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G RZEGORZ K R A W C Z Y K *

CLOSED SUBGROUPS OF A Q U AD RATIC  
FO RM  SCHEME

Abstract. In the paper the number c(S) o f closed subgroups of a quadratic form scheme S is 
considered. We determine c(S) for some classes o f schemes. Schemes with small c(S) are characterized 
and the behaviour o f c(S) under known operation on schemes are discussed, as well.

Introduction. Closed subgroups of the group of square classes g(F ) =  F/F2 of 
a field F  were introduced by K. Szymiczek in [10, Chapter V ] as a byproduct of 
the Galois correspondence established between the subgroups of g(F) and binary 
quadratic forms over F. We use his characterization of closed subgroups of g ([10, 
Theorem 1.6]) to generalize the concept to the context of quadratic form schemes 
in the sense of Cordes-Szczepanik. Thus if S =  (g, — 1, d) is a quadratic form 
scheme we write L(S) for the smallest set of subgroups of g with the following two 
properties:

(i) d(a )eL (S ) for any a eg,
(ii) if X, e L(S) for any t in a set of indices T, then

f ) { X , : t e T } e L ( S ) .

The subgroups of g belonging to L(S) are said to be closed subgroups of  the 
scheme S. We write c(S) for the cardinality of L(S). Problem 8 proposed by K. 
Szymiczek in [10] consists in investigating the number of closed subgroups c(S) 
o f a scheme S and describing the connections with other scheme invariants.

In this paper we will determine c(S) for a number of classes of schemes S. First 
we characterize the schemes with small numbers of closed subgroups and 
describe the behayiour of c(S) under operations on schemes. This makes it 
possible to calculate c(S) for any scheme S with \g\ s% 32, i.e. as far as the complete 
classifications of schemes are known at the moment (cf [1]). We also study c(S) for 
schemes with only two 2-fold Pfister forms and for quasi-pythagorean schemes. 
One particular result (Corollary 4.4) seems to be new even in the classical case of 
Pythagorean fields.

Notation and terminology. Let g be an elementary 2-group with distinguished 
element — le g .  (We permit — 1 =  1). For every a e g the product ( — l)a  will be 
written — a. Let d be any mapping from g into the set of all subgroups of g.

The triplet S =  (g, — \ ,d) is said to be a quadratic form scheme (or simply 
scheme) if it satisfies the following axioms:

C l. aed{a) for any aeg,
C2. aed(b) iff — b e d( — a) for any a, b e g,

C3. (J  ad(ax) — (J  bd(by) for any a, b, c e g.
xebd (bc) yead(ac)
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The subgroup R(S) =  P) {d(a):ae g } is said to be the radical of  the scheme S. 
The scheme S =  (g, — \,d) is said to be radical if R(S) =  g, quasi- 
-pythagorean if R(S) =  d( 1) and pythagorean if d (l) =  {1}.

The motivating example is the scheme S(F ) of a field F  of characteristic not 2, 
with g =  g(F), — 1 =  ( — 1)F2 and d{a) the value group of the binary quadratic 
form X 2 +  aYz. A  simple and often used consequence of C l and C2 is this:

d(a) n d(b) cz d{ — ab) for any a ,beg .

Observe also that a eR (S )  iff" d( — a) =  g and that g(x) =  d(xr) for any xeg ,  
reR (S ).

1. Schemes with small number of closed subgroups. In the section we describe 
completely the schemes with c(S) ^  3. We begin with the following observation.

LE M M A 1.1. Let S =  { g ,— l,d ) be a quasi-pythagorean scheme. Then 
d{a) =  d(b) if and only if ab e R(S).

P ro o f. If d(a) =  d(b), then d(a) =  d(a) n  d(b) cz d{ — ab) and similarly 
d(b) cz d( — ab). Hence a b ed (-a b ) ,  hence also —1 =  ab( — ab)ed( — ab) and 
ab e d ( l )  =  R(S). Conversely, if abeR(S), then d( — ab) =  g and so d(a) =  
=  d{a) n  d( — ab) cz d{b) and similarly d(b) cz d(a).

We shall need the notion of a real scheme. We define the sets D(n) for n e N  
inductively as follows: D(2) =  d(l) and D (n +  1) =  (J {d(a):a e D(n)}. The 
scheme S =  (g, — 1, d) is said to be non-real if there is an n e N  with — 1 e D(ri). 
Otherwise the scheme is said to be real

We follow the terminology of [11] and say the scheme S is 1 -Hilbert if the 
index of d(a) in g is at most 2 for each a e g  and equals 2 for at least one a eg. As 
proved by Kaplansky [5], if (jr:R(S)] =  2, the scheme is real 1-Hilbert (see [11] 
for a generalization).

