 2.6 only 2.6 .1 can hold. Moreover, since $m \mid m_{v}$, we conclude that only 2.7.2c, 2.7.3b, 2.7.3a, 2.7.3c, 2.7.4 and 2.8.2, or 2.8 .3 can happen. The table below describes the situation under 2.8.3. The other case 2.8 .2 is discussed below the table 1 .

TABLE 2

Case	r	$g(2)$	${ }^{\text {(3) }}$	Relations	Structure of $\mathrm{K}_{2} \mathrm{O}_{\mathrm{F} / \mathrm{S}_{2} \mathrm{~F}}$
2.7.2c	0	2^{n-1}	0	$g_{i}^{4}=1, \sqcap g_{i}=1$	$(\mathbf{Z} / 4 \mathbf{Z})^{2 n-1-1}$
2.7.3a	0	2^{n-2}	0	$g_{i}^{4}=1, \Pi g_{i}^{3}=1$	$(\mathbf{Z} / 4 \mathbf{Z})^{2 n-2-1}$
2.7.3b	0	$2^{\text {n-2 }}$	0	$g_{i}^{\mathrm{g}}=1, \sqcap g_{i}^{2}=1$	$(\mathbf{Z} / \mathbf{8} \mathbf{Z})^{2{ }^{-2}-1} \oplus(\mathbf{Z} / \mathbf{2} \mathbf{Z})$
2.7.3c	0	2^{n-2}	0	$g_{i}^{4}=1, \Pi g_{i}=1$	$(\mathbf{Z} / 4 \mathbf{Z})^{2 n-2-1}$
2.7.4	0	2^{n-3}	0	$g_{i}^{\mathrm{g}}=1, \Pi g_{i}^{12}=1$	$(\mathbf{Z} / 8 \mathbf{Z})^{2{ }^{-3-1}-1 \oplus(\mathbf{Z} / 4 \mathbf{Z})}$

When $m=4$ and 2.8 .2 holds, in every case considered in the table $g(3)=2^{n-2}$ and $h_{i}^{3}=1$. Since $3_{3} \notin F$, the additional generators do not appear in the relation (3) stated in the Introduction. In every case the group in the table should be enlarged by adding the direct summand $(\mathbf{Z} / 3 \mathbf{Z})^{\mathbf{2 n}^{n-2}}$.

Part III. $m=6$. Now 2.6.1 holds and only 2.7.2a, 2.7.3a, 2.7.3f, 2.7.3g, 2.7.4, and 2.8.1 or 2.8 .2 can happen. Since 2.6 .1 holds, in every case considered in the table 3 below we have $r=0$.

