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JAN LIGĘZA*

ON GENERALIZED SOLUTIONS 
OF SOME DIFFERENTIAL EQUATIONS

Abstract. We prove theorem on the existence and uniqueness of the distributional solutions of the 
Cauchy problem for equation (1.0).

1. Introduction. In this note we consider the following equation 

(1-0) y' = F(y, y{h)),

where F is a given operation, y is an unknown real function of locally bounded 
variation in R 1 (R1 denotes the real line), his a. continuous real function defined in 
R 1 and F(y, y(h)) is a measure. The derivative is understood in the distributional 
sense. Our theorems generalize some results given in [2], [3] and [4],

2. Notation. By +  a)) we denote the set of all real functions of locally 
bounded variation in R 1 (resp. the set of real functions of locally bounded 
variation defined in the interval [f0, f 0 + aj). We say that a distribution p is 
a measure in R 1 if p is the first distributional derivative of a function from the class 
Y . The symbol denotes the set of all measures (resp. non negative 
measures) defined in R 1. Let P e f .  Then we define

(2.0) P*«0) = F « ° + > + P <1° -> ,

d

(2.1) $p{t )dt  =  P *{d )- P *(c )
c

and
00 d

(2.2) |  p(t)dt  =  lim (lim Jp(O dt),
- o o  c —* co d co c

where P(t0 +  ), (P(t0 —)) denotes the right (resp. left) hand side limits of the 
function P  at the point t0 and P' =  p. One may show that if Q e V  and p e J i ,  
then p - Q e J /  (see [1]) and

(2.3) ip e i^ ip i ie i ,

(2.4) \ \p(t )Q(t )dt \  ^  sup |<2l*(t)j>IW<h,
c c ^  t ^  d c

d d

(2.5) j>(£)d& < J <gr(t)dt,
c c

where q e  J t  and p ^  q (see [5], [6]). By we denote the set of all functions 
z e f  such that z(t) =  z* (t) for every t. Let L e J i  and c be a positive constant. We 
define

(2.6) @cL =  { x e i / '*: sup [(|x|*(f0) +  var|ox(s))£(J)] < oo},
— 00 <  t < 00
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where varJox = varj0x if t <  t0, var°x =  0 and E(t) =  e c|/oL(5)ds|. The set 3SCL is

a linear space (the sum of two functions and the product of a scalar and a function 
is understood in the usual way). Next, if x e 38°L we put

(2.7) w(t) =  |x|*(f0) + varJox(s),

(2.8) E ~ \ t )  =  (£(t))“ \

(2.9) ||x|| = sup w{t)E(t),
— 00 <  t  <  00

(2.10) M [a,fc]= sup w(t)E(t), (t0 e [a, bjj
a ś t ś b

(2.11) ||x||* =  sup w(t)
— 00 <  t  < 00

and

(2.12) 11* 11*0,6] =  sup w(t), t0 e [a, b~\.
a <  t ^  b

One may show that a | | . || is a norm in 3SCL. The space 3SCL with the norm (2.9) we 
denote by 38.

3. The main results.
THEOREM 3.1. The space 38 is a Banach space.
Now we examine the following problem

(3-0) i y '  =  F{y,y(h))

(3.1) \ y * ( t 0) =  y 0.

By a solution of the problem (3.0)—(3.1) we understand a function y e  3# which 
satisfies (3.0) (in the distributional sense) and (3.1). We shall introduce two 
hypotheses.

Hypothesis H x.
1. F is an operation defined for every system of functions («, v) of the class i r .
2. F{u, v ) e J t .
3. h is the continuous real function defined in R1 such that if u e ' V ,  then 

u(h) e V .
4. For every M 0 there exists N  such that 0 < N  <  M 0 and

|| J |F(y,y(fc))|(s)ds||* for f e ( - 00, 00),
*0

whenever ||y||* ^  M 0.
5 . \ y 0\ ^ M 0 - N .
6. If yn, y0e 3d, ||y„||* <  M 0 (n =  0 .1 ,2, ...) and y„ y0 (almost uniformly), 

then

lim ||T (y„)-T (y0)|| = 0,



where

T(yi)(t) = y0 +  J F(y>, y,(/j))(s)ds (i = 1 ,2 ,. . .) ,  
t0

7. There exists k e  J t  such

\F{y, y(h)) \  <  *

for every j / e f  such that ||y||* ^  M 0 and \\k\\* ^  M 0, where (£)' = A:.