Now we are ready to state the following result.
PRO PO SITIO N  1.2. Let S =  (g, — 1, d) be a quadratic form scheme. Then
(i) c(S) =  1 if  and only if S is a radical scheme,
(ii) c(S) =  2 if  and only if S is a real \-Hilbert scheme,
(hi) c(S) *  3.
P r o o f. If L(S) is the semilattice of closed subgroups of S, then certainly R and 

g both belong to L(S). Hence c(S) =  1 requires R =  g and the scheme is radical.
To prove (ii), observe that c(S) =  2 means L(S) =  {R ,g }  and R ^  g. If 

[c/:.R] =  2, the scheme is real 1-Hilbert by the above mentioned result of 
Kaplansky. If [g :R ]  >  2 and d{ 1) =  R, then by Lemma 1.1 there are at least 
[g :R ] pairwise distinct closed subgroups in g, contradicting c(S) =  2. The 
remaining case is [g:i?] >  2 and d( 1) =  g. Now — 1 e R  and if aeg\R, then 
d(a) R and a) .o d(a) ^  g, since otherwise —a e R  and so a =  ( —1)( — a )eR ,  
a contradiction. Thus there are at least 3 closed subgroups: R, d(a), g, contrary to 
c(S) =  2. This proves (ii).

To prove (iii) observe that c(S) =  3 implies L(S) is totally ordered by 
inclusion. K. Szymiczek ([10, Propositions 1.9 and 1.10]) proved that —  in the
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field case —  L(S) is totally ordered if and only if c(S) =  2. His proof applies also in 
the abstract case thus giving c(S) #  3 for any scheme S.

REM ARK. A complete characterization of the case c(S) =  4 is given in 
Proposition 4.5 below.

2. Behaviour of c(S) under operations on schemes. We shall consider the 
following three operations on schemes: product of schemes, group extension of 
a scheme and factoring a scheme by the radical.

If S =  (g, — 1, d) and S' =  ( g', — V, d') are two schemes, their product S n  S' 
is defined .to be ( g x g ' , (— 1 , — 1 ’) ,d x d ’), where (d x d') ({a, a’)) =  d(a)xd'(a'). 
A direct checking shows that S n  S' satisfies C1-C3 whenever S and S' do.

The group extension S' of a scheme S is defined in the following way. Take 
a 2-element group { 1 , f } and make g' =  g u tg into a group in an obvious way. 
Define d'(a) =  d(a) for a e g, a ^  —\,dt( — \) =  g‘ and d'{at) =  {1, at} for any 
a eg. Then S' =  (g‘, — 1, d') is a scheme.

Finally, let S =  (g, — 1, d) be a scheme and R =  R(S ) its radical. Consider 
S/R =  (gR, ~  1«, dR) where gR =  g/R, -  1R =  ( - 1  )R  and dR(aR) =  d(a)R. If 
S satisfies C1-C3, so does S/R, the factor scheme. More details on this subject can 
be found in [7], [ 8],

We want to know the behaviour of c(S) under the three operations on shcmes. 
All the schemes considered are assumed to be finite.

PRO PO SITIO N  2.1.
(i) c(s n  s') =  c(S)c(S'),

fc (S )+  |gf|, if  R(S) =  { 1},
(ii) c(S') =  1

U (S ) +  M +  2, if  R ( S ) * {  1},

(iii) c(S/R) =  c(S).
P ro o f, (i) For any two families of sets { A ^ ie l }  and { B f j e J }  we have

n Ai xB; = n^xn bj■ 
i j  i j

■ It follows L(S  n  S') =  L(S) x L(S'), hence (i).
(ii) If R (S ) =  {1 }, then g £ L (S ‘) and

L(S') =  (L(S)\g) u g‘ u A

where A is the family of 2-element groups {1, af}, a eg. Thus 
c(S') =  C(S )-1  +  1+|X| =  c(S) +  |0 |. If R(S) #  {1 }, then

L(S') =  L { S )u g ‘ u  {1 } u A ,

hence c(S') =  c(S) +  2 +  |̂ | =  c(S) +  \g\ +  2.
(iii) L. Szczepanik ( [ 8, Theorem 4.7]) has proved that for any scheme S there 

exists a radical scheme S' such that S ^  S' n S/R. Since isomorphic schemes have 
the same number of closed subgroups, we have c(S) =  c(S')c(S/R) and c(S') =  1 
by Proposition 1.2.(i).
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EXAMPLES. 2.2. Suppose c — c(S) is the number of closed subgroups of 
a scheme S =  (g, — 1, d) with \g\ =  2". Then for any natural number m >  n there 
exists a scheme S' =  (g\ — V, d') such that \g'\ =  2" and c(S') =  c.

