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JAN LIGEZA*

ON GENERALIZED SOLUTIONS
OF SOME DIFFERENTIAL EQUATIONS

Abstract. We prove theorem on the existence and uniqueness of the distributional solutions of the
Cauchy problem for equation (1.0).

1. Introduction. In this note we consider the following equation

(1-0) y' = F(y, y{h)),

where F is a given operation, y is an unknown real function of locally bounded
variation in R1(R1denotes the real line), his a continuous real function defined in
R1and F(y, y(h)) is a measure. The derivative is understood in the distributional
sense. Our theorems generalize some results given in [2], [3] and [4],

2. Notation. By + a)) we denote the set of all real functions of locally
bounded variation in R1 (resp. the set of real functions of locally bounded
variation defined in the interval [f0,f0+ aj). We say that a distribution p is
ameasure in R 1ifp is the first distributional derivative of a function from the class
Y . The symbol denotes the set of all measures (resp. non negative
measures) defined in RL Let P e f. Then we define

(2.0) P*«0) = F«°+>+P<°->,
d
(2.1) $p{t)dt = P*{d)-P*(c)
and
00 d
2.2) | p(t)dt = lim (limJp(Odt),
-00 c—=* co d coc

where P(t0+), (P(t0—)) denotes the right (resp. left) hand side limits of the
function P at the point t0 and P' = p. One may show that if Qe V and peJi,
then p-QeJ/ (see [1]) and

(2.3) ipeitipiiel,
(2.4) Wp(1)Q(t)dt\ A sup [<2I*(t)j>IW<h,
c crtrd c
d d
(2.5 J>(E)d& < J <gr(t)t,

where ge Jt and p * q (see [5], [6]). By we denote the set of all functions
z e f suchthatz(t) = z*(t)foreveryt. LetL e Ji and c be a positive constant. We
define

(2.6) @t = {xei/"™: sup [(IX|*(fO)+ var|ox(s))E(J)] < o0},
—00<t<00
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where varJox = varjOx ift < t0,var°x = 0and E(t) = e c|/loL(5d. The set 3SCis

a linear space (the sum of two functions and the product of a scalar and a function
is understood in the usual way). Next, if x e 3L we put

2.7) w(t) = |x|*(f0)+ varJox(s),
(2.8) E~\t) = (E(1)“\
(2.9) IXI = sup  w{E(H),
—00<t< 00
(2.10) M [afc]= sup w(t)E(t), (t0e [a, bjj
astéh
(2.11) IxIP* = sup w(t)
—00<t< 00
and
(2.12) w»m6= sup w(t), tOe]a, b
a<t”rb
One may show that a ||. | is a norm in 3SC. The space 3SCwith the norm (2.9) we
denote by 38.

3. The main results.
THEOREM 3.1. The space 38 is a Banach space.
Now we examine the following problem

30 iy' = Fy.y(h))
(3.1) \y*(t0) = yO.

By a solution of the problem (3.0—(3.1) we understand a function ye 3# which
satisfies (3.0) (in the distributional sense) and (3.1). We shall introduce two
hypotheses.

Hypothesis Hx.

1 Fisan operation defined for every system of functions («, v) of the class ir .

2. F{u, v)eJdt.

3. his the continuous real function defined in R1 such that if ue'v, then
uth)e V.

4. For every MO there exists N such that 0 < N < MO and

1 IF(y.y(fe))I(s)ds|I for fe (- 00, 00),
0

whenever |ly|* * MO.

5.\yO0\M 0-N.

6. Ifyn,yOe 3d, ||y,|[* < MO(n=0.1,2, ...) andy,,  yO(almost uniformly),
then

lim {[T(y.)-T(yOl = 0,



where

T(yi)(t) = y0+ tJOF(y>, y.())s)ds (= 1,2,..),
7. There exists ke Jt such
\F{y,y(h)\ < =
for every j/e f such that |ly|* ~ M0 and \W\** MO, where (£)' = A

EXAMPLE 1 Let lim (L)*(t) = oo and lim (L)*(t) = —oo0, where
t~* oo t—*00
® f
(L) = LeM. Moreover, let ie J, j zZ@df = r < oo, |J £(s)ds[*(f0) = m,

