JAN LIGĘZA*

ON GENERALIZED SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS

Abstract

We prove theorem on the existence and uniqueness of the distributional solutions of the Cauchy problem for equation (1.0).

1. Introduction. In this note we consider the following equation

$$
\begin{equation*}
y^{\prime}=F(y, y(h)) \tag{1.0}
\end{equation*}
$$

where F is a given operation, y is an unknown real function of locally bounded variation in \mathbf{R}^{1} (\mathbf{R}^{1} denotes the real line), h is a continuous real function defined in \mathbf{R}^{1} and $F(y, y(h))$ is a measure. The derivative is understood in the distributional sense. Our theorems generalize some results given in [2], [3] and [4].
2. Notation. By $\mathscr{V}\left(\mathscr{V}\left[t_{0}, t+a\right)\right)$ we denote the set of all real functions of locally bounded variation in \mathbf{R}^{1} (resp. the set of real functions of locally bounded variation defined in the interval $\left[t_{0}, t_{0}+a\right)$). We say that a distribution p is a measure in \mathbf{R}^{1} if p is the first distributional derivative of a function from the class \mathscr{V}. The symbol $\mathscr{M}(\tilde{\mathscr{M}})$ denotes the set of all measures (resp. non negative measures) defined in \mathbf{R}^{1}. Let $P \in \mathscr{V}$. Then we define

$$
\begin{gather*}
P^{*}\left(t_{0}\right)=\frac{P\left(t_{0}+\right)+P\left(t_{0}-\right)}{2}, \tag{2.0}\\
\int_{c}^{d} p(t) \mathrm{d} t=P^{*}(d)-P^{*}(c) \tag{2.1}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{\infty} p(t) \mathrm{d} t=\lim _{c \rightarrow-\infty}\left(\lim _{d \rightarrow \infty} \int_{c}^{d} p(t) \mathrm{d} t\right), \tag{2.2}
\end{equation*}
$$

where $P\left(t_{0}+\right),\left(P\left(t_{0}-\right)\right)$ denotes the right (resp. left) hand side limits of the function P at the point t_{0} and $P^{\prime}=p$. One may show that if $Q \in \mathscr{V}$ and $p \in \mathscr{M}$, then $p \cdot Q \in \mathscr{M}$ (see [1]) and

$$
\begin{gather*}
|p Q| \leqslant|p \| Q|, \tag{2.3}\\
\left|\int_{c}^{d} p(t) Q(t) \mathrm{d} t\right| \leqslant \sup _{c \leqslant t \leqslant d}|Q|^{*}(t) \int_{c}^{d}|p|(t) \mathrm{d} t, \tag{2.4}\\
\int_{c}^{d} p(t) \mathrm{d} t \leqslant \int_{c}^{d} q(t) \mathrm{d} t, \tag{2.5}
\end{gather*}
$$

where $q \in \mathscr{M}$ and $p \leqslant q$ (see [5], [6]). By \mathscr{V}^{*} we denote the set of all functions $z \in \mathscr{V}$ such that $z(t)=z^{*}(t)$ for every t. Let $L \in \tilde{\mathscr{M}}$ and c be a positive constant. We define

$$
\begin{equation*}
\mathscr{B}_{L}^{c}=\left\{x \in \mathscr{V}^{*}: \sup _{-\infty<1<\infty}\left[\left(|x|^{*}\left(t_{0}\right)+\operatorname{var}_{i_{0}}^{t} x(s)\right) E(t)\right]<\infty\right\}, \tag{2.6}
\end{equation*}
$$

Received January 11, 1982.
AMS (MOS) Subject classification (1980). Primary 34A10, Secondary 46F10.
*Instytut Matematyki Uniwersytetu Śląskiego, Katowice, ul. Bankowa 14, Poland.
where $\operatorname{var}_{t_{0}}^{t} x=\operatorname{var}_{t_{0}}^{t} x$ if $t<t_{0}, \operatorname{var}_{0}^{0} x=0$ and $E(t)=\mathrm{e}^{-c| |_{t_{0}}^{t} L(s) d s \mid}$. The set \mathscr{B}_{L}^{c} is a linear space (the sum of two functions and the product of a scalar and a function is understood in the usual way). Next, if $x \in \mathscr{B}_{L}^{c}$ we put

$$
\begin{equation*}
w(t)=|x|^{*}\left(t_{0}\right)+\operatorname{var}_{t_{0}}^{t} x(s) \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
E^{-1}(t)=(E(t))^{-1} \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\|x\|^{*}=\sup _{-\infty<t<\infty} w(t) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x\|_{[a, b]}^{*}=\sup _{a \leqslant t \leqslant b} w(t), \quad t_{0} \in[a, b] \tag{2.12}
\end{equation*}
$$

One may show that a $\|$.$\| is a norm in \mathscr{B}_{L}^{c}$. The space \mathscr{B}_{L}^{c} with the norm (2.9) we denote by \mathscr{B}.