Indeed, let S" =  (g", —1", d") be a radical scheme with \g"\ =  2m~", 
S" =  S (F 5) n  . . .  n  S(F5) (m-n factors) for instance, then by Proposition 2.1.(i) 
the scheme S' =  S n  S" satisfies the requirements.

2.3. Using the classification of schemes on groups of order <  16 carried over 
in [9 ] and Proposition 2.1 we have computed all the values of c (S) actually taken 
on when S runs through the class.

\g\ =  1 : c(S) =
\g\ = 2 : c(S) = 1,2.
\g 1= 4 : c(S) = 1,2,4,5.
\g\ =  8 : c(S) = 1,2,4,5,7,8,9,10,16.
\g\ =  16: c(S) = 1,2,4,5,7,8,9,10,11,12,14,15,16,17,18,20,24,25,32,67.
2.4. For a non-real scheme S we define the w-invariant u(S) to be the smallest 

positive integer u with the property that every u +1 dimensional form over S is 
isotropic. It is known that u{S) <  q(S), where q{S) is the cardinality of the group g. 
For the schemes with largest possible u-invariant we are able to calculate c(S) on 
using structure results of [3 ] and [ 8]  and Proposition 2.1.

(i) If 4 <  q{S) =  u(S), then c(S) =  q (S )+  1.
(ii) If  8 ^  q(S) =  2u(S) and s(S) ^  4, then c(S) =  q(S) +  8.
(iii) If 8 ^  q(S) =  2u{S) and s(S) ^  2 and S is not a group extension of 

another scheme, then c(S) =  u(S)+ 1.
Here s(S) denotes the level of the scheme, that is, the minimal number n with
— 1 e D(n).

To prove (i) one uses L. Szczepanik’s ( [ 8, Theorem 5.4]) characterization of 
non-real schemes with q(S) =  u(S) ^  4. Any such scheme S is isomorphic to the 
scheme of the iterated power series field f 3( (fL)) ... ((?„)) and to find c(S) we use 
induction on n and Proposition 2.1 .(ii).

Proofs for (ii) and (iii) are similar on using Theorem 3 in [3 ] and Lemma 5.5 
and Theorem 5.6 in [ 8], respectively.

3. A characterization of non-real 2-local schemes. A scheme S =  (g ,  — 1, d)is 
said to be 2-local if there are — up to isometry—  exactly two 2-fold Pfister forms 
over g (cf. [11] for the motivation in the field case). We will characterize non-real 
2-local schemes by means of the number of closed subgoups of the scheme. First 
note the following trivial bound for c(S) of a finite scheme S.

PR O PO S IT IO N  3.1. Let S =  (g, — 1, d) be a scheme with \g\ =  2". Then 
1 ^  c(S) ^  a(2, n), where a(2, n) is the number of all subgroups of an elementary 
2-group of order 2".

An explicit expression for a(2, n) is this (of Fuchs [4, § 15, Example 14]):

<x(2,n)= 1+ t n ( 2 —  + 1- l )/ (2 '- l ) .  
k =  1 i =1
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THEOREM  3.2. Let Sbea non-real scheme and \g/R(S)\ =  2". Then S is 2-local 
if  and only if c(S) =  a(2, n).

P ro o f. Suppose first S is a non-real 2-local scheme with \g/R\ — 2". C. Cordes 
([2, Corollary to Lemma 2]) proves — in the field case but his arguments work all 
right in the abstract case as well—  that then for every subgroup A of 
index 2 in g containing R there is an element a e g such that A =  d(a). Thus all the 
subgroups of index 2 in q containing R belong to L(S) and it follows that 
c(S) =  |L(S)| =  a(2, n).