O0<r+m<I, na constant and yet"' 71t is not difficult to check that the
operations FI and F2 defined as follows

Fify,y(h))(t):= L(t)y(t+ B),

F& mo-.-Lw r~T a

satisfy the hypothesis Ht. In fact, by (2.4) we can write

IFj(y,y(h))\\* ~ MO(m+r):= N < MO
for j =1,2, 0<m+r< 1 and \W*~" MO0. Let vy, ,y0e&, |[[}J* ~ MO
(n=20,1,2, ...) and let yn=*y0. Then we have

™M) —TOVO)| = wllF jAy~A-FjiyryMism ~

to

< itJO[Fj(yi>yAh))- m(™0’j'oW)] (s)dsii[_a0]+ 4M°rgmt,ff°Dj)

where 7 = 1,2, P(a) = min[|L*(a) —L*(f0)|, |L*(—a)—L*(f0)]], tOe[ —a,a],
Dj = 0and D2= 1 Thus

| 7'(y,)—T(yOll < efor 1> noand £> 0
(and for sufficiently large a). We put
k{t): = MOL(t).
EXAMPLE 2. Let/:R3->R1be a continuous function such that

V(L y (1), y(h(t)N 7~ Q(t)
(U]
whenever |ly[|* ~ M0 and J Q(t)dt ~ MO. Then we consider operation
—@

F defined as follows

F(y, y(h)(1) := f(t, y(1), y(h(1))).



I6)

Next, we assume that
1 For every MO there exists N such that 0 < N < MO0 and

i IfCy,y(7)I(s)ds|* < N,

to

whenever |ly|* ~ MO.

2. his a continuous real non increasing function.

3. \y0O\AM 0-N.
It is not difficult to verify that the operation F satisfies assumptions of hypo-
thesis H1.

Hypothesis H2.

1 Assumptions 1 and 2. of Hj are fulfilled.

2. his a real continuous function such that for every u,veY and t holds

\u(h)-v(h)\*(t) s§ ju—ul*(f0) + varje-yt{u —v)* (s)

and u(h)e f, where y is a continuous real function defined in (—o00, 00).
3. There exists L e Jt such that for every u,v,u,ve Y holds

VF(uv) —F{ii v\ A L\u-ii\ + \W-v\),

where

00 t
J Lt)ydt=r, |F(0,0)] <cL, ¢>0 and  |J L(s)ds|*(f0) = q.
to

t+y()
4  sup ed t i(s)dsl = m.

—00 < t <00
5 @:= (q+n(m+ )< 1L

\yO\+cq+1
1—{g+ r)(m+ 1)’

7. = {ye&:\\y\\*  p}l.
EXAMPLE 3. We consider the following problem

3.2) y'= Is(t)y(t+E), y*(0) = 1,
where 3 denotes the Dirac delta, Ha constant. If we shall put

L="*"8E yt)=K r=\" 4= m=ei, a<l1
and
Fly.,y(h)(t) = *8(t)y(t + K),

then hypothesis H2 is satisfied.



76

THEOREM 3.2. Let hypothesis Hj be fulfilled. Then the problem (3.0—3.1)
has at least one solution.

THEOREM 3.3. Let hypothesis H2 be satisfied. Then the problem (3.0)—(3.1)
has exactly one solution in the clase 88*.

4. Proofs.

Proof of Theorem 3.1. Let yne@) (n= 1,2, ...) and let for every e > 0
there exists r0 such that

(4.0 lyn-y ml < e
for every n,m > r0. Then

(42)  (yn(t)-yI)\)E(t) =

< (|- yJ*(fo)+ varlo(®,~ FYI(s))E(0 "
< lbn-yml< £ (nh,m>r0).

Thus the sequence {3>E}is almost uniformly convergent to a function y. We shall
show that y e 8%. In fact, from (4.1) we have

(4-2) sup  (var[o(y,-yJ(s))E(0 < [lyn-y m < |

—00<t< @

for n,m>rl. Hence taking into account [7, Theorem 5.7] we infer that

4.3) sup  varjoyn—y)(S)E(® N | for n> r,.
—00<t< @ A
4-9) lyn-y1*(f0) < \ for n> r2.

