GRZEGORZ KRAWCZYK*

CLOSED SUBGROUPS OF A QUADRATIC FORM SCHEME

Abstract

In the paper the number $c(S)$ of closed subgroups of a quadratic form scheme S is considered. We determine $c(S)$ for some classes of schemes. Schemes with small $c(S)$ are characterized and the behaviour of $c(S)$ under known operation on schemes are discussed, as well.

Introduction. Closed subgroups of the group of square classes $g(F)=F / F^{2}$ of a field F were introduced by K. Szymiczek in [10, Chapter V] as a byproduct of the Galois correspondence established between the subgroups of $g(F)$ and binary quadratic forms over F. We use his characterization of closed subgroups of g ($[10$, Theorem 1.6]) to generalize the concept to the context of quadratic form schemes in the sense of Cordes-Szczepanik. Thus if $S=(g,-1, d)$ is a quadratic form scheme we write $L(S)$ for the smallest set of subgroups of g with the following two properties:

(i) $d(a) \in L(S) \quad$ for any $a \in g$,
(ii) if $X_{t} \in L(S)$ for any t in a set of indices T, then

$$
\bigcap\left\{X_{t}: t \in T\right\} \in L(S)
$$

The subgroups of g belonging to $L(S)$ are said to be closed subgroups of the scheme S. We write $c(S)$ for the cardinality of $L(S)$. Problem 8 proposed by K. Szymiczek in [10] consists in investigating the number of closed subgroups $c(S)$ of a scheme S and describing the connections with other scheme invariants.

In this paper we will determine $c(S)$ for a number of classes of schemes S. First we characterize the schemes with small numbers of closed subgroups and describe the behaviour of $c(S)$ under operations on schemes. This makes it possible to calculate $c(S)$ for any scheme S with $|g| \leqslant 32$, i.e. as far as the complete classifications of schemes are known at the moment (cf [1]). We also study $c(S)$ for schemes with only two 2-fold Pfister forms and for quasi-pythagorean schemes. One particular result (Corollary 4.4) seems to be new even in the classical case of pythagorean fields.

Notation and terminology. Let g be an elementary 2-group with distinguished element $-1 \in g$. (We permit $-1=1$). For every $a \in g$ the product (-1) a will be written $-a$. Let d be any mapping from g into the set of all subgroups of g.

The triplet $S=(g,-1, d)$ is said to be a quadratic form scheme (or simply scheme) if it satisfies the following axioms:

C1. $a \in d(a)$ for any $a \in g$,
C2. $a \in d(b)$ iff $-b \in d(-a)$ for any $a, b \in g$,

$$
\text { C3. } \bigcup_{x \in b d(b c)} a d(a x)=\bigcup_{y \in a d(a c)} b d(b y) \text { for any } a, b, c \in g \text {. }
$$

[^0]The subgroup $R(S)=\bigcap\{d(a): a \in g\}$ is said to be the radical of the scheme S. The scheme $S=(g,-1, d)$ is said to be radical if $R(S)=g$, quasi--pythagorean if $R(S)=d(1)$ and pythagorean if $d(1)=\{1\}$.

The motivating example is the scheme $S(F)$ of a field F of characteristic not 2 , with $g=g(F),-1=(-1) F^{2}$ and $d(a)$ the value group of the binary quadratic form $X^{2}+a Y^{2}$. A simple and often used consequence of C 1 and C 2 is this:

$$
d(a) \cap d(b) \subset d(-a b) \text { for any } a, b \in g .
$$

Observe also that $a \in R(S)$ iff $d(-a)=g$ and that $g(x)=d(x r)$ for any $x \in g$, $r \in R(S)$.

1. Schemes with small number of closed subgroups. In the section we describe completely the schemes with $c(S) \leqslant 3$. We begin with the following observation.

LEMMA 1.1. Let $S=(g,-1, d)$ be a quasi-pythagorean scheme. Then $d(a)=d(b)$ if and only if $a b \in R(S)$.

Proof. If $d(a)=d(b)$, then $d(a)=d(a) \cap d(b) \subset d(-a b)$ and similarly $d(b) \subset d(-a b)$. Hence $a b \in d(-a b)$, hence also $-1=a b(-a b) \in d(-a b)$ and $a b \in d(1)=R(S)$. Conversely, if $a b \in R(S)$, then $d(-a b)=g$ and so $d(a)=$ $=d(a) \cap d(-a b) \subset d(b)$ and similarly $d(b) \subset d(a)$.

