WOLFGANG SANDER*

A NOTE ON THE EXPONENTIAL DISTRIBUTION

Abstract

A characterization of the exponential distribution via a functional equation on a restricted domain is given.

Let $X \geqslant 0$ be a random variable with distribution function

$$
F(x)=1-\mathrm{e}^{-b x}, \quad x \in[0, \infty),
$$

where $b>0$ is a constant. Then F is called the exponential distribution.
We say that X or the distribution function F of X, has the lack of memory if F satisfies the functional equation

$$
\begin{equation*}
1-F(x+y)=(1-F(x))(1-F(y)) \tag{1}
\end{equation*}
$$

for all $x, y \in[0, \infty)$.
The following result gives all solutions of (1) (see for example [1, Theorem 1.3.1.]).

THEOREM 1. Let F be the distribution function of a random variable $X \geqslant 0$ and let F satisfy equation (1) for all $x, y \in[0, \infty)$. Then either F is the exponential distribution or F is degenerate at zero (that is $F(0)=0$ and $F(x)=1$ if $x>0$).

From some applications the following question arises: If the functional equation (1) holds only for all $(x, y) \in[0, \infty)^{2} \backslash B$, where B is a Lebesgue null set in $[0, \infty)^{2}$, what can be said about the distribution function F ? Could we expect in this case that there is a distribution function G satisfying (1) for all $x, y \in[0, \infty$) such that $G=F$ almost everywhere in $[0, \infty)$? A positive answer to this question - in a much more general setting - was given by R. Ger [2] (cf. also [3], p. 490-493; moreover see [3], p. 443 for further problems concerning functional equations on restricted domains).

In this note we consider a special case of the above problem by assuming that the equation (1) is valid for all $x, y \in[0, \infty) \backslash A$ where A is a Lebesgue null set in $[0, \infty)$. We give a brief proof for the known fact that this extended form of the lack of memory property characterizes the exponential distribution among all nondegenerate distributions.

THEOREM 2. Let $X \geqslant 0$ be a random variable with distribution function F. If F is not degenerate at zero and if there is a Lebesgue null set A in $[0, \infty)$ such that (1) is valid for all $x, y \in[0, \infty) \backslash A$ then F is the exponential distribution.

Proof. Let us introduce the notations $G=1-F, \mathbf{R}_{0}=[0, \infty)$ and $B=\mathbf{R}_{0} \backslash A$. By hypothesis we have

$$
\begin{equation*}
G(x+y)=G(x) G(y), x, y \in B \tag{2}
\end{equation*}
$$

We shall show that (2) is even satisfied for all $x, y \in \mathbf{R}_{0}$. If $x=y=0$ or if $x=0$ and $y>0$ then - because of $F(0)=0$ - equation (2) is fulfilled.

[^0]Now let $x>0, y>0$ be arbitrary but fixed elements. Since $C=$ $=[A \cup(y-A)] \cap \mathbf{R}_{0}$ is of measure zero, $[0, y] \backslash C$ is of positive measure, so that there is an element

$$
\begin{equation*}
t \in[0, y] \backslash C . \tag{3}
\end{equation*}
$$

Completely analogous $D=[A \cup(x-A) \cup(x+t-A) \cup(A-y+t)] \cap \mathbf{R}_{0}$ is of measure zero which implies the existence of an element

$$
\begin{equation*}
s \in[0, x] \backslash D . \tag{4}
\end{equation*}
$$

Using $t \leqslant y$ (3) implies $t \in \mathbf{R}_{0}, t \notin A, t \in y-\mathbf{R}_{0}$ and $t \notin y-A$ that is

$$
\begin{equation*}
t \in B \cap(y-B) . \tag{5}
\end{equation*}
$$

In the same manner we conclude from (4) that

$$
\begin{equation*}
s \in B \cap(x-B) . \tag{6}
\end{equation*}
$$

Because of $t \in \mathbf{R}_{0}, x-s \in \mathbf{R}_{0}$ and $s \in \mathbf{R}_{0}, y-t \in \mathbf{R}_{0}$ we get from (4)

$$
x-s+t \in \mathbf{R}_{0}, s \notin x+t-A \text { and } s+y-t \in \mathbf{R}_{0}, s \notin A-y+t
$$

that is

$$
\begin{equation*}
x-s+t \in B \text { and } s+y-t \in B . \tag{7}
\end{equation*}
$$

But (5) and (6) imply that there are elements $u, v \in B$ with

$$
\begin{equation*}
x=u+s \text { and } y=v+t \tag{8}
\end{equation*}
$$

so that (7) leads to

$$
\begin{equation*}
x-s+t=u+t \in B \text { and } s+y-t=s+v \in B . \tag{9}
\end{equation*}
$$

Now using (2), (8), (9) and the fact that $s, t, u, v \in B$ we have

$$
\begin{aligned}
G(x+y) & =G(u+s+v+t)=G((u+t)+(s+v))=G(u+t) G(s+v)= \\
& =G(u) G(s) G(v) G(t)=G(u+s) G(v+t)=G(x) G(y)
\end{aligned}
$$

so that indeed (2) is valid for all $x, y \in \mathbf{R}_{0}$. Thus because of Theorem 1 the proof is finished.

REFERENCES

[1] J. GALAMBOS and S. KOTZ, Characterizations of probability distributions. Lecture Notes in Mathematics, Vol. 675, Springer, Heidelberg 1978.
[2] R. GER, Almost additive functions on semigroups and a functional equation, Publ. Math. Debrecen 26 (1979), $219-228$.
[3] M. KUCZMA, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality, Państwowe Wydawnictwo Naukowe, Warszawa - Kraków 1985.

[^0]: Received September 5, 1986.
 AMS (MOS) Subject classification (1980). Primary 60E05. Secondary $39 B 40$.

 * Department of Mathematics, Technic̣al University, Braunschweig, West-Germany, PF 3329.