3. The main results.

THEOREM 3.1. The space \mathscr{B} is a Banach space.
Now we examine the following problem

$$
\left\{\begin{array}{l}
y^{\prime}=F(y, y(h)) \tag{3.0}\\
y^{*}\left(t_{0}\right)=\bar{y}_{0}
\end{array}\right.
$$

By a solution of the problem (3.0)-(3.1) we understand a function $y \in \mathscr{B}$ which satisfies (3.0) (in the distributional sense) and (3.1). We shall introduce two hypotheses.

Hypothesis H_{1}.

1. F is an operation defined for every system of functions (u, v) of the class \mathscr{V}.
2. $F(u, v) \in \mathscr{M}$.
3. h is the continuous real function defined in \mathbf{R}^{1} such that if $u \in \mathscr{V}$, then $u(h) \in \mathscr{V}$.
4. For every M_{0} there exists N such that $0<N<M_{0}$ and

$$
\left\|\int_{t_{0}}^{t}|F(y, y(h))|(s) \mathrm{d} s\right\|^{*} \leqslant N \text { for } t \in(-\infty, \infty)
$$

whenever $\|y\|^{*} \leqslant M_{0}$.
5. $\left|\bar{y}_{0}\right| \leqslant M_{0}-N$.
6. If $y_{n}, y_{0} \in \mathscr{B},\left\|y_{n}\right\|^{*} \leqslant M_{0}(n=0.1,2, \ldots)$ and $y_{n} \rightrightarrows y_{0}$ (almost uniformly), then

$$
\lim _{n \rightarrow \infty}\left\|T\left(y_{n}\right)-T\left(y_{0}\right)\right\|=0
$$

where

$$
T\left(y_{i}\right)(t)=\bar{y}_{0}+\int_{i_{0}}^{t} F\left(y_{i}, y_{i}(h)\right)(s) \mathrm{d} s \quad(i=1,2, \ldots)
$$

7. There exists $k \in \tilde{\mathscr{M}}$ such

$$
|F(y, y(h))| \leqslant k
$$

for every $y \in \mathscr{V}$ such that $\|y\|^{*} \leqslant M_{0}$ and $\|\hat{k}\|^{*} \leqslant M_{0}$, where $(\hat{k})^{\prime}=k$.
EXAMPLE 1. Let $\lim _{t \rightarrow \infty}(\hat{L})^{*}(t)=\infty$ and $\lim _{t \rightarrow \infty}(\hat{L})^{*}(t)=-\infty$, where $(\hat{L})^{\prime}=L \in \tilde{M}$. Moreover, let $L \in \tilde{M}, \int_{-\infty}^{\infty} L(t) \mathrm{d} t=r<\infty,\left|\int_{t_{0}}^{t} L(s) \mathrm{d} s\right|^{*}\left(t_{0}\right)=m$, $0<r+m<1, \bar{h}$ a constant and $y \in \mathscr{V}^{\infty}$. It is not difficult to check that the operations F_{1} and F_{2} defined as follows

$$
\begin{gathered}
F_{1}(y, y(h))(t):=L(t) y(t+\bar{h}) \\
F_{2}(y, y(h))(t):=\ell(t) \frac{y(t)}{1+|y(t+\bar{\eta})|}
\end{gathered}
$$

satisfy the hypothesis H_{1}. In fact, by (2.4) we can write

$$
\left\|F_{j}(y, y(h))\right\|^{*} \leqslant M_{0}(m+r):=N<M_{0}
$$

for $j=1,2,0<m+r<1$ and $\|y\|^{*} \leqslant M_{0}$. Let $y_{n}, y_{0} \in \mathscr{B},\left\|y_{n}\right\|^{*} \leqslant M_{0}$ ($n=0,1,2, \ldots$) and let $y_{n} \Rightarrow y_{0}$. Then we have