TABLE 3

Case	$g(2)$	$g(3)$	Relations	Structure of $K_{2} O_{F} / \mathcal{R}_{2} \mathrm{~F}$
2.8.1				
$\begin{aligned} & 2.7 .2 \mathrm{a} \\ & 2.7 .3 \mathrm{a} \\ & 2.7 .3 \mathrm{f}, 2.7 .3 \mathrm{~g} \\ & 2.7 .4 \end{aligned}$	$\begin{aligned} & 2^{n-1} \\ & 2^{n-2} \\ & 2^{n-2} \\ & 2^{n-3} \end{aligned}$	$\begin{aligned} & 2^{n-1} \\ & 2^{n-1} \\ & 2^{n-1} \\ & 2^{n-1} \end{aligned}$	$\begin{aligned} & g_{i}^{2}=h_{j}^{3}=1, \sqcap g_{i} \sqcap h_{j}=1 \\ & g_{i}^{4}=h_{j}^{3}=1, \sqcap g_{i}^{2} \sqcap h_{j}=1 \\ & \\ & g_{i}^{2}=h_{j}^{3}=1, \sqcap g_{i} \sqcap h_{j}=1 \\ & g_{i}^{8}=h_{j}^{3}=1, \sqcap g_{i}^{4} \sqcap h_{j}=1 \end{aligned}$	$\begin{aligned} & (\mathbf{Z} / 2 \mathbf{Z})^{2^{n-1}-1} \oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-1-1}} \\ & (\mathbf{Z} / 4 \mathbf{Z})^{2^{n-2-1}} \oplus(\mathbf{Z} / 2 \mathbf{Z}) \oplus \\ & \oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-1}-1} \\ & (\mathbf{Z} / 2 \mathbf{Z})^{2^{-2-1}} \oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-1-1}} \\ & (\mathbf{Z} / 8 \mathbf{Z})^{2^{n-3-1}} \oplus(\mathbf{Z} / 4 \mathbf{Z}) \oplus \\ & \oplus(\mathbf{Z} 3 \mathbf{Z})^{2 n-1-1} \end{aligned}$
2.8.2				
$\begin{aligned} & 2.7 .2 \mathrm{a} \\ & 2.7 .3 \mathrm{a} \\ & 2.7 .3 \mathrm{f}, 2.7 .3 \mathrm{~g} \\ & 2.7 .4 \end{aligned}$	$\begin{aligned} & 2^{n-1} \\ & 2^{n-2} \\ & 2^{n-2} \\ & 2^{n-3} \end{aligned}$	$\begin{aligned} & 2^{n-2} \\ & 2^{n-2} \\ & 2^{n-2} \\ & 2^{n-1} \end{aligned}$	$\begin{aligned} & g_{i}^{2}=h_{j}^{3}=1, \sqcap g_{i} \sqcap h_{j}^{4}=11 \\ & g_{i}^{4}=h_{j}^{3}=1, \sqcap g_{i}^{2} \sqcap h_{j}^{4}=1 \\ & g_{i}^{2}=h_{j}^{3}=1, \sqcap g_{i} \sqcap h_{j}^{4}=1 \\ & g_{i}^{8}=h_{j}^{3}=1, \sqcap g_{i}^{4} \sqcap h_{j}^{4}=1 \end{aligned}$	$\begin{aligned} & (\mathbf{Z} / 2 \mathbf{Z})^{2^{-1}-1} \oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-2}-1} \\ & (\mathbf{Z} / 4 \mathbf{Z})^{2^{n-2}-1} \oplus(\mathbf{Z} / 2 \mathbf{Z}) \oplus \\ & \oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-2-1}} \\ & (\mathbf{Z} / 2 \mathbf{Z})^{2^{-2-1}} \oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{-2-1}-1} \\ & (\mathbf{Z} / 8 \mathbf{Z})^{2^{n-3}-1} \oplus(\mathbf{Z} / 4 \mathbf{Z}) \oplus \\ & \oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-2-1}} \end{aligned}$

Part IV. $m=8$. Now 2.6.1 holds and only 2.7.3b, 2.7.4 and 2.8 .2 or 2.8 .3 can happen. The table shows the situation under 2.8.3.

TABLE 4

Case	r	$g(2)$	$g(3)$	Relations	Structure of $K_{2} O_{F} / \mathcal{S}_{2} F$
2.7 .3 b	0	2^{n-2}	0	$g_{i}^{8}=1,\left\lceil g_{i}=1\right.$	$(\mathbf{Z} / 8 \mathbf{Z})^{2^{n-2}-1}$
2.7 .4	0	2^{n-3}	0	$g_{i}^{8}=1, \sqcap g_{i}^{3}=1$	$(\mathbf{Z} / 8 \mathbf{Z})^{2^{n-3}-1}$

When $m=8$ and 2.8 .2 holds, $g(3)=2^{n-2}$ with $h_{i}^{3}=1$ and (3) in the Introduction becomes $\Pi h_{i}^{3} \cdot \Pi g_{j}^{m_{v} / m}=1$. In every case the group in the table should get the additional direct summand $(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-2}}$.

Part V. $m=12$. Here 2.6.1 and 2.8 .2 hold and only 2.7.3a or 2.7.4 can happen (table 5).

TABLE 5

Case	r	$g(2)$	$g(3)$	Relations	Structure of $K_{2} o_{F} / \beta_{2} F$
2.7 .3 a	0	2^{n-2}	2^{n-2}	$g_{i}^{4}=h_{j}^{3}=1,\left\lceil g_{i} \sqcap h_{j}^{2}=1\right.$	$(\mathbf{Z} / 2 \mathbf{Z})^{2^{2 n-2-1} \oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-2}-1}}$
2.7 .4	0	2^{n-3}	2^{n-2}	$g_{i}^{8}=h_{j}^{3}=1, \sqcap g_{i}^{2} \sqcap h_{j}^{2}=1$	$(\mathbf{Z} / 8 \mathbf{Z})^{2^{n-3}-1} \oplus(\mathbf{Z} / 2 \mathbf{Z}) \oplus$ $\oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{n-2}-1}$

Part VI. $m=24$. Here 2.6.1, 2.7 .4 and 2.8 .2 hold. Thus $g(2)=2^{n-3}$, $g_{i}^{8}=1, g(3)=2^{n-2}, h_{j}^{3}=1$ and $\sqcap g_{i} \cdot \square h_{j}=1$. Hence $K_{2} O_{F} / \Omega_{2} F=$ $=(\mathbf{Z} / 8 \mathbf{Z})^{2^{n}} \mathrm{~L}^{3-1} \oplus(\mathbf{Z} / 3 \mathbf{Z})^{2^{n}} \mathrm{~L}^{2-1}$.
3. Number fields with trivial group $K_{2} O_{F} / \Omega_{2} F$. In this section we prove the following characterization of fields with trivial group $K_{2} O_{F} / \Omega_{2} F$.

