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KAZIMIERZ NIKODEM™*

ON SOME PROPERTIES OF QUADRATIC
STOCHASTIC PROCESSES

Abstract. In this paper we prove that every measurable quadratic stochastic process
X:RNx Q -mR is continuous and has the form

N

X (x,-)= ‘jEiXin Yu (¢) (ae-),

where x = (x1, ..., xN)€ Rvand Yit):Q -> R are random variables. Moreover, we give a proof of the
stability of the quadratic stochastic processes.

The subject of the present paper is to exhibit some properties of quadratic
stochastic processes. Theorems 1,5,6 and 7 give some conditions for a quadratic
process to be continuous. Similar .theorems for convex functions were proved,
among others, by Bernstein and Doetsch [1], Ostrowski [10] and Sierpinski [11]
and for quadratic functionals by Kurepa [5], In the case of additive stochastic
processes such theorems were proved by Nagy [7], Theorem 8 concerns the
stability of quadratic stochastic processes and it yields an analogue of the
theorem of Hyers [4] for additive functions.

Let (Q,s4, P) be an arbitrary probability space. A function X:RNxQ >R
(R denotes here the set of all real numbers) is called a stochastic process ifffor all
x € RNthe function X (x,*): (2 -> R is a random variable, i.e. it is an *-measurable
function. A stochastic process XQ Ris called

— quadratic ifffor all.x,y eR N

@ X(X+y,-) + X (X-y,-) = 2X(x,-) + 2X(y,-) (ae);
— P-bounded on a non-empty set A ¢ R" iff
lim sup {P{ro 6 Q: \X(x, co\ ~ n}} = O;
n-»o00 xeA

— continuous at a point x0e Ryv iff
P-limX(x, ¢) = X(x0,¢),
ol (X, *) (x0,°)

where P-lim denotes the limit in probability.

In a similar way as in the case of quadratic functionals (cf. e.g. [5]) one can
prove the following

LEMMA 1 If a stochastic process X:RNxQ~>R is quadratic, then
X(gx,-) = g2X(x,-) (a.e.)for all rational g and xe R N.
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LEMMA 2. If a stochastic process X:RNxfi->R is quadratic, then for all
X,y,zeRN

X(x+y+z,-)+X(x,-)+ X(y,-) +X(z,-) =
= X(X+Y,)-\X(y+2z,-)+ X(z+x,-)  (a.e).

Proof. Letx,y,ze RN Using equation (1) three times (for suitable variables)
we obtain

X(x+y,-)+ X(y+2,-) + X(z +Xx,-) =

= MX(X+2y+2z,-)+ X(X—Z,-)\ + X(z +x,-) =
=AM2X(X +y+2,-) +2X(Y,-)~ X(Xx +2Z,-) +X(x—Z, )]+ X(z+X,*) =

= X{x+y+2) +X () F X+ 2) +]AX{xe2, ) =

=X(X+y+z,-)+*(>V) +*(X, 9+*(*,*)  (@e)
which was to be proved.
LEMMA 3. Ifastochastic process X:RNxQ -* R isquadratic and P-bounded

on some set A cz RNwith non-empty interior, then it is P-bounded on any bounded
subset ofRN.

Proof. Since IntA ~ 0, there exists a ball K(x0, r) (with r > 0) contained in
A. First we shall show that the process X is P-bounded on the ball K (0, r). For, let
us take a point yeK(0,r). By equation (1) we have
I*0OVv)lI </M*(XO+>V)I+N*(Xo-)V)I+X (o) (aeP>

whence, for every ne N,

P({a>eQ: [X(>,co) n}) < Pjwefl: |[X(x0+ y,co)| S!jj) +
+PW\a>eQW\X{x0-y,(0)\ )+ P( jcoeQ: |X(x0,gj)| 2* A

N 3sup ja)eQ: |X(x,co)| ™ Mjj:xev4

The above inequality holds for all ye K(0,r)-, therefore also

sup{P({coef2: [X(y,a>)| » n}):yeK(0, N} "

N 3supjpNcoeff: [*(x,e0)| S )iyed}>,
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which implies that the process X is P-bounded on the ball K (0, r). Now, assume
that the set Bcz R* is bounded and-take a positive rational number g such that
B ¢ K(0,gr). Then, for every xeB and ne N, we have

P({a>eQ: |X(x,a»)| » n}) = P~coeQ'.q2

" sup jphjco e Q: [X(z, &) * ze”(0>r)]-

Since the process X is P-bounded on the ball K(0,r), this implies that X is
P-bounded on the set B too. This ends our proof.
Now we shall prove a theorem giving a characterization of continuous
quadratic processes.
THEOREM 1 If a stochastic process X:RNX Q -* R is quadratic, then the
following conditions are equivalent:
1) X is continuous at every point x e RN
2) X is continuous at some point x0e RN,
3) X is P-bounded on some set * ¢ R * with non-empty interior,
4) there exist random variables YIQ->R, i,j = 1, ..., N, such that
iv
X(x, %) = Yj xixjvij(") (ae)f°revery * = (xj, ..., xNeRN
ij=1
Proof. Implication 1) =>2) is trivial.