$$
\begin{aligned}
\left\|T\left(y_{i}\right)-T\left(y_{0}\right)\right\| & =\left\|\int_{i_{10}}^{t}\left[F_{j}\left(y_{i}, y_{i}(h)\right)-F_{j}\left(y_{0}, y_{0}(h)\right)\right](s) \mathrm{d} s\right\| \leqslant \\
& \leqslant\left\|\int_{t_{0}}^{t}\left[F_{j}\left(y_{i}, y_{i}(h)\right)-F_{j}\left(y_{0}, y_{0}(h)\right)\right](s) \mathrm{d} s\right\|_{[-a, a]}+\frac{4 M_{0} r\left(1+M_{0} D_{j}\right)}{\mathrm{e}^{\text {cP(a) }}}
\end{aligned}
$$

where $j=1,2, \quad P(a)=\min \left[\left|\hat{L}^{*}(a)-\hat{L}^{*}\left(t_{0}\right)\right|, \quad\left|\hat{L}^{*}(-a)-\hat{L}^{*}\left(t_{0}\right)\right|\right], \quad t_{0} \in[-a, a]$, $D_{1}=0$ and $D_{2}=1$. Thus

$$
\left\|T\left(y_{n}\right)-T\left(y_{0}\right)\right\|<\varepsilon \text { for } i>n_{0} \text { and } \varepsilon>0
$$

(and for sufficiently large a). We put

$$
k(t):=M_{0} L(t) .
$$

EXAMPLE 2. Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{1}$ be a continuous function such that

$$
|f(t, y(t), y(h(t)))| \leqslant Q(t)
$$

whenever $\|y\|^{*} \leqslant M_{0}$ and $\int_{-\infty}^{\infty} Q(t) \mathrm{d} t \leqslant M_{0}$. Then we consider operation F defined as follows

$$
F(y, y(h))(t):=f(t, y(t), y(h(t))) .
$$

Next, we assume that

1. For every M_{0} there exists N such that $0<N<M_{0}$ and

$$
\left\|\int_{t_{0}}^{t}|F(y, y(h))|(s) \mathrm{d} s\right\|^{*} \leqslant N,
$$

whenever $\|y\|^{*} \leqslant M_{0}$.
2. h is a continuous real non increasing function.
3. $\left|\bar{y}_{0}\right| \leqslant M_{0}-N$.

It is not difficult to verify that the operation F satisfies assumptions of hypothesis H_{1}.

Hypothesis H_{2}.

1. Assumptions 1. and 2. of H_{1} are fulfilled.
2. h is a real continuous function such that for every $u, v \in \mathscr{V}$ and t holds

$$
|u(h)-v(h)|^{*}(t) \leqslant|u-v|^{*}\left(t_{0}\right)+\operatorname{var}_{t_{0}}^{t+\gamma(t)}(u-v)^{*}(s)
$$

and $u(h) \in \mathscr{V}$, where γ is a continuous real function defined in $(-\infty, \infty)$.
3. There exists $L \in \mathscr{M}$ such that for every $u, v, \bar{u}, \bar{v} \in \mathscr{V}$ holds

$$
|F(u, v)-F(\bar{u}, \bar{v})| \leqslant L(|u-\bar{u}|+|v-\bar{v}|),
$$

where

$$
\int_{-\infty}^{\infty} L(t) \mathrm{d} t=r, \quad|F(0,0)| \leqslant c L, \quad c>0 \quad \text { and } \quad\left|\int_{t_{0}}^{t} L(s) \mathrm{d} s\right|^{*}\left(t_{0}\right)=q .
$$

4. $\sup \mathrm{e}^{c \mid} \int_{t}^{t+\gamma(t)} L(s) d s \mid=m$.

$$
-\infty<i<\infty
$$

5. $\alpha:=(q+r)(m+1)<1$.
6. $p \geqslant \frac{\left|\bar{y}_{0}\right|+c q+1}{1-(q+r)(m+1)}$.
7. $\mathscr{B}^{*}:=\left\{y \in \mathscr{B}:\|y\|^{*} \leqslant p\right\}$.

EXAMPLE 3. We consider the following problem

$$
\begin{equation*}
y^{\prime}=\frac{1}{4} \delta(t) y(t+\bar{h}), \quad y^{*}(0)=1 \tag{3.2}
\end{equation*}
$$

where δ denotes the Dirac delta, \bar{h} a constant. If we shall put

$$
L=\frac{1}{4} \delta, \quad \gamma(t)=\bar{h}, \quad r=\frac{1}{4}, \quad q=\frac{1}{8}, \quad m=\mathrm{e}^{\frac{1}{4}}, \quad \alpha<1
$$

and

$$
F(y, y(h))(t)=\frac{1}{4} \delta(t) y(t+\bar{h}),
$$

then hypothesis H_{2} is satisfied.