THEOREM 3.1. Let F be normal extension of \mathbf{Q} of degree n. The group $K_{2} O_{F} / \Omega_{2} F$ is trivial if and only if the following three conditions hold.
(i) F is pure imaginary field (i.e. $r=0$).
(ii) For every prime number p, if $3_{p} \in F$, then there is exactly one prime ideal in F dividing p.
(iii) For every prime number p and every positive integer k such that $\phi\left(p^{k}\right) \mid n$, if $3_{p^{k}} \notin F$, then $3_{p^{k}} \notin F_{v}$, for all valuations v dividing p.

Proof. The sufficienty of (i), (ii) and (iii) follows from the following more general result (put $r=0$ to obtain $K_{2} O_{F} / \Omega_{2} F=0$).

LEMMA 3.2. Let F be an extension of \mathbf{Q} with r real conjugates. If F satisfies (ii) and (iii), then $K_{2} O_{F} / \Omega_{2} F=(\mathbf{Z} / 2 \mathbf{Z})^{r}$.

Proof of 3.2. Let $p_{1}=2, p_{2}, \ldots, p_{l}$ be all prime numbers with $\mathcal{J}_{p_{i}^{k_{i}}} \in F$ for a certain $k_{i} \in \mathbf{N}, i=1, \ldots, l$. We assume k_{i} is the largest possible value of the exponent. From (ii) and (iii) we conclude that each prime p_{i} supplies exactly one generator $g_{i}, i=1, \ldots, l$. Further, (iii) implies that $p_{i}^{k_{i}} \mid m$ whenever $p_{i}^{k_{i}} \mid m_{\nu_{i}}$ for a valuation v_{i} dividing p_{i}. The group $K_{2} O_{F} / \mathcal{A}_{2} F$ is generated by g_{1}, \ldots, g_{l} and by z_{1}, \ldots, z_{r} coming from real valuations of F with relations

$$
\begin{equation*}
z_{i}^{2}=1, \quad i=1, \ldots, r \tag{3.2.1}
\end{equation*}
$$

$$
\begin{align*}
& g^{p_{i}{ }^{k_{i}}}=1, \quad i=1, \ldots, l, \tag{3.2.2}\\
& z_{1} \cdot \ldots \cdot z_{r} \cdot g_{1}^{q_{1}} \cdot \ldots \cdot g^{q_{1}}=1, \tag{3.2.3}
\end{align*}
$$

where $q_{i}=p_{i}^{k_{i}}\left(p_{i}^{f_{i}}-1\right) / m$. We take now any $p_{i}>2$ and consider $n_{i}=m / p_{i}^{k_{i}}$. This is an even integer and for $j \neq i$ we have $p_{j}^{k_{j}} \mid n_{i}$, since $p_{j}^{k_{j}} \mid m$. Thus raising the relation (3.2.3) to the power n_{i} gives

$$
\prod_{j} g_{j}^{n_{i} q_{j}}=1 .
$$

Here $p_{j}^{k_{j}} \mid n_{i}$ for $j \neq i$, so in view of (3.2.2), this reduces to

$$
g_{i}^{n_{i} q_{i}}=1
$$

But g.c.d. $\left(n_{i} q_{i}, p_{i}^{k_{i}}\right)=$ g.c.d. $\left(p_{i}^{f_{i}}-1, p_{i}^{k_{i}}\right)=1$ and it follows from (3.2.2) that $g_{i}=1$. Thus (3.2.3) becomes

$$
z_{1} \cdot \ldots \cdot z_{r} \cdot g_{1}^{q_{1}}=1 .
$$

Now $n_{1}=m / 2^{k_{1}}$ is an odd integer and raising the last relation to the power n_{1} we get

$$
\begin{equation*}
z_{1} \cdot \ldots \cdot z_{r}=g_{1}^{n_{1} q_{1}} . \tag{3.2.4}
\end{equation*}
$$

As above g.c.d. $\left(n_{1} q_{1}, 2^{k_{1}}\right)=$ g.c.d. $\left(2^{f_{1}}-1,2^{k_{1}}\right)=1$, so that there are two integers x and y such that $x\left(2^{f_{1}}-1\right)=1+y \cdot 2^{k_{1}}$. From (3.2.4) we obtain

$$
z_{1} \cdot \ldots \cdot z_{r}=g_{1}^{x\left(2 f_{1}-1\right)}=g_{1}^{1+y \cdot 2^{k_{1}}}=g_{1} .
$$

Thus (3.2.3) reduces to $z_{1} \cdot \ldots \cdot z_{r}=g_{1}$ and it follows that $K_{2} O_{F} / \boldsymbol{A}_{2} F=(\mathbf{Z} / 2 \mathbf{Z})$. This proves the lemma.