EXAMPLE 1. Let lim (L)*(t) =  oo and lim (L)*(t) = — oo, where
t~* oo t —* oo

00 f
(L)' = L e M .  Moreover, let i e  J ,  j  Z,(f)df = r < oo, |J £(s)ds|*(f0) =  m,

-  CO I 0

0 < r  + m < l ,  n a  constant and y e t " .  It is not difficult to check that the 
operations Fl and F2 defined as follows

Fi{y ,y(h)) ( t ) :=  L(t )y(t  +  E),

F & . m o - . - L  w r ^ T a

satisfy the hypothesis H t . In fact, by (2.4) we can write

IIFj(y,y(h))\\* ^  M 0(m +  r ) :=  N <  M 0

for j  = 1 ,2 ,  0 < m +  r < 1 and \\y\\* ^  M 0. Let y„ ,y0 e & ,  ||} J*  ^  M 0 
(n =  0 ,1 ,2 , ...) and let yn =* y0. Then we have

I!^(^i) — TCv0)|| = w l l F j ^ y ^ - F j i y ^ y M i s m  ^
to

<  li J [ Fj(yi> yAh)) -  ^■(^o’j'oW)] (s)dsii[_a,0]+ 4M °r(1cpt,ff °Dj)
to e

where 7 =  1,2, P(a) = min[|L*(a) —L*(f0)|, |L*( —a) —L*(f0)|], t0 e [  — a,a], 
Dj = 0 and D2 = 1. Thus

|| 7"(y„) — T(y0)ll < e for 1 > no and £ > 0
(and for sufficiently large a). We put

k{t): =  M 0L(t).

EXAMPLE 2. L e t / :R3 -> R1 be a continuous function such that

\f(t ,y(t),y(h(t)))\  ^  Q(t)
00

whenever ||y||* ^  M 0 and J Q(t)dt  ^  M 0. Then we consider operation
— 00

F defined as follows

F( y ,  y(h))(t )  : =  f ( t ,  y( t ) ,  y(h(t))).
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Next, we assume that
1. For every M 0 there exists N  such that 0 < N  <  M 0 and

||j |f(y,y(/i))|(s)ds||* < N,
to

whenever ||y||* ^  M 0.
2. h is a continuous real non increasing function.
3. \y0\ ^ M 0 - N .

It is not difficult to verify that the operation F satisfies assumptions of hypo­
thesis H l .

Hypothesis H 2.
1. Assumptions 1. and 2. of Hj are fulfilled.
2. h is a real continuous function such that for every u , v e Y  and t holds

\u(h)-v(h)\*(t) s$ |u — u|*(f0) +  varj0+ y<t)(u —v)* (s)

and u(h)e f ,  where y is a continuous real function defined in ( — 00 , 00).

3. There exists L e J t  such that for every u, v, u, v e Y  holds

\F(u,v) — F{ii,v)\ ^  L(\u- i i \  +  \v -v \ ) ,

where
00 t

J L(t)dt  =  r, |F(0,0)| cL, c > 0  and |J L(s)ds|*(f0) = q.
to

t + y(t)
4. sup ec| t i(s)dsl =  m.

— 00 <  t < 00

5. oc :=  (q +  r)(m+  1) < 1. 

\y0\ + c q + l
1 — {q +  r)(m+  1)'

7. :=  {ye&:\ \y \ \*  p}.
EXAMPLE 3. We consider the following problem

(3.2) y ' =  l-S ( t ) y ( t  +  E), y*( 0) = 1,

where 3 denotes the Dirac delta, H a constant. If we shall put

L =  ^ <5’ y(t) =  K, r =  \ ’ 4 =  m =  ei , a < 1

and

F{y,y(h))(t) = ^8(t)y(t  +  K),

then hypothesis H 2 is satisfied.
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THEOREM 3.2. Let hypothesis H j be fulfilled. Then the problem (3.0)—3.1) 
has at least one solution.

THEOREM 3.3. Let hypothesis H 2 be satisfied. Then the problem (3.0)—(3.1) 
has exactly one solution in the clase 88*.

4. Proofs.
P ro o f  of Theorem 3.1. Let y ne@) (n =  1,2, ...) and let for every e >  0 

there exists r0 such that

(4.0) llyn- y mll < e 
for every n,m  >  r0. Then

(4.1) (\yn( t ) - y J t ) \ ) E ( t )  =

< ( I -  yJ*  (f0) +  var!o(^„ ~  }'J(s)) £(0  ^

< lb n -y mll < £ (n , m > r 0).

Thus the sequence {}>„(£)} is almost uniformly convergent to a function y. We shall 
show that y e 8$. In fact, from (4.1) we have

(4-2) sup (var[o(y„-yJ(s))E (0  <  ||yn- y m|| < |
— 00 <  t  < OO

for n , m > r l . Hence taking into account [7, Theorem 5.7] we infer that

(4.3) sup var}0(yn — y)(s)£ (f) ^  |  for n >  r ,.
— 00 <  t  <  OO ^

(4-4) lyn-y l* (f0) < \  for n >  r2.