THEOREM 3.2. Let hypothesis \mathbf{H}_{1} be fulfilled. Then the problem (3.0)-3.1) has at least one solution.

THEOREM 3.3. Let hypothesis H_{2} be satisfied. Then the problem (3.0)-(3.1) has exactly one solution in the clase \mathscr{B}^{*}.

4. Proofs.

Proof of Theorem 3.1. Let $y_{n} \in \mathscr{B}(n=1,2, \ldots)$ and let for every $\varepsilon>0$ there exists r_{0} such that

$$
\begin{equation*}
\left\|y_{n}-y_{m}\right\|<\varepsilon \tag{4.0}
\end{equation*}
$$

for every $n, m>r_{0}$. Then

$$
\begin{align*}
\left(\mid y_{n}(t)-\right. & \left.y_{m}(t) \mid\right) E(t)= \tag{4.1}\\
& =\left(\left|y_{n}(t)-y_{m}(t)+y_{n}\left(t_{0}\right)-y_{n}\left(t_{0}\right)+y_{m}\left(t_{0}\right)-y_{m}\left(t_{0}\right)\right|\right) E(t) \leqslant \\
& \leqslant\left(\mid y_{n}-y_{m} \|^{*}\left(t_{0}\right)+\operatorname{var}_{t_{0}}^{t}\left(y_{n}-y_{m}\right)(s)\right) E(t) \leqslant \\
& \leqslant\left\|y_{n}-y_{m}\right\|<\varepsilon \quad\left(n, m>r_{0}\right) .
\end{align*}
$$

Thus the sequence $\left\{y_{n}(t)\right\}$ is almost uniformly convergent to a function y. We shall show that $y \in \mathscr{B}$. In fact, from (4.1) we have

$$
\begin{equation*}
\sup _{-\infty<t<\infty}\left(\operatorname{var}_{t_{0}}^{t}\left(y_{n}-y_{m}\right)(s)\right) E(t) \leqslant\left\|y_{n}-y_{m}\right\|<\frac{\varepsilon}{2} \tag{4.2}
\end{equation*}
$$

for $n, m>r_{1}$. Hence taking into account [7, Theorem 5.7] we infer that

$$
\begin{equation*}
\sup _{-\infty<t<\infty} \operatorname{var}_{t_{0}}^{t_{0}}\left(y_{n}-y\right)(s) E(t) \leqslant \frac{\varepsilon}{2} \text { for } n>r_{1} . \tag{4.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\left|y_{n}-y\right|^{*}\left(t_{0}\right) \leqslant \frac{\varepsilon}{2} \text { for } n>r_{2} \text {. } \tag{4.4}
\end{equation*}
$$

Then, by (4.3) and (4.4) we can write

$$
\begin{equation*}
\left\|y_{n}-y\right\| \leqslant \varepsilon \text { for } n>r_{3}, \tag{4.5}
\end{equation*}
$$

where $r_{3}=\max \left(r_{1}, r_{2}\right)$. Thus the proof of Theorem 3.1 is complete.
REMARK. Let $\mathscr{V}^{*}(a, b)$ be the set of all real functions z of locally bounded variation in the interval $(a, b) \subset \mathbf{R}^{1}$ such that $z(t)=z^{*}(t)$ for every $t \in(a, b)$. Moreover, let $L=0, t_{0} \in(a, b)$ and let

$$
\|x\|_{(a, b)}:=|x|^{*}\left(t_{0}\right)+\sup _{a<t<b}\left(\operatorname{var}_{t_{0}}^{t} x^{*}(s)\right) .
$$

We define

$$
\overline{\mathscr{V}}(a, b):=\left\{x \in \mathscr{V}^{*}(a, b):\|x\|_{(a, b)}<\infty\right\} .
$$

We conclude that the linear space $\overline{\mathscr{V}}(a, b)$ with the norm $\|x\|_{(a, b)}$ is a Banach space.

Before giving the proof of Theorem 3.2 we shall formulate the properties \tilde{L}, L^{*} and two lemmas.

Let $\mathscr{A} \subset \mathscr{V}\left[t_{0}, t_{0}+a\right)(0<a \leqslant \infty)$. We say that a family \mathscr{A} has the property \tilde{L}, if the following condition holds (see [8] p. 29)

LEMMA 4.1. (see [8] p. 30). Let $f_{n} \in \mathscr{V}\left[t_{0}, t_{0}+a\right), n=0,1,2, \ldots$ If the sequence $\left\{f_{n}\right\}$ has the property \tilde{L} and if $f_{n} \rightarrow f_{0}$ for every t, then $f_{n} \rightarrow f_{0}$ almost uniformly.