To prove the implication 2) => 3), assume that the process X is continuous at
a point x0e RN. Since for any xeR "

A(X,-) = "X (X0+ X, )+ X(X0—X, -)—2X(x0,9)] (a.e),

then the process X is also continuous at the point 0 e RN We shall show that X is
P-bounded on the ball K (0, 1). Suppose the contrary. Then there existan e > 0
and a sequence (X,,),,eNsuch that x,, e K(0,1) forne N, and P({a>e Q:\X(xn,co)\ >
A n}) > e Now, for every ne N, take a rational gnsuch that nm2e (1,2). Then
0, -+ 0, and soz,,: = gnxn->0. On the other hand, we have

P({0)eQ:\X(znco\ > 1P ™ P({(0eQ: \X{gnxn,0j)\ * ng2}) =
= P{a>e Q: \X(xn,e)| * n}) > s,

which contradicts the continuity of X at 0.

3) =>4). Assume that the process XiR* x Q -» R is quadratic and P-bounded

on a set with non-empty interior and consider the process *R xR *xfl-*R
defined by

B(x,y, a):= "[X(x +y, co)—X(x, a)—X(y, to)], (X,y, c0)e RNx R* x Q.
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This process is additive with respect to the first and second variable, that is for
every x,y,zeRWV

B(x+y,z, ®m= B(x,z, m+ B(y,z,® (ae)
and
B(x,y+z ¢ =B(x,y,)+B(x,z,) (a.e.).
Indeed, by the definition of the process B and Lemma 2 we have
2[B(x+y,z,-)-B(x,z,)~B(y,z,-)] =
= X(x+y+z,-)=X(x+y,-) —X(z,-) =X(x+z,j+
+ X(x,-)+ X (z,-)-X(y+z,-)+ X(y,-)+X(z,-) =0 (ae).

The other of the above two equalities follows from the first one, because the
mapping B is symmetric with respect to the first two variables. Now, fix a point
yeR*" arbitrarily. It follows from the definition of B that

B(x,y, mK \ KX(x+y, 9)JA \X(x, A Xy, *)l,
and hence, for every x e K(0,1) we have

P({coe Q: \B(x,y, a)| * n}) " J" eQ:\X(x+y,co\ NN+
+p(ja)Gfl:|X(x,a>)] = 0 +PMo)eO:|A(y,<B)| ™ O

N 3supjp (jcog £2: \X(z, co)| K(C>M +1)}e

Since the process X is P-bounded on the ball K(O, |y|| + 1) (Lemma 3), this
implies that the process B, as the function ofthe first variable, is P-bounded on the
ball K(0,1). Because additive stochastic processes P-bounded on a set with
non-empty interior are continuous (see Theorem 4 in [8]), the process B is
continuous with respect to the first variable. Now consider the processes
Bt:RxQ >R, i—1,..., N, defined by Bt(t, co):—B(tet,y, co), where
{e;,i —1, ..., N} isthe ortonormal base of the space R* over R. These processes
are additive and continuous; therefore, by the theorem of Nagy ([7]),
Bi(t,) = tBi(1,) (ae) for every (gR. Now, taking a point
X = xlel+ ...+ xNeNe RN we have

B{x,y, )= Z B(xiei,y,-) = _Z Bt(xt,-) = _Z xiBi(l, ) =

i=1 1 i=1

1
ﬁN =z I
[N

XiB™i,y,-) (ae)



Since the process B is symmetric with respect to the first two variables, we
have also

B(x,y,-) = Y yiB(x>i>) (ae),

wherey = ylel+ ...+ yNeN. From the equalities obtained above we get, for every
x = (X, ooy XN,y = (yIt ..., YN,

N N
B(x,y,-)= Y WjBiet.ej,-) = Y x,yjYij(') m (aep

ij=1 ij=1
where YUj:= B2ej, )= ~[X(ei+ej,-)-X(ei,-)-X{ej,-)], i,j = 1, ..., N.
Since B(x,x,-) —X(x,-) (a.e.), we obtain

X(x,-)= Y xixjYij(") (aep
ij=1
which was to be proved.