Then, by (4.3) and (4.4) we can write

(4.5) lly„-y|| < £ for n >  r3,

where r3 = max(r1, r 2). Thus the proof of Theorem 3.1 is complete.
REMARK. Let i r *(a,b) be the set of all real functions z of locally bounded 

variation in the interval (a , b ) c  R 1 such that z(t) = z*(t) for every t e{a ,b ) .  
Moreover, let L = 0, t0 e {a ,b )  and let

IWI(a,!>):=  M*(£o)+ SUP (varf0x*(s)).
a < t  < b

We define
■ f ( a ,b ) : =  {xe-r*(a,fc): ||x||(0>ft) < co}.

We conclude that the linear space i^(a,b)  with the norm ||x||(fl>L) is a Banach 
space.
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Before giving the proof of Theorem 3.2 we shall formulate the properties L, L* 
and two lemmas.

Let srf c  ^ [ t 0, f0 + a) (0 <  a <  oo). We say that a family s>4 has the property 
L, if the following condition holds (see [8] p. 29)

A A V A A
e > 0  t i e [ t o , t o  + a ) 3 > 0  t e [ t o , t o  +  a)  f e s t f

[(0 < t - t t <  5 => \ f ( t ) - f ( t l +)\  < e) a (0 < t j - t  <  <5=> |/ ( t ) - / ( f i - ) l  < D I­

LEMMA 4.1. (see [8] p. 30). Let  f ne Y ' [ t 0, t 0 +  a), n =  0 ,1 ,2 ,__ I f  the
sequence {/„} has the property L and if f n -> /0 for every t, then /„ -> /0 almost 
uniformly.

We assume that i c l  We say that a family .5/  has the property L* if the 
following condition holds

A A V A A
£ > 0  ! i  e (  — 00, co) <5 >  0  t e ( — 00, 00) f  es tf

[(0 < t — < < 5 = > ||/(0 -/(^ i+ )| <  e) A (0 < — c <  <5= > |/(r)-/(* i-)l < e)]. 

From Lemma 4.1. we conclude
LEMMA 4.2. Let f neŚS,n =  0 , 1 , 2 ,  . . .  . I f  the sequence {/„} has the property 

L* and if/„ - *f0 for every t, then f n - * f 0 almost uniformly in (—00, 00).
P ro o f  of Theorem 3.2. We shall apply Schauder’s — Mazur’s theorem on 

fixed point. In this purpose we consider the set c  0S defined as follows

(4.6) = { x e f :  ||x||* <  M 0}.

Let °U be the set of all functions y  e }U* such that

|yW ~J;(ti+ ) | <  \lc*(t) — lć*(t1 + )| for t >  t 1

and

b W - ^ i - ) |  < for t <  t x.

It is easy to observe that is non empty set. Let u , v e W ,  0 <  A <  1 and 
y  =  Au + (1— X)v. Then

ii^ir iiAttii*+n(i-A)«ir < m 0

and

b (0 - y ( t i+ ) | <  A|u(0 —«(t! +)| + (1 —A)|t?(f) —r(fj +)| s$

^  A|je*(o-je*(t1+ ) |+ ( i-A ) |^ ( t ) - j f * ( t i+ ) | ^

< \£*(t)—£*(t1+)\

for t >  t i . Similarly

b W - y ^ i - ) !  < |^ * ( t) -^ * ( t i- ) | for t <  t L.



Hence, we infer that W is a convex set. Moreover, we shall show that °U is a closed 

set. In fact, let x„e°U{n =  1 ,2 ,...)  and let lim x„ = x. Then for every £ > 0 there
n~* oo

exists a number r0 such that

(4.7) l|x „ -x ||[—fl,a] ^  ll*„-*ll <  s for n >  r0.

Hence

(4.8) I I | | [*-«,„] < e for n >  rx.

From the last inequality, we get

(4.9) II*II*-<.,<.] < ll*J*-fl,fl] +  e < ll*„ll* + e M 0 + e

II*11 <  M 0.

Hence we can write

(4.10) ||x||* <  M 0.

From the definition of the set °U, we have

(4.11) |x(1(J)-x„(r1+)| ^  \G*( t ) -£*( t1+)\  for t >  t J

(4.12) |x„(t) —*„(ti —)| < for t < tj.

Since the sequence {xn} is almost uniformly convergent to x, by (4.11) and (4.12) 
we obtain

(4.13) |x*(t) — x*( t1 +)| ^  \k*(t) — H*(t1 +  )\ for t >  t 1

|x*(t) —x*(?i — )| < \£*(t) — — )| for t <  t 1.

Taking into account relations (4.10) and (4.13) we inter that °U is a closed set. Next, 
we define transformation T  as follows

(4.14) T(x)(t) =  y 0 +  \  F(x,x(h))(s)ds: =  y,
to

where x e f .  Using (4.14) and assumptions 4,5 of Hj we have

(4.15) ||T(x)||* ^  |y0| + iV ^  M 0 - N  +  N  ^  M0.
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Moreover, by 7. of Hj and (4.14) we can write

(4.16) + ) | <C |£ * ( t ) - k * ( t x +)| 

and

(4.17) I ^ W - y * ^ ! - ) !  < 1 ^ ( 0 - ^ * ^ - ) | .