We shall need the notion of a real scheme. We define the sets $D(n)$ for $n \in \mathbf{N}$ inductively as follows: $D(2)=d(1)$ and $D(n+1)=\bigcup\{d(a): a \in D(n)\}$. The scheme $S=(g,-1, d)$ is said to be non-real if there is an $n \in \mathbf{N}$ with $-1 \in D(n)$. Otherwise the scheme is said to be real.

We follow the terminology of [11] and say the scheme S is 1-Hilbert if the index of $d(a)$ in g is at most 2 for each $a \in g$ and equals 2 for at least one $a \in g$. As proved by Kaplansky [5], if $[g: R(S)]=2$, the scheme is real 1-Hilbert (see [11] for a generalization).

Now we are ready to state the following result.
PROPOSITION 1.2. Let $S=(g,-1, d)$ be a quadratic form scheme. Then
(i) $c(S)=1$ if and only if S is a radical scheme,
(ii) $c(S)=2$ if and only if S is a real 1 -Hilbert scheme,
(iii) $c(S) \neq 3$.

Proof. If $L(S)$ is the semilattice of closed subgroups of S, then certainly R and g both belong to $L(S)$. Hence $c(S)=1$ requires $R=g$ and the scheme is radical.

To prove (ii), observe that $c(S)=2$ means $L(S)=\{R, g\}$ and $R \neq g$. If $[g: R]=2$, the scheme is real 1 -Hilbert by the above mentioned result of Kaplansky. If $[g: R]>2$ and $d(1)=R$, then by Lemma 1.1 there are at least $[g: R]$ pairwise distinct closed subgroups in g, contradicting $c(S)=2$. The remaining case is $[g: R]>2$ and $d(1)=g$. Now $-1 \in R$ and if $a \in g \backslash R$, then $d(a) \neq R$ and al .o $d(a) \neq g$, since otherwise $-a \in R$ and so $a=(-1)(-a) \in R$, a contradiction. Thus there are at least 3 closed subgroups: $R, d(a), g$, contrary to $c(S)=2$. This proves (ii).
lo prove (iii) observe that $c(S)=3$ implies $L(S)$ is totally ordered by inclusion. K. Szymiczek ([10, Propositions 1.9 and 1.10]) proved that - in the
field case - $L(S)$ is totally ordered if and only if $c(S)=2$. His proof applies also in the abstract case thus giving $c(S) \neq 3$ for any scheme S.

REMARK. A complete characterization of the case $c(S)=4$ is given in Proposition 4.5 below.
2. Behaviour of $c(S)$ under operations on schemes. We shall consider the following three operations on schemes: product of schemes, group extension of a scheme and factoring a scheme by the radical.

If $S=(g,-1, d)$ and $S^{\prime}=\left(g^{\prime},-1^{\prime}, d^{\prime}\right)$ are two schemes, their product $S \sqcap S^{\prime}$ is defined to be $\left(g \times g^{\prime},\left(-1,-1^{\prime}\right), d \times d^{\prime}\right)$, where $\left(d \times d^{\prime}\right)\left(\left(a, a^{\prime}\right)\right)=d(a) \times d^{\prime}\left(a^{\prime}\right)$. A direct checking shows that $S \sqcap S^{\prime}$ satisfies C1-C3 whenever S and S^{\prime} do.

The group extension S^{t} of a scheme S is defined in the following way. Take a 2-element group $\{1, t\}$ and make $g^{t}=g \cup t g$ into a group in an obvious way. Define $d^{t}(a)=d(a)$ for $a \in g$, a $\neq-1, d^{t}(-1)=g^{t}$ and $d^{t}(a t)=\{1$, at $\}$ for any $a \in g$. Then $S^{t}=\left(g^{t},-1, d^{t}\right)$ is a scheme.

Finally, let $S=(g,-1, d)$ be a scheme and $R=R(S)$ its radical. Consider $S / R=\left(g_{R},-1_{R}, d_{R}\right)$ where $g_{R}=g / R,-1_{R}=(-1) R$ and $d_{R}(a R)=d(a) R$. If S satisfies C1-C3, so does S / R, the factor scheme. More details on this subject can be found in [7], [8].

We want to know the behaviour of $c(S)$ under the three operations on shemes. All the schemes considered are assumed to be finite.