Now we shall prove the implication 4) => 1). Let us fixa point x0e RNand take
a sequence (x,),eN converging to x0. Let x0= (x0,i,

..., XON and x, =
= (X,,!, ..., X,ilM, neN. Then
N . N
F-lim Z x,,ixnjY;j X0,ix0,jYij>
nACe j~ 1 ij=1

N
because the sequence of random variables ( Y

xn,iX,,jYij),.eN is convergent on
N ij= 1
Q to the random variable v

xonxo,j\j and the measure P is finite. Since
ij=1

N
X(x,,-)= Y
ij= 1

Xn,iXn,jYi,j (a.e.)

and

N

Y xo,ixojYij (ae),
< j=i

X{x0,-)=

we have also

P-\imX(xn,-) = X(x0,).

This completes the proof of our theorem.
REMARK 1 An analogous theorem for N

1 we have proved in [9].
However, the methods used in that paper are not applicable in the present
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situation because the basic Lemma 5 from that paper is not longer true in the
case N ~ 2

Now, we are going to introduce an operation with the aid of which we shall
obtain another sufficient conditions for a quadratic stochastic processes to be
continuous.

For a set A cz R* let us define

H(A) := {xXeRN.An(A +x)n(A—x) " 0}.

As an immediate consequence of this definition we obtain the following
THEOREM 2. For any sets A, B cz R™:
a) ifA =£0, then 0e H(A)-,
b) the set H(A) is symmetric with respect to 0;
c) ifOe A and A is symmetric with respect to 0, then A a H(A);
d) H(A) cz H(H(A));
e) ifA a B, then H(A) cz H(B)\
f) H(A n B) cz H(A)n H(B) and H(A u B) =>H{A) u H(B);
g H(A+a) = FI(A)for every ae RN
h) H(tA) = tH(A) for every te R;

i) H(A) a A—A and H(A) ¢ j(A —A).

THEOREM 3. If a set A cz RN has positive inner Lebesgue measure, then
IntH(A) * 0.

Pr9of Letustake a compact set B cz A with positive Lebesgue measure and
denote by x the characteristic function of B. Consider the functionf:R N-*R
defined by

[(X):= mBn (B—X)n (B+ X)), xeR",

where m denotes the Lebesgue measure in RN On account of elementary
properties of the Lebesgue integral we have

[1(x)-1(0) = [J x(t)x(t+ x)x(t-x)dt-J x(t)dt\ »
R" R"
< I x(t)x(t+ x)x(t~x)dt- $ x(t)x(t + x)dt\ +
R" R’
+ |3 x()x(t+ x)dt- $ x(t)dt\ =$
If R"
<

JWX(t)x(t+ x)x(t-x)-x(t)x(t + x)\dt+ J \x(t)x(t + x)-x(t)\dt =
R R
= J x(t)x(t+ x)\x(t~x)-x(t)\dt+ - x(t)\x(t+ x)-x{t)\dt <

R R

< 1 zZ(t-*)-zZW [d*+ I \x(t+ x)-x(D)\dt =
R" R"

= m((B + x) —B) + m((B—x) —B),
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where — denotes the symmetric difference. Fix an e > 0 and take an open
set U such that B¢ U and m(U\B) < e. Since B is compact, we have
d:= dist(B, U') > 0. Therefore, for xeK(0,d), we have B+xcU and
B—x < U, whence

m((B + X) —B) + m((B—x)—B) "
m{U\B) + m(U\(B + xj) + m(U\B) + m(U\(B-x)) < 4e.

Thus, for every x e K(0, d), |/(x) —+ (0)] < 4e, which means that/is continuous at
0. Since /(0) = m(B) > 0O, there exists a ball K(0,r) such that f(x) > 0 for
xe K{0,r). This implies that

Bn (B—x)n B+x)# 0 for xeK (0, r),
and so
An(A—=x)n(A+x)~0 for xe K(0, n),

because B e | Thus K(0, r) ¢ H(A), which was to be proved.

REMARK 2. Incase N = 1,asimilar theorem (but under somewhat stronger
assumptions) was proved by Kurepa (see Lemma 1in [6]).

THEOREM 4. If a set A << RN is of the second category with the Baire
property, then IntH(/4) / 0.