We assume that $\mathscr{A} \subset \mathscr{B}$. We say that a family \mathscr{A} has the property L^{*} if the following condition holds

$$
\begin{aligned}
& \wedge_{\varepsilon>0} \wedge_{t_{1} \in(-\infty, \infty)} \vee_{\delta>0} \wedge_{t \in(-\infty, \infty)} \wedge_{f \in \infty} \\
& {\left[\left(0<t-t_{1}<\delta \Rightarrow| | f(t)-f\left(t_{1}+\right) \mid<\varepsilon\right) \wedge\left(0<t_{1}-t<\delta \Rightarrow\left|f(t)-f\left(t_{1}-\right)\right|<\varepsilon\right)\right] .}
\end{aligned}
$$

From Lemma 4.1. we conclude
LEMMA 4.2. Let $f_{n} \in \mathscr{B}, n=0,1,2, \ldots$. If the sequence $\left\{f_{n}\right\}$ has the property L^{*} and if $f_{n} \rightarrow f_{0}$ for every t, then $f_{n} \rightarrow f_{0}$ almost uniformly in $(-\infty, \infty)$.

Proof of Theorem 3.2. We shall apply Schauder's - Mazur's theorem on fixed point. In this purpose we consider the set $\mathscr{U}^{*} \subset \mathscr{B}$ defined as follows

$$
\begin{equation*}
\mathscr{U}^{*}=\left\{x \in \mathscr{B}:\|x\|^{*} \leqslant M_{0}\right\} . \tag{4.6}
\end{equation*}
$$

Let \mathscr{U} be the set of all functions $y \in \mathscr{U}^{*}$ such that

$$
\left|y(t)-y\left(t_{1}+\right)\right| \leqslant\left|\hat{k}^{*}(t)-\hat{k}^{*}\left(t_{1}+\right)\right| \text { for } t>t_{1}
$$

and

$$
\left|y(t)-y\left(t_{1}-\right)\right| \leqslant\left|\hat{k}^{*}(t)-\hat{k}^{*}\left(t_{1}-\right)\right| \text { for } t<t_{1} \text {. }
$$

It is easy to observe that \mathscr{U} is non empty set. Let $u, v \in \mathscr{U}, 0 \leqslant \lambda \leqslant 1$ and $y=\lambda u+(1-\lambda) v$. Then

$$
\|y\|^{*} \leqslant\|\lambda u\|^{*}+\|(1-\lambda) v\|^{*} \leqslant M_{0}
$$

and

$$
\begin{aligned}
\left|y(t)-y\left(t_{1}+\right)\right| & \leqslant \lambda\left|u(t)-u\left(t_{1}+\right)\right|+(1-\lambda)\left|v(t)-v\left(t_{1}+\right)\right| \leqslant \\
& \leqslant \lambda\left|k^{*}(t)-k^{*}\left(t_{1}+\right)\right|+(1-\lambda)\left|k^{*}(t)-k^{*}\left(t_{1}+\right)\right| \leqslant \\
& \leqslant\left|k^{*}(t)-\hat{k}^{*}\left(t_{1}+\right)\right|
\end{aligned}
$$

for $t>t_{1}$. Similarly

$$
\left|y(t)-y\left(t_{1}-\right)\right| \leqslant\left|\mathfrak{k}^{*}(t)-\mathfrak{k}^{*}\left(t_{1}-\right)\right| \text { for } t<t_{1} .
$$

Hence, we infer that \mathscr{U} is a convex set. Moreover, we shall show that \mathscr{U} is a closed set. In fact, let $x_{n} \in \mathscr{U}(n=1,2, \ldots)$ and let $\lim _{n \rightarrow \infty} x_{n}=x$. Then for every $\varepsilon>0$ there exists a number r_{0} such that

$$
\begin{equation*}
\left\|x_{n}-x\right\|_{[-a, a]} \leqslant\left\|x_{n}-x\right\|<\varepsilon \text { for } n>r_{0} . \tag{4.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|x_{n}-x\right\|_{[-a, a]}^{*}<\varepsilon \text { for } n>r_{1} . \tag{4.8}
\end{equation*}
$$