PROPOSITION 2.1.
(i) $c\left(S \sqcap S^{\prime}\right)=c(S) c\left(S^{\prime}\right)$,
(ii) $c\left(S^{\prime}\right)=\left\{\begin{array}{l}c(S)+|g|, \text { if } R(S)=\{1\}, \\ c(S)+|g|+2, \text { if } R(S) \neq\{1\},\end{array}\right.$
(iii) $c(S / R)=c(S)$.

Proof. (i) For any two families of sets $\left\{A_{i}: i \in I\right\}$ and $\left\{B_{j}: j \in J\right\}$ we have

$$
\bigcap_{i, j} A_{i} \times B_{j}=\bigcap_{i} A_{i} \times \bigcap_{j} B_{j}
$$

It follows $L\left(S \sqcap S^{\prime}\right)=L(S) \times L\left(S^{\prime}\right)$, hence (i).
(ii) If $R(S)=\{1\}$, then $g \notin L\left(S^{t}\right)$ and

$$
L\left(S^{t}\right)=(L(S) \backslash g) \cup g^{t} \cup A
$$

where A is the family of 2-element groups $\{1, a t\}, a \in g$. Thus $c\left(S^{t}\right)=c(S)-1+1+|A|=c(S)+|g|$. If $R(S) \neq\{1\}$, then

$$
L\left(S^{t}\right)=L(S) \cup g^{t} \cup\{1\} \cup A
$$

hence $c\left(S^{t}\right)=c(S)+2+|A|=c(S)+|g|+2$.
(iii) L. Szczepanik ([8, Theorem 4.7]) has proved that for any scheme S there exists a radical scheme S^{\prime} such that $S \cong S^{\prime} \sqcap S / R$. Since isomorphic schemes have the same number of closed subgroups, we have $c(S)=c\left(S^{\prime}\right) c(S / R)$ and $c\left(S^{\prime}\right)=1$ by Proposition 1.2.(i).

EXAMPLES. 2.2. Suppose $c=c(S)$ is the number of closed subgroups of a scheme $S=(g,-1, d)$ with $|g|=2^{n}$. Then for any natural number $m \geqslant n$ there exists a scheme $S^{\prime}=\left(g^{\prime},-1^{\prime}, d^{\prime}\right)$ such that $\left|g^{\prime}\right|=2^{n}$ and $c\left(S^{\prime}\right)=c$.

Indeed, let $S^{\prime \prime}=\left(g^{\prime \prime},-1^{\prime \prime}, d^{\prime \prime}\right)$ be a radical scheme with $\left|g^{\prime \prime}\right|=2^{m-n}$, $S^{\prime \prime}=S\left(F_{5}\right) \sqcap \ldots \sqcap S\left(F_{5}\right)(m n$ factors) for instance, then by Proposition 2.1.(i) the scheme $S^{\prime}=S \sqcap S^{\prime \prime}$ satisfies the requirements.
2.3. Using the classification of schemes on groups of order $\leqslant 16$ carried over in [9] and Proposition 2.1 we have computed all the values of $c(S)$ actually taken on when S runs through the class.

$$
\begin{aligned}
& |g|=1: c(S)=1 . \\
& |g|=2: c(S)=1,2 . \\
& |g|=4: c(S)=1,2,4,5 . \\
& |g|=8: c(S)=1,2,4,5,7,8,9,10,16 . \\
& |g|=16: c(S)=1,2,4,5,7,8,9,10,11,12,14,15,16,17,18,20,24,25,32,67 .
\end{aligned}
$$

2.4. For a non-real scheme S we define the u-invariant $u(S)$ to be the smallest positive integer u with the property that every $u+1$ dimensional form over S is isotropic. It is known that $u(S) \leqslant q(S)$, where $q(S)$ is the cardinality of the group g. For the schemes with largest possible u-invariant we are able to calculate $c(S)$ on using structure results of [3] and [8] and Proposition 2.1.
(i) If $4 \leqslant q(S)=u(S)$, then $c(S)=q(S)+1$.
(ii) If $8 \leqslant q(S)=2 u(S)$ and $s(S) \geqslant 4$, then $c(S)=q(S)+8$.
(iii) If $8 \leqslant q(S)=2 u(S)$ and $s(S) \leqslant 2$ and S is not a group extension of another scheme, then $c(S)=u(S)+1$.
Here $s(S)$ denotes the level of the scheme, that is, the minimal number n with $-1 \in D(n)$.