Now we prove the necessity of (i), (ii) and (iii). So assume $K_{2} O_{F} / \Omega_{2} F=0$. To prove (iii) we assume there is a prime power p^{k} such that $\phi\left(p^{k}\right) \mid n, 3_{p^{k}} \notin F$ and $\mathcal{3}_{p^{k}} \in F_{v}$ for some valuation v dividing p. Then $p \mid\left(m_{v} / m\right)$. Let g be a generator coming from the prime p. We consider the group H generated by an element h and
 h must be divisible by p and so $H \neq 0$. Consider a mapping $f: K_{2} O_{F} / \Omega_{2} F \rightarrow H$ such that $f(g)=h$ and $f\left(g_{i}\right)=1$ for all the remaining generators g_{i}. Since the mapping preserves relations it is a group homomorphism and its image H is non-trivial. This contradicts the triviality of the pre-image. Thus we have proved (iii).

To prove (ii) let us assume that ${ }_{3_{p}} \in F$ for a prime p and $v_{1} \mid p$ and $v_{2} \mid p$, where v_{1} and v_{2} are distinct valuations. The normality of the extension F / \mathbf{Q} implies that $m_{v_{1}}=m_{v_{2}}=: m_{v}$ and $N v_{1}=N v_{2}=N v$. Let g_{1} and g_{2} be the generators corresponding to v_{1} and v_{2}, respectively. We consider a group H generated by two elements h_{1} and h_{2} with relations $h_{i}^{m_{v}(N v-1)}=1, i=1,2$ and $\left(h_{1} h_{2}\right)^{m_{v} / m}=1$. It follows from (iii) that g.c.d. $\left(\frac{m_{v}}{N v-1}, \frac{m_{v}}{m}\right)=1$ which implies $h_{1} h_{2}=1$. Hence H is
a cyclic group of order $\frac{m_{v}}{(N v-1)} \neq 1$ (since $3_{p} \in F_{v_{i}}$). As above we define a group homomorphism $f: K_{2} O_{F} / \Omega_{2} F \rightarrow H$ satisfying $f\left(g_{1}\right)=h_{1}, f\left(g_{2}\right)=h_{2}$ and $f\left(g_{i}\right)=1$ for the other generators contradicting the triviality of $K_{2} O_{F} / \Omega_{2} F$. This proves (ii).

Finally, let us assume $r \geqslant 1$. Let g_{0} be a generator coming from one of the real valuations and let g_{1} be a generator coming from $v \mid 2$. We consider a group H generated by two elements h_{0} and h_{1}, with relations $h_{0}^{2}=1, h_{1}^{2 k}=1$, $h_{0} h_{1}^{(2 f-1) / m}=1$, where f is the residue degree of the valuation v, k is the largest
 part of the proof of Lemma 3.2 we get $h_{0}=h_{1}$. Thus H is cyclic of order 2. Now sending $g_{0} \mapsto h_{0}, g_{1} \mapsto h_{1}$, and $g_{i} \mapsto 1$ for the other generators we obtain a group homomorphism $K_{2} O_{F} / \Omega_{2} F \rightarrow H$, a contradiction. This proves (i) and finishes the proof of Theorem 3.1.

COROLLARY 3.3. Iet $F=\mathbf{Q}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$ be a multiquadratic extension of \mathbf{Q} of degree 2^{n}. Then for $n>3$ the group $K_{2} O_{F} / \mathcal{S}_{2} F$ is nontrivial.

Proof. As observed in Proposition 2.2, for any valuation $v \mid 2$ we have $\left[F_{v}: \mathbf{Q}_{2}\right] \leqslant 8$. The number of distinct prime ideals dividing 2 equals $2^{n} /\left[F_{v}: \mathbf{Q}_{2}\right]$ and so for $n>3$ this quotient is greater than 1 . Theorem 3.1 implies then the assertion.