Applying (4.15), (4.16) and (4.17) we obtain

(4.18) T(®) c  <%.

Let x„ e °U (n =  1 ,2 ,...)  and let lim x„ =  x. Taking into account 6. of Hj and
n~* oo

almost uniformly convergence of the sequence {x„}, we conclude that T  is 
a continuous operation. In the sequel we shall prove that T  {¥ )  is a compact set in 

In fact, let y t e T(°7/) (i = 1, ...) i.e.

(4.19) = r(x,), x ,.e® ,(i=  1 ,2 ,...) .

The sequence {x,} has the property L* and

(4.20) ||x,||* sc M 0.

Applying Helly’s theorem and Lemma 4.2 we infer that there exists a subsequence 
{xiq} of the sequence {x;} almost uniformly convergent to a function x& M, 
because (by (4.20) and [7] p. 371)

(4.21) ||x||* ^  M 0.

On the other hand from 6. of Hj we get

(4.22) lim T (x iq) =  lim y iq =  T ( x ) e @ .
q~* oo q~* oo

Thus T(W) is a compact set. Now, we use Schauder’s — Mazur’s theorem on fixed 
point to transformation T, which implies our assertion.

P ro o f  of Theorem 3.3. We shall apply the Banach theorem on fixed point. 
In this purpose we consider the operation T  defined by (4.14) for x e i  
Next, we consider the set (defined by 10. of H 2). We shall show that under 
assumptions H 2

(4.23) T{&*) cz 'M*.

In fact, let x e 08*. Then



(4.24) |y|*(f0) + var[0j;(s) ^  |y0l + |J F(x,x(h))(s)ds\*{t0) +
to

+ var|0({ F(x, x(h))(x)dT) ^
to

< \ y o\ +  \ \ \F{x,x(hj) -F(0,0) \ (s )ds \*( to) +
to

+ |J|F(0,0)(s)ds|*(t0) + var;o(} \F(x,x(h))~
to to

-F(0,0)|(T)di) + var;o( | |F(0,0)|(r)dT ^
to

< IJ'oI + 1J (L M)(s)ds|*(fo) +  |J (L|x(/i)|)(s)ds|*(f0) +
to to

+ c|J L(s)ds|*(t0) +  |J (L|x|)(s)ds| +
to to

+ |j (L|x(ft)|)(s)ds| +  c|J L(s)ds\.
to to

Taking into account 2. of H 2 we have

(4.25) |y|*(0) +  varjoy(s) < |j?0| + ||x|| IJ- L(s)E~1(s)ds\*(t0) +
to

s + y(s)

+ ||x|| fL (S)ecl <0 L(u)MdsI*(t0) +  cq +
to

+ IIx|| | |  L(s)£_ 1(s)ds +
to
t  *  +  V ( s )

+ ||x|| |j  L(s)ec| LMdu'ds\ +  E - ' ( t ) ^
to

^|y0l + £ 1(09llx|| +
f s + y(s)

+ | |x | |£ - 1( f ) |jL (S)ec| L<“>d"'dS|*(t{)) +
to

+  c q +  ||x|| E ~ 1(t)r +
t  s + y (s)

+ ||x|| £ - 1(t) |J L(s)ec| I  L(“)d“'ds| +  £ _ 1(f) ^
to

< (I.Vol +  «M I +  W\\x\ \  + c q +  ||x ||r +

+  mr ||x|| +  1)£_ 1(t) ^  p E ~ l (t).
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From the last inequality we obtain relation (4.23). Let y e 38*, ze38*  and let 
y  = T(y), z =  T(z). Then similarly to (4.25) we get

|y -z |* (r0) + varJo( y -  z)(s) ^  |j  | F(y,  y (h ) )~ F(ż, z(h))\(s)ds\*(t0) +
to

+  var;o(}|F(y, y(h) ) -F(z ,  z(h)) | (r)dt s$
to

< |J (^|.y-z|)(s)ds|*(f0) +
to

+ |J ^|K/i)-z(^)|)(s)ds|*(f0) +
to

+ var<o(l (L\y-z\) (x)dx) +  
to

+ var{0(J (L\y(h)-z(h)\)(x)dz) ^
to

< (q \ \ y- z \ \ )  +  m q \ \y - z \ \  +

+  r\\y -  z\\ +rm\\y  -  z \ \ )E~1 (t) ^  a ||y -z || E~ x(f).

Hence

\ \y -z \ \  <  a. \ \y-ż\ \ ,  a e [ 0 , 1), 

which completes the proof of Theorem 3.3.
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