From the last inequality, we get

$$
\begin{equation*}
\|x\|_{[-a, a]}^{*}<\left\|x_{n}\right\|_{[-a, a]}^{*}+\varepsilon \leqslant\left\|x_{n}\right\|^{*}+\varepsilon \leqslant M_{0}+\varepsilon \tag{4.9}
\end{equation*}
$$

and

$$
\|x\|_{[-a, a]}^{*} \leqslant M_{0}
$$

Hence we can write

$$
\begin{equation*}
\|x\|^{*} \leqslant M_{0} \tag{4.10}
\end{equation*}
$$

From the definition of the set \mathscr{U}, we have

$$
\begin{equation*}
\left|x_{n}(t)-x_{n}\left(t_{1}+\right)\right| \leqslant\left|\hat{k}^{*}(t)-\hat{k}^{*}\left(t_{1}+\right)\right| \text { for } t>t_{1} \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x_{n}(t)-x_{n}\left(t_{1}-\right)\right| \leqslant\left|\hat{k}^{*}(t)-\hat{k}^{*}\left(t_{1}-\right)\right| \text { for } t<t_{1} . \tag{4.12}
\end{equation*}
$$

Since the sequence $\left\{x_{n}\right\}$ is almost uniformly convergent to x, by (4.11) and (4.12) we obtain

$$
\begin{equation*}
\left|x^{*}(t)-x^{*}\left(t_{1}+\right)\right| \leqslant\left|\hat{k}^{*}(t)-\hat{k}^{*}\left(t_{1}+\right)\right| \text { for } t>t_{1} \tag{4.13}
\end{equation*}
$$

and

$$
\left|x^{*}(t)-x^{*}\left(t_{1}-\right)\right| \leqslant\left|\hat{k}^{*}(t)-\hat{k}^{*}\left(t_{1}-\right)\right| \text { for } t<t_{1} .
$$

Taking into account relations (4.10) and (4.13) we inter that \mathscr{U} is a closed set. Next, we define transformation T as follows

$$
\begin{equation*}
T(x)(t)=\bar{y}_{0}+\int_{t_{0}}^{t} F(x, x(h))(s) \mathrm{d} s:=y \tag{4.14}
\end{equation*}
$$

where $x \in \mathscr{U}$. Using (4.14) and assumptions 4,5 of H_{1} we have

$$
\begin{equation*}
\|T(x)\|^{*} \leqslant\left|\bar{y}_{0}\right|+N \leqslant M_{0}-N+N \leqslant M_{0} . \tag{4.15}
\end{equation*}
$$

Moreover, by 7. of H_{1} and (4.14) we can write

$$
\begin{equation*}
\left|y^{*}(t)-y^{*}\left(t_{1}+\right)\right| \leqslant\left|\hat{k}^{*}(t)-\hat{k}^{*}\left(t_{1}+\right)\right| \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|y^{*}(t)-y^{*}\left(t_{1}-\right)\right| \leqslant\left|\hat{k}^{*}(t)-\hat{k}^{*}\left(t_{1}-\right)\right| . \tag{4.17}
\end{equation*}
$$

Applying (4.15), (4.16) and (4.17) we obtain

$$
\begin{equation*}
T(\mathscr{U}) \subset \mathscr{U} . \tag{4.18}
\end{equation*}
$$

Let $x_{n} \in \mathscr{U}(n=1,2, \ldots)$ and let $\lim _{n \rightarrow \infty} x_{n}=x$. Taking into account 6 . of H_{1} and almost uniformly convergence of the sequence $\left\{x_{n}\right\}$, we conclude that T is a continuous operation. In the sequel we shall prove that $T(\mathscr{U})$ is a compact set in \mathscr{B}. In fact, let $y_{i} \in T(\mathscr{U})(i=1, \ldots)$ i.e.

$$
\begin{equation*}
y_{i}=T\left(x_{i}\right), \quad x_{i} \in \mathscr{U},(i=1,2, \ldots) . \tag{4.19}
\end{equation*}
$$

The sequence $\left\{x_{i}\right\}$ has the property L^{*} and

$$
\begin{equation*}
\left\|x_{i}\right\|^{*} \leqslant M_{0} . \tag{4.20}
\end{equation*}
$$

Applying Helly's theorem and Lemma 4.2 we infer that there exists a subsequence $\left\{x_{i_{q}}\right\}$ of the sequence $\left\{x_{i}\right\}$ almost uniformly convergent to a function $x \in \mathscr{B}$, because (by (4.20) and [7] p. 371)

$$
\begin{equation*}
\|x\|^{*} \leqslant M_{0} \tag{4.21}
\end{equation*}
$$

On the other hand from 6 . of H_{1} we get

$$
\begin{equation*}
\lim _{q \rightarrow \infty} T\left(x_{i_{q}}\right)=\lim _{q \rightarrow \infty} y_{i_{q}}=T(x) \in \mathscr{B} . \tag{4.22}
\end{equation*}
$$

Thus $T(\mathscr{U})$ is a compact set. Now, we use Schauder's - Mazur's theorem on fixed point to transformation T, which implies our assertion.