To prove (i) one uses L. Szczepanik's ([8, Theorem 5.4]) characterization of non-real schemes with $q(S)=u(S) \geqslant 4$. Any such scheme S is isomorphic to the scheme of the iterated power series field $F_{3}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{n}\right)\right)$ and to find $c(S)$ we use induction on n and Proposition 2.1.(ii).

Proofs for (ii) and (iii) are similar on using Theorem 3 in [3] and Lemma 5.5 and Theorem 5.6 in [8], respectively.
3. A characterization of non-real 2-local schemes. A scheme $S=(g,-1, d)$ is said to be 2-local if there are - up to isometry- exactly two 2-fold Pfister forms over g (cf. [11] for the motivation in the field case). We will characterize non-real 2-local schemes by means of the number of closed subgoups of the scheme. First note the following trivial bound for $c(S)$ of a finite scheme S.

PROPOSITION 3.1. Let $S=(g,-1, d)$ be a scheme with $|g|=2^{n}$. Then $1 \leqslant c(S) \leqslant \alpha(2, n)$, where $\alpha(2, n)$ is the number of all subgroups of an elementary 2 -group of order 2^{n}.

An explicit expression for $\alpha(2, n)$ is this (of Fuchs [4, § 15, Example 14]):

$$
\alpha(2, n)=1+\sum_{k=1}^{n} \prod_{i=1}^{k}\left(2^{n-i+1}-1\right) /\left(2^{i}-1\right)
$$

THEOREM 3.2. Let S be a non-real scheme and $|g / R(S)|=2^{n}$. Then S is 2 -local if and only if $c(S)=\alpha(2, n)$.

Proof. Suppose first S is a non-real 2-local scheme with $|g / R|=2^{n}$. C. Cordes ([2, Corollary to Lemma 2]) proves -in the field case but his arguments work all right in the abstract case as well- that then for every subgroup A of index 2 in g containing R there is an element $a \in g$ such that $A=d(a)$. Thus all the subgroups of index 2 in g containing R belong to $L(S)$ and it follows that $c(S)=|L(S)|=\alpha(2, n)$.

Conversely, if S is a non-real scheme with $|g / R|=2^{n}$ and $c(S)=\alpha(2, n)$, then necessarily every subgroup of index 2 in g containing R is of the form $d(a)$ for a certain $a \in g$ (recall that $L(S)$ consists of intersections of $d(a)$'s). Observe that $d(a)=d(r a)$ for any $r \in R$, hence the number of distinct subgroups of g of the form $d(a)$ is at most $2^{n}=|g / R|$. But in the elementary 2 -group g / R of order 2^{n} there are exactly $2^{n}-1$ subgroups of index 2 and as shown above each of them is of the form $d(a)$. It follows that $[g: d(a)]=2$ for every $a \in g \backslash R$. Now we use Kaplansky's result ($[5$, Theorem 2]) to conclude that the scheme has only one anisotropic 2 -fold Pfister form i.e., S is 2-local (cf. [11, Proposition 2.3] for a direct proof). This proves the theorem.
4. Closed subgroups in quasi-pythagorean schemes. In any scheme $R \subset d(1)$ and if $R=d(1)$, the scheme is said to be quasi-pythagorean (we follow the terminology of [6]). Every pythagorean scheme (satisfying $d(1)=\{1\}$) is quasi-pythagorean but there are also other examples. First, any real 1-Hilbert scheme is quasi-pythagorean since for such a scheme $|g / R|=2$ and $R=d(1)$. Second, if S and S^{\prime} are both quasi-pythagorean so is $S \sqcap S^{\prime}$.

We determine here $c(S)$ for any finite quasi-pythagorean scheme and characterize this type of schemes in terms of closed subgroups.

We begin with the following result on pythagorean schemes.
PROPOSITION 4.1. For any finite pythagorean scheme $S=(g,-1, d)$ we have $c(S)=|g|$.

Proof. The structure of a finite pythagorean scheme S has been described by M. Kula. According to [7], S is built up from the scheme of real numbers $S(\mathbf{R})$ by iterating the operations of the product of schemes and group extensions. To prove $|c(S)|=|g|$ we use induction on the order of g. If $|g|=2$, the scheme is isomorphic to $S(\mathbf{R})$ and $c=2$. Assume $|g|=2^{n}>2$. By the structure theorem quoted above, either $S=S_{1} \sqcap S_{2}$ or $S=S_{1}^{t}$, where S_{1}, S_{2} are pythagorean schemes. Using induction hypothesis and Proposition 2.1.(i) and (ii), we get $c(S)=|g|$, as required.