Then, by (4.3) and (4.4) we can write
(4.5) ly,,-y|| < £ for n > r3,

where r3 = max(rl,r2). Thus the proof of Theorem 3.1 is complete.

REMARK. Let ir *(a,b) be the set of all real functions z of locally bounded
variation in the interval (a,b) ¢ R1 such that z(t) = z*(t) for every te{a,b).
Moreover, let L = 0, t0e{a,b) and let

IWI@>):= M*(f0)+ SUP (varfox*(s)).

a<t<b

We define
mf(a,b):= {xe-r*(a,fc): ||x||Cf) < co}.

We conclude that the linear space i~(a,b) with the norm ||x||f) is a Banach
space.
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Before giving the proof of Theorem 3.2 we shall formulate the properties L, L*
and two lemmas.

Letsrf ¢ ~[t0,f0+a) (0 < a < 00). We say that a family s4has the property
L, if the following condition holds (see [8] p. 29)

A A V A A

e>0 tie[to,to +a) 3>0 te[to,to+a) festf
[(0 <t-tt<B5=>\f(t)-f(tl+)\ <ega(@<tj-t < =|/(t)-/(fi-)] < DI-

LEMMA 4.1. (see [8] p. 30). Let fneY'[t0,t0+a), n=0,1,2, If the
sequence {/,.} has the property L and iffn->/0for every t, then/, ->/0 almost
uniformly.

We assume thati ¢ | We say that a family .5 has the property L* if the
following condition holds

£>0 lie(—00co) >0 te(—00 00 f estf
[0 <t— < <5=>||/(0-/("i+)] < e A(D< —c< <5=>|/(r)-/(*i-)] < ¢€)].

From Lemma 4.1. we conclude

LEMMA 4.2. Letfne$S,n = 0,1,2, ... . Ifthe sequence {/,.} has the property
L* and if/,, -*f0Ofor every t, thenfn-*f0 almost uniformly in (—O00, 00).

Proof of Theorem 3.2. We shall apply Schauder’s — Mazur’s theorem on
fixed point. In this purpose we consider the set c 0S defined as follows

(4.6) = {xef: |X|I* < M0}
Let °U be the set of all functions y e JU* such that

[YW ~J;(ti+)] < \lex(t)—I¢*(t1+ ) for t > t1
and

bW -7Ni-)| < for t < tx.

It is easy to observe that is non empty set. Let u,vew, 0 < A< 1 and
y = Au+ (1—X)v. Then

iiAir iAttii*+n(i-A)«ir <m 0
and
b(0-y(ti+)| < Au(0—«(t! +)| + L —ANA— (] +)| 5
N Alie*(o-je*(tl+) [+ (i-A) N (1) -jE* (ti+)] »
< \E*(t)—E*(t1+)\
for t > ti. Similarly

bW -yAi-)1 < |A*(1)-A*(ti-)] for t < tL



Hence, we infer that W is a convex set. Moreover, we shall show that °Uis a closed
set. In fact, let x,,e°U{n = 1,2,...) and let rIerCDX" = X. Then for every £ > 0 there

exists a number r0 such that

@7 Ix,,-x|[[-#a] » II*,-*Il < s for n> ro.
Hence
(4.8) I 1 |] [*,]<eforn>rx

From the last inequality, we get

(4.9 I*P<<] < *J*-fifl+e< II*,)I*+e MO+e

Hence we can write
(4.10) [IX||* < Mo.
From the definition of the set °U we have

(4.11) IXAJ)-X,, (r1+)] M \G*(t)-£*(t1+)\ for t > tJ

(4.12) I,,(6) —*,(ti )] < for t < tj.

Since the sequence {xn}is almost uniformly convergent to x, by (4.11) and (4.12)
we obtain

(4.13) IX*(E) —x* (t1+)] A \k*(t) —H*(t1+ )\ for t > t1

[X*(t) —x*(?1 )| < \E*(t)— —)| for t < tl.
Taking into account relations (4.10) and (4.13) we inter that °Uis a closed set. Next,

we define transformation T as follows

(4.14) T(x)(t) = yo+ \ F(x,x(h))(s)ds: = vy,

to

where x e f. Using (4.14) and assumptions 4,5 of Hj we have

(4.15) ITEOI* A [yo|+ VA MO-N +N ~ MO.
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Moreover, by 7. of Hj and (4.14) we can write

(4.16) +)| <C|£*(t)-k*(tx+)|
and
(4.17) "W -y*/\!_)! < 1/\(0_/\*/\_)|.