Proof of Theorem 3.3. We shall apply the Banach theorem on fixed point. In this purpose we consider the operation T defined by (4.14) for $x \in \mathscr{B}$. Next, we consider the set \mathscr{B}^{*} (defined by 10 . of \mathbf{H}_{2}). We shall show that under assumptions H_{2}

$$
\begin{equation*}
T\left(\mathscr{B}^{*}\right) \subset \mathscr{B}^{*} . \tag{4.23}
\end{equation*}
$$

In fact, let $x \in \mathscr{B}^{*}$. Then
(4.24)

$$
\begin{aligned}
& |y|^{*}\left(t_{0}\right)+\operatorname{var}_{t_{0}}^{t} y(s) \leqslant\left|\bar{y}_{0}\right|+\left|\int_{t_{0}}^{t} F(x, x(h))(s) \mathrm{d} s\right|^{*}\left(t_{0}\right)+ \\
& \quad+\operatorname{var}_{t_{0}}^{t}\left(\int_{t_{0}}^{s} F(x, x(h))(\tau) \mathrm{d} \tau\right) \leqslant \\
& \leqslant\left|\bar{y}_{0}\right|+\left|\int_{t_{0}}^{t}\right| F(x, x(h))-F(0,0)|(s) \mathrm{d} s|^{*}\left(t_{0}\right)+ \\
& \\
& +\left.\left|\int_{t_{0}}^{t}\right| F(0,0)(s) \mathrm{d} s\right|^{*}\left(t_{0}\right)+\operatorname{var}_{t_{0}}^{t}\left(\int_{t_{0}}^{s} \mid F(x, x(h))-\right. \\
& \quad-F(0,0) \mid(\tau) \mathrm{d} \tau)+\operatorname{var}_{t_{0}}^{t} \int_{t_{0}}^{s}|F(0,0)|(\tau) \mathrm{d} \tau \leqslant \\
& \leqslant\left|\bar{y}_{0}\right|+\left|\int_{t_{0}}^{t}(L|x|)(s) \mathrm{d} s\right|^{*}\left(t_{0}\right)+\left|\int_{t_{0}}^{t}(L|x(h)|)(s) \mathrm{d} s\right|^{*}\left(t_{0}\right)+ \\
& \\
& \quad+c\left|\int_{t_{0}}^{t} L(s) \mathrm{d} s\right|^{*}\left(t_{0}\right)+\left|\int_{t_{0}}^{t}(L|x|)(s) \mathrm{d} s\right|+ \\
& \\
& \quad+\left|\int_{t_{0}}^{t}(L|x(h)|)(s) \mathrm{d} s\right|+c\left|\int_{t_{0}}^{t} L(s) \mathrm{d} s\right|
\end{aligned}
$$

Taking into account 2. of H_{2} we have
(4.25) $|y|^{*}(0)+\operatorname{var}_{t_{0}}^{t} y(s) \leqslant\left|\bar{y}_{0}\right|+\|x\|\left|\int_{t_{0}}^{t} L(s) E^{-1}(s) \mathrm{ds}\right|^{*}\left(t_{0}\right)+$

$$
\begin{aligned}
& +\|x\| \int_{t_{0}}^{t} L(s) \mathrm{e}^{c\left|\int_{i_{0}}^{s+\gamma(s)} L(u) \mathrm{d} u\right|} \mathrm{d} s I^{*}\left(t_{0}\right)+c q+ \\
& +\|x\| \mid \int_{t_{0}}^{t} L(s) E^{-1}(s) \mathrm{d} s+ \\
& +\|x\|\left|\int_{t_{0}}^{2} L(s) \mathrm{e}^{c \mid \int_{t_{0}}^{s+\gamma(s)}} L(u) \mathrm{du\mid} \mathrm{~d} s\right|+E^{-1}(t) \leqslant \\
& \leqslant\left|\bar{y}_{0}\right|+E^{-1}(t) q\|x\|+ \\
& +\|x\| E^{-1}(t)\left|\int_{t_{0}}^{t} L(s) \mathrm{e}^{c^{s+\gamma(s)} \int_{t_{0}}^{t_{0}} L(u) \mathrm{d} u \mid} \mathrm{d} s\right|^{*}\left(t_{0}\right)+ \\
& +c q+\|x\| E^{-1}(t) r+ \\
& +\|x\| E^{-1}(t)\left|\int_{t_{0}}^{t} L(s) \mathrm{e}^{c \mid \int_{t_{0}}^{s+\gamma(s)} L(u) \mathrm{du\mid}} \mathrm{~d} s\right|+E^{-1}(t) \leqslant \\
& \leqslant\left(\left|\bar{y}_{0}\right|+q\|x\|+q m\|x\|+c q+\|x\| r+\right. \\
& +m r\|x\|+1) E^{-1}(t) \leqslant p E^{-1}(t) .
\end{aligned}
$$