COROLLARY 4.2. For any finite guasi-pythagorean scheme S we have $c(S)=|g / R(S)|$.

Proof. $c(S)=c(S / R(S))$ by Proposition 2.1.(iii). On the other hand, $S / R(S)$ is pythagorean, hence Proposition 4.1 applies.

THEOREM 4.3. A finite scheme S is quasi-pythagorean if and only if every closed subgroup of S is of the form $d(a)$ for $a \in g$.

Proof. Suppose first S is quasi-pythagorean. By Lemma 1.1 there are exactly $|g / R|$ pairwise distinct subgroups $d(a), a \in g$. Each of them is closed and by Corollary 4.2 the number of all closed subgroups is g / R. Hence the result.

Now assume the only closed subgroups of g are $d(a), a \in g$. Then $R=d(b)$ for a certain $b \in g$. Hence for any $x \in g$,

$$
d(b)=R \subset d(x)=d(-b) \cap d(x) \subset d(b x) .
$$

Putting $x=1$ we get $R=d(1)$, i.e. the scheme is quasi-pythagorean.
An interesting corollary to this seems not to have been recorded in the literature even in the case of pythagorean fields.

COROLLARY 4.4. A finite scheme S is quasi-pythagorean if and only iffor any two elements $a, b \in g$ there is $a c \in g$ such that $d(a) \cap d(b)=d(c)$.

PROPOSITION 4.5. For any scheme $S, c(S)=4$ if and only if $S / R(S) \cong$ $\cong S(\mathbf{R}) \sqcap S(\mathbf{R})$.

Proof. The "if" part follows immediately from Proposition 2.1.(i) and 2.1.(iii).
To prove the converse we may assume $R(S)=\{1\}$ (Proposition 2.1.(iii)). If $c(S)=4$, the set of closed subgroups cannot be totally ordered by inclusion (cf. Corollary 1.11 in [10]), hence there are $a, b \in g, a \neq b$, such that $d(a) \cap d(b)=$ $=\{1\}$. It follows

$$
1 \neq a b \notin d(a) \cup d(b)
$$

and since $a b \in d(a b)$ we get $d(a b)=g$. Hence $-a b \in R=\{1\}$ and since $a \neq b$ it follows $1 \neq-1$ and $d(1) \neq g$. Also $d(1) \neq d(a)$ since otherwise $d(a)=d(1) \cap$ $\cap d(a) \subset d(-a)=d(b)$, a contradiction. Similarly $d(1) \neq d(b)$ and so $d(1)=$ $=\{1\}$. Thus the scheme is pythagorean and by Proposition $4.1,|g|=c(S)=4$. Now the only pythagorean scheme with $|g|=4$ is $S(\mathbf{R}) \sqcap S(\mathbf{R})$, as required.

REFERENCES

[1] A. B. CARSON, M. A. MARSHALL, Decomposition of Witt rings, preprint.
[2] C. M. CORDES, Quadratic forms over non-formally real fields with a finite number of quaternion algebras, Pacific J. Math. 63 (1976), 357-365.
[3] C. M. CORDES, J. R. RAMSEY, Quadratic forms over fields with $u=q / 2<+\infty$, Fund. Math. 99 (1978), 1-10.
[4] L. FUCHS, Infinite Abelian Groups, vol. I, New York and London 1970, Academic Press.
[5] I. KAPLANSKY, Frohlich's local quadratic forms. J. Reine Angew. Math. 239/240 (1969), 74-77.
[6] D. KIJIMA, M. NISHI, Kaplansky's radical and Hilbert Theorem 90, II, preprint.
[7] M. KULA, Fields with prescribed Quadratic form schemes, Math. Z. 167 (1979), 201-212.
[8] L. SZCZEPANIK, Quadratic form schemes with non-trivial radical, Fund. Math.
[9] L. SZCZEPANIK, Fields and quadratic form schemes with the index of radical not exceeding 16, Annales Mathematicae Silesianae 1 (1985), 23-46.
[10] K. SZYMICZEK, Quadratic forms over fields, Dissertationes Math. 152.
[11] K. SZYMICZEK, Generalized Hilbert fields, J. Reine Angew. Math. 329 (1981), 58-65.

[^0]: Received July 5, 1982.
 AMS (MOS) Subject classification (1980). Primary 10C03. Secondary 15A63.
 Instytut Matematyki WSP, Opole, ul. Oleska 48, Poland.