Conversely, if S is a non-real scheme with \g/R\ =  2" and c(S) =  a(2, n), then 
necessarily every subgroup of index 2 in g containing R is of the form d(a) for 
a certain a e g  (recall that L(S) consists of intersections of d(a)'s). Observe that 
d(a) =  d(ra) for any r e R ,  hence the number of distinct subgroups of g of the form 
d(a) is at most 2" =  \g/R\. But in the elementary 2-group g/R of order 2" there are 
exactly 2" — 1 subgroups of index 2 and as shown above each of them is of the form 
d(a). It follows that Q/:d(a)] =  2 for every aeg\R. Now we use Kaplansky’s 
result ([5, Theorem 2]) to conclude that the scheme has only one anisotropic 
2-fold Pfister form i.e., S is 2-local (cf. [11, Proposition 2.3] for a direct proof). This 
proves the theorem.

4. Closed subgroups in quasi-pythagorean schemes. In any scheme R c  d( 1) 
and if i? =  c/(l), the scheme is said to be quasi-pythagorean (we follow the 
terminology of [ 6]). Every pythagorean scheme (satisfying d(\) — {1 }) is 
quasi-pythagorean but there are also other examples. First, any real 1-Hilbert 
scheme is quasi-pythagorean since for such a scheme \g/R\ =  2 and R =  d(\). 
Second, if S and S' are both quasi-pythagorean so is S n  S'.

We determine here c(S) for any finite quasi-pythagorean scheme and 
characterize this type of schemes in terms of closed subgroups.

We begin with the following result on pythagorean schemes.
PRO PO SITIO N  4.1. For any finite pythagorean scheme S =  (g, — 1, d) we 

have c(S) =  \g\.
P ro o f. The structure of a finite pythagorean scheme S has been described by 

M. Kula. According to [7], S is built up from the scheme of real numbers S(R) by 
iterating the operations of the product of schemes and group extensions. To 
prove |c(S)| =  \g\ we use induction on the order of g. If \g\ =  2, the scheme is 
isomorphic to S(R) and c =  2. Assume \g\ =  2" >  2. By the structure theorem 
quoted above, either S =  Sj n  S2 or S =  S\, where SL, S2 are pythagorean 
schemes. Using induction hypothesis and Proposition 2.1.(i) and (ii), we get 
c(S) =  \g\, as required.

C O R O LLAR Y  4.2. For any finite quasi-pythaqorean scheme S we have 
c(S) =  |0/R(S)|.

P roo f. c(S) =  c(S/R(S)) by Proposition 2.l.(iii). On the other hand, S/R(S) is 
pythagorean, hence Proposition 4.1 applies.

THEOREM  4.3. A finite scheme S is quasi-pythagorean if and only if every 
closed subgroup o f  S is o f  the form d(a) for aeg.
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P roo f. Suppose first S is quasi-pythagorean. By Lemma 1.1 there are exactly 
\g/R\ pairwise distinct subgroups d(a), a eg. Each of them is closed and by 
Corollary 4.2 the number of all closed subgroups is g/R. Hence the result.

Now assume the only closed subgroups of g are d(a), a eg. Then R =  d(b) for 
a certain beg.  Hence for any x e g ,

d(b) =  R c~ d(x) =  d( — b )n  d(x) a  d(bx).

Putting x =  1 we get R =  d( 1), i.e. the scheme is quasi-pythagorean.
An interesting corollary to this seems not to have been recorded in the 

literature even in the case of pythagorean fields.
C O R O LLAR Y  4.4. A finite scheme S is quasi-pythagorean if and only iffor any 

two elements a, be g there is a c e  g such that d(a) n  d(b) =  d(c).
PRO PO SITIO N  4.5. For any scheme S, c(S) =  4 if and only if S/R(S) =  

S(R) n S(R).
P ro o f. The “ i f ’ part follows immediately from Proposition 2.1 .(i) and 2.1 .(iii). 
To prove the converse we may assume R(S) =  {1 } (Proposition 2.1.(iii)). If 

c(S) =  4, the set of closed subgroups cannot be totally ordered by inclusion (cf. 
Corollary 1.11 in [10]), hence there are a, b e g ,  a ±  b, such that d(a) n  d{b) =  
=  {1}. It follows

1 #  ab^d(a) u d(b)

and since ab e d(ab) we get d(ab) =  g. Hence —abeR  =  {1 } and since a #  b it 
follows 1 #  — 1 and d (l )  #  g. Also d( 1) #  d(a) since otherwise d(a) =  d(\) n 
n  d(a) c  d( — a) =  d(b), a contradiction. Similarly d (l) d(b) and so d (l) =  
=  {1}. Thus the scheme is pythagorean and by Proposition 4.1, \g\ =  c(S) =  4. 

Now the only pythagorean scheme with \g\ =  4 is S(R) n  S(R), as required.
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