From the last inequality we obtain relation (4.23). Let $\bar{y} \in \mathscr{B}^{*}, \bar{z} \in \mathscr{B}^{*}$ and let $y=T(\bar{y}), z=T(\bar{z})$. Then similarly to (4.25) we get

$$
\begin{aligned}
|y-z|^{*}\left(t_{0}\right)+\operatorname{var}_{t_{0}}^{t}(y-z)(s) \leqslant & \left|\int_{i_{0}}^{t}\right| F(\bar{y}, \bar{y}(h))-F(\bar{z}, \bar{z}(h))|(s) \mathrm{d} s|^{*}\left(t_{0}\right)+ \\
& +\operatorname{var}_{t_{0}}^{t_{0}}\left(\int_{t_{0}}^{s}|F(\bar{y}, \bar{y}(h))-F(\bar{z}, \bar{z}(h))|(\tau) \mathrm{d} \tau \leqslant\right. \\
\leqslant & \left|\int_{t_{0}}^{t}(L|\bar{y}-\bar{z}|)(s) \mathrm{d} s\right|^{*}\left(t_{0}\right)+ \\
& \left.+\left|\int_{t_{0}}^{t} L\right| \bar{y}(h)-\bar{z}(h) \mid\right)\left.(s) \mathrm{d} s\right|^{*}\left(t_{0}\right)+ \\
& +\operatorname{var}_{t_{0}}^{t}\left(\int_{t_{0}}^{s}(L|\bar{y}-\bar{z}|)(\tau) \mathrm{d} \tau\right)+ \\
& +\operatorname{var}_{t_{0}}^{t}\left(\int_{t_{0}}^{s}(L|\bar{y}(h)-\bar{z}(h)|)(\tau) \mathrm{d} \tau\right) \leqslant \\
\leqslant & (q\|\bar{y}-\bar{z}\|)+m q\|\bar{y}-\bar{z}\|+ \\
& +r\|\bar{y}-\bar{z}\|+r m\|\bar{y}-\bar{z}\|) E^{-1}(t) \leqslant \alpha\|\bar{y}-\bar{z}\| E^{-1}(t) .
\end{aligned}
$$

Hence

$$
\|y-z\| \leqslant \alpha\|\bar{y}-\bar{z}\|, \quad \alpha \in[0,1)
$$

which completes the proof of Theorem 3.3.

REFERENCES

[1] P. ANTOSIK, J. LIGĘZA, Product of measures and functions of finite variation, Proceedings of the conference on generalized functions and operational calculi, Varna 1975, 20-26.
[2] J. BŁAŻ, O pewnym równaniu różniczkowym z odchylonym argumentem, Prace Naukowe Uniwersytetu Ślaskiego w Katowicach, Prace Mat. 1 (1969), 15-23.
[3] T. DŁOTKO, M. KUCZMA, Sur une equation differentielle fonctionelle a argument accélere, Colloq. Math. 12 (1964), 107—114.
[4] J. LIGĘZA, The existence and the uniqueness of distributional solutions of some systems of non linear differential equations, Casopis Pést. Mat. 102 (1977), $30-36$.
[5] J. LIGĘZA, O rozwiqzaniach uogólnionych równań różniczkowych zwyczajnych, Praca doktorska, Katowice 1974, Biblioteka Glówna Uniwersytetu Śląskiego.
[6] J. LIGĘZA, On an integral inequality, Prace Naukowe Uniwersytetu Śląskiego w Katowicach, Prace Mat. 7 (1977), 22-27.
[7] R. SIK ORSKI, Funkcje rzeczywiste, T. I., Warszawa 1951.
[8] U. SZTABA, Badania rozwiqzań pewnych uogólnionych równańn różniczkowych zwyczajnych. Praca doktorska, Katowice 1978, Biblioteka Glówna Uniwersytetu Ślaskiego.