Applying (4.15), (4.16) and (4.17) we obtain

(4.18) T(®) ¢ %

Let x,e°U(n = 1,2,...) and let nIi*n;0 X,, = X. Taking into account 6. of Hj and
almost uniformly convergence of the sequence {x,}, we conclude that T is

a continuous operation. In the sequel we shall prove that T {¥) isa compact set in
In fact, let yte T(°7/) (i = 1, ...) ie

(4.19) = r(x,), X,.e®,(i= 1,2,..)).
The sequence {x,} has the property L* and
(4.20) [[X,]I* sc MO.

Applying Helly’stheorem and Lemma 4.2 we infer that there exists a subsequence
{xiq} of the sequence {x;} almost uniformly convergent to a function x& M,
because (by (4.20) and [7] p. 371)

(4.21) IX|[* ~ MO,

On the other hand from 6. of Hj we get

(4.22) lim T(xig) = lim yig= T(x)e@.
q~* 00 q~* 0

Thus T(W) is a compact set. Now, we use Schauder’s— Mazur’s theorem on fixed
point to transformation T, which implies our assertion.

Proof of Theorem 3.3. We shall apply the Banach theorem on fixed point.
In this purpose we consider the operation T defined by (4.14) for x e i
Next, we consider the set (defined by 10. of H2). We shall show that under
assumptions H2

(4.23) T{&*) @ "M~

In fact, let x e 08*. Then



(4.24)  |y|*(f0)+ var[0j;(s) ~ |yOl+ |J F(x,x(h))(s)ds\*{t0)+

to

+ var|0{ F(x, x(h))(x)dT) »

to

<\yo\+ \WF{x,x(hj)-F(0,0)\(s)ds\*(to)+

to

+ |J|F(0,0)(s)ds|*(t0) + var;o(} \F(x,x(h))~

to to

-F(0,0)|(T)di) + var;o(| |F(0,0)|(r)dT ~

to

< 1ol + 1 (L M)(S)ds*(fo) + 3 (LIx(/i)[)(s)ds|*(F0) +

+c[J L(s)ds[*(t0)+ |3 (L|x|)(s)ds| +

to to

+ j (LIx(FO(s)ds| + C|J L(s)ds\.

to to

Taking into account 2. of H2 we have

(4.25)  |y[*(0) + varjoy(s) < [0+ (x|l -L(s)E~1(s)ds\*(t0) +
’ S*Y(s)

+ Xl fL(9ed © L(uMdsI*(t0)+ cq +

to

+ 1IN || L(s)E_1(s)ds +
to

+ Xl i L(s)ed  LMdu'ds\+ E -*(t)~

to

~Nyd+£ 109lIx]| +

s +y(s)
+IX|[E-1(F)JL(Jed  LLH"dI* () +
to
+cq+ X[ E~1(tr+
t s+y@®
+ X £- 10 I L(s)ed 1 LEY“ds|+ £ _1(H) ~
to

< (IM+ «M T + W\\X\\ +cqg+ ||X]||r+
+mr x|+ 1)E_1(t) » pE~I(1).
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From the last inequality we obtain relation (4.23). Let y e 38%, ze38* and let
y = T(y), z = T(z). Then similarly to (4.25) we get

ly-z|*(r0)+ varJo(y - 2)(s) * [j [F(y, y(h))~F(z, z(h))\(s)ds\*(t0) +

to

+ var,o(}F(y, y(h))-F(z, z(h)) | (r)dt s

< N (".y-zl)(s)ds|*(f0) +

0

+ [ AK/)-z(M)]) (s)ds|*(0) +

to

+ var<o(l (L\y-z\)(x)dx) +

to

+var{0(J (L\y(h)-z(h)\)(x)dz) ~

to
< (g\\y-z\\) + mg\\y-z\\ +
+r\ly- 2\ +rm\\y - Z\WE~1(t) N ally-z|] E~ x(f).

Hence

\Wy-z\\ < ally-z2\\, ae[0,1),

which completes the proof of Theorem 3.3.
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