Proof. According to our assumptions, there exists an open, non-empty set
U and there exist sets S, T of the first category such that A = (U\S)u T. Let us
take an open ball K = K(x0,€) ¢ Uand putK0:= K —xO0. Fix arbitrary a point
x e K0 and consider the set

V:i=K0On(K0+x)n(KO0-x).

This set is open and non-empty (in particular OeF); therefore, by a theorem of
Baire, it is of the second category. On the other hand the sets

F\C4 —x0), F\(/4—x0+x), V\(A-x0-x)
are of the first category, because the set K\A is of the first category. Since
V= [F\(,4-xO] u [F\O4-xo+x)]u [F\("-x0-x)] u

ulFnA xQn M—x0+x)n (A—x0—x)],

we must have
(A—x0)n (A—x0+x)n (A—x0—x) ~ 0,
and so
An (A+x)n (A—x) # 0.

Thus K0 ¢ H(A), which means that IntH(/I) ~ 0-
Now, we shall introduce the following definitions:

H1(A):=H(A),
Hn+1{A) := H(HnNn(A)), ne N,

where A is a subset of RN
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We have the following

THEOREM 5. If a stochastic process X:RNxC2—R is quadratic and
P-bounded on a set A ¢: RNsuch that IntH"(A) # 0 for some ne N, then it is
continuous.

Proof. First, we shall prove that the P-boundedness of X on the set A implies
its P-boundedness on the set H(A). Let x eH(A). Then there exists a pointy e RN
such that y, y —x, y + x e A. Hence, because of the inequality

X\ < XY +# X))+ A A (y-x,-) L+ Ay, )l (ae),
we obtain

P({a>e£?: |X(x,co)| » n}) A P~jcoeO: |A'(y+ x,co)| » 3N +

+ P7jcu eO: \X{y-x,(0)\ * +

+ PAjcoefi|A:(>>,(y)| "

N 3supjpjw e Q: \X(z, co)| A ze

The latter inequality holds for every xeH (A); therefore also
sup{P({a) e U: \X(x, b\ » nh:xe H(A)}

< 3supjp”jcoe Q: X(z, )| " zeA

which implies that X is P-bounded on the set H(A). Now, using the induction
principle, we obtain that the process X is also P-bounded on the set Hn(A). Since
IntH"(A) # 0, it follows from the implication 3) => 1) of Theorem 1 that the
process X is continuous. This completes the proof.

As an immediate consequence of Theorems 3,4 and 5 we obtain

THEOREM 6.Let A ¢ RNbe aset ofpositive inner Lebesgue measure or ofthe
second category with the Baire property. Ifa stochastic process X:RNX Q -+ R is
quadratic and P-bounded on A, then it is continuous.

REMARK 3. It is worth noting that Theorem 5 is essentialy stronger than
Theorem 6. Indeed, there exist sets A ofthe Lebesgue measure zero and ofthe first
category such that \ntH(A) # 0. This is, for instance, the case for the set A given
in the following

EXAMPLE. Let

B:= jxeR:x £ jt, X;e{0, 1}, ien|,

C:= jxeR:x £ x,e{0,2}, ieNj,

A:= BuCu(C-I).
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The sets C and B have Lebesgue measure zero and are nowhere dense | C is the

1\
Cantor set and 6 = - C|l, therefore also A has measure zero and is nowhere

dense. We shall show that the interval (0,1) is contained in H(A). For, let us fix
a number xe(0,1) and take its 3-adic expansion x = E®ixy3‘ where
x;e {0,1,2} for ieN. Note that then —x = —1+E®xyJ3l, where
y;:= 2—X-, ieN. Now, define the point a —'L?=1ai/y by putting

fo,if X =0orx, =2,
a,.= < ieN.
1, if x, = 1,
Then ae A (because ae B), a+ xe A (because a+x e C) and a—xe A (because
a—x e C—1). Therefore

An (A+x)n (A—x) #mO,

which means that x e H(A).

Now we shall introduce the following notations. Let ~ denote the a-algebra
of the Lebesgue measurable subsets of RN if x asi — the product c-algebra in
RNxQ,fi = mx aP — the product measure on  x asi,& — the completion of
if x asi with respect to n, and fi— the completion of ju

A stochastic process X:RNxff->R will be called measurable iff it is
measurable mapping with respect to the <r-algebra

The following theorem is an analogue of the famous theorem of Sierpinski
[11] for convex functions.

THEOREM 7. Ifa stochastic process XiR”" x Q —R is quadratic and if there
exist a measurable process Y: RNxQ —R and aset A ¢ Rvofpositive Lebesgue
measure such that for any xe A |X(X,-)]  "~(X,-) (a.e.), then X is continuous.