COROLLARY 3.4. The group $K_{2} O_{F} / \boldsymbol{\Omega}_{2} F$ is trivial for $F=\mathbf{Q}\left(3_{2^{k}}\right), k \geqslant 2$. Proof. Here (i) and (ii) of Theorem 3.1 are obviously satisfied. We prove (iii).
Suppose for a prime $p \neq 2$ and valuation v dividing p we have ${3_{p}} \in F_{p}$. Clearly $F_{v}=\mathbf{Q}_{p}\left(\mathcal{3}_{2^{k}}\right)$ and $e\left(F_{v} / \mathbf{Q}_{p}\right)=1$. From the tower $\mathbf{Q}_{p} \subset \mathbf{Q}_{p}\left(3_{p}\right) \subset \mathbf{Q}_{p}\left(\boldsymbol{3}_{2^{k}}\right)$ we infer $e\left(\mathbf{Q}_{p}\left(\mathcal{3}_{p}\right) / \mathbf{Q}_{p}\right) \mid e\left(F_{v} / \mathbf{Q}_{p}\right)$ and this contradictions $e\left(\mathbf{Q}_{p}\left(3_{p}\right) / \mathbf{Q}_{p}\right)=p-1$. For any valuation $v \mid 2$ we have $F_{v}=\mathbf{Q}_{2}\left(3_{2^{k}} k\right.$. It is also easy to notice that if ${3_{2^{t}} \in F_{v}}^{\text {for an }}$ integer t then $t \leqslant k$, and so $3_{2^{t}} \in F$. Thus Theorem 3.1 implies the triviality of $K_{2} O_{F} / \mathcal{R}_{2} F$.
4. Concluding remarks. For a finite Abelian group A let $r_{p}(A)$ be the p-rank of the group, that is, the number of primary components in a decomposition of the group into direct sum of cyclic groups. J. Browkin [1] proves that for an arbitrary number field F

$$
r_{2}\left(K_{2} O_{F}\right)=\mathrm{r}-1+g(2)+j(2),
$$

where r is the number of real valuations, $g(p)$ is the number of distinct discrete valuations dividing p and $j(p)=r_{p}\left(\mathrm{Cl} F / \mathrm{Cl}_{p} F\right), \mathrm{Cl} F$ being the ideal class group of F and $\mathrm{Cl}_{p} F$ its subgroup generated by the ideals dividing p. S. Chaładus [2] generalizes this result for any prime number p assuming F contains 3_{p}. He proves

$$
r_{p}\left(K_{2} O_{F}\right)=r-1+g(p)+j(p) .
$$

This result and Theorem 3.1 in the case when the group $K_{2} O_{F} / \mathcal{R}_{2} F$ is trivial show that if $\mathfrak{3}_{p} \in F$ and $F \supset \mathbf{Q}$ is Galois extension, then $r_{p}\left(K_{2} O_{F}\right)=j(p)$. In particular $r_{2}\left(K_{2} O_{F}\right)=j(2)$.

Let us also remark that the following inequality can be read of from the tables given in Section 2:

$$
r_{2}\left(K_{2} O_{F} / \Omega_{2} F\right)>r-1+g(2)
$$

in the following cases: $2.7 .2 \mathrm{c}, 2.7 .3 \mathrm{a}, \mathrm{b}, \mathrm{c}, 2.7 .4$ for nonreal and $m=2$, 2.7.3b, 2.7.4 for $m=4,2.7 .3$ a, 2.7.4 for $m=6,2.7 .4$ for $m=12$. Since $r_{2}\left(K_{2} O_{F}\right) \geqslant r_{2}\left(K_{2} O_{F} / \Omega_{2} F\right)$, we conclude $r_{2}\left(K_{2} O_{F}\right)>r-1+g(2)$. Thus in all the cases considered $j(2) \geqslant 1$, and in particular, the class number of F is even. A specific example is $F=\mathbf{Q}\left(\sqrt{a_{1}}, \sqrt{a_{2}}\right)$, where $a_{1}<0$ or $a_{2}<0$ and $a_{1} \equiv 3(\bmod$ $8), a_{2} \equiv 5(\bmod 8), a_{2} \neq-3$. There are many other examples of this kind multiquadratic extensions with even class number.

REFERENCES

[1] J. BROWKIN, The functor K_{2} for the ring of integers of a number field, Banach Center Publ. 9 (1983), 187-195.
[2] S. CHAŁADUS, Functor K_{2} dla wybranych pierścieni, Praca doktorska, Instytut Matematyki Uniwersytetu Warszawskiego (1979).
[3] J. MILNOR, Introduction to algebraic K-theory, Ann. of Math. Studies 72, (1971).
[4] D. QUILLEN, Higher K-theory for categories with exact sequences, Proc. of the Symp. New developments in topology, Oxford (1972), 95-103.