Proof. Since the c-algebra & is completion of the a-algebra if x asi, there
exists an ~ xasi - measurable process Y'iR* x Q -> R which coincides to the
process Y except for a /I-nullset N. Then, by Fubini’s theorem, there exists a set
M e RNsuch that m(M) = 0 and for all xeRN\M

P(NX = P({coe Q: (x,c0)e N}) = 0.

Put S":= ((x,a)e RNXQ: Y'(X,c0)  n] and S":= {weQ: Y'(x, 0 ® n}. Then,
forevery neN, Sne  xasiand forallne N and x e RN S" e si. Let us consider
the functions/,,: RN-* [0, 1], neN, defined by

f,,(x): = P(SR, xeR N

These functions are measurable and for all xe RN

lim/,,(x) = 0.
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The celebrated theorem of Egoroff guarantees the existence of a set F << A\M of
positive measure, on which this convergence is uniform. Thus we have
VE>03,,0eNV,,>, o(sup{/n(x):xeF} = sup{P({coe£2: Y'(x,a>) ® n}):xeF} < ),
which means that the process Y’ is P-upper bounded on F. Since
V*eF(r(x,-)= 7(x,*) (ae))
and
\X(x,9)\ A Y(X,-) (ae)),

it follows that the process X is P-bounded on F. Because the measure of the set
F is positive, the process X is continuous. This finishes the proof.

As an immediate consequence of this theorem we obtain

COROLLARY 1 If a stochastic process X:RNxQ -+R is quadratic and
measurable, then it is continuous.

Now we shall prove a theorem which concerns the stability (in the sense of
Ulam) of quadratic stochastic processes. This theorem is an analogue of the
theorem of Hyers [4] for additive functions. In the deterministic case such
theorem has been independently proved by Cholewa [2].

THEOREM 8. If a stochastic process X:RNxi2->R fulfils the condition

) VXYeR» (\X(X + y,-) + X (X-y,-)-2X(X,-)-2X(y,-)\ ~ e (ae)),

where e is a positive constant, then there exists a quadratic stochastic process
YiR" x Q —R such that

) VXeR"(IA(X,-)- Y(x-)|  *~ (ae).
Moreover, if YI:Rvxfi-> R is another quadratic stochastic process satisfying

condition (3), thenfor every xeR N Y1(X,-) = Y(x,-) (ae.).
Proof. Using (2) for x = y = 0, we have

(a.e.).
From here and from (2) for x = y we obtain
\X (2x, ¢) —4Ar(X, )| < [X(2x,-)+*(0,-)-4X (X,-)| + |X(0,-)Ke +| (ae),

whence, for every x e RN
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Applying the induction principle, we can show easily that for any ne N and
xeR™

(4) <

Now, fixa point xeR " and take the sequence of random variables I\4—x 2"x, m
/neN-

In view of (4) we. have

1 X 11 " " £
4,+m* (21X, -) /3(2" X,-) = X(2mRTx, ) —X(27X, ) <,

=4 -4

which implies that this sequence is a Cauchy sequence with respect to the measure
P. Therefore, by the theorem of Riesz (see [3], Theorem E, §22), it have to be
convergent with respect to the measure P. Let us consider the stochastic process
Y:RNX Q -* R defined by

Y(x, m): = P—Iimz X(2mx, m), xe RN

This process is quadratic because, for every x,yeR N we have

lyx+y,-)+y(X-y,-)-2y(X,-)-2y(y,-)| =

\P-\imUx(2"(x +y),-) + X{2n(x-y),-)-2X(2m,-)-2X(2ry,-)]\ =

n~*oo 4

P-lim \X(2"x + 2"y,-) + X(2"x —2ry, ®—2X (2, -)—2X(2ry, W »

n~*o0 4

>

P-lim—= 0 (ae.).

=0 e

Moreover, using (4), we get for any xeR™"
|Z(X’_)_y(X1_)| = P-lim X{X,-)--X{ZI"K,-)

Now assume that y~R~xfi-"R is another quadratic stochastic process
satisfying the condition (3). Then, for any xeR'* and ne N, we obtain

ly(X,=)—=1(X,=)l =~\Y (nx,-)-Y1nx,-)\ <

<, -~y(nx,-)-A(nx,-)l +1-X(nx,-)-yi (nx,—%l] ~A (ae)

This implies that (X, *) = y(x, ® (a.e.) for any x e RNand the theorem follows.
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