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IRENA RYGULA*

COMPARISON THEOREMS FOR SOLUTIONS OF
STOCHASTIC DIFFERENTIAL EQUATIONS

Abstract. The paper contains a generalization of some uniqueness criterions for the Ito’s
differential equations established by Skorokhod, Yamada and Watanabe. The results were
generalized by applying more general non-linear integral inequalities and hence the stochastic
versions of uniqueness criterions for non-random differential equations were obtained.

Introduction. In the present paper we shall discuss a problem of the pathwise
uniqueness for solutions of stochastic differential equations. A comparison
theorem for solutions of the I1to’s stochastic differential equation was established
by Skorokhod (see [2]), Yamada and Watanabe (see [4]). We can generalize
those results by applying some more general non-linear integral inequalities (see
[1], [3]) and hence we get stochastic versions of uniqueness criterions for
non-random differential equations. We also consider more general class of
equations

t t

X, = x0+ jfds+ Jgdps,
0 0

t

where Jgdps is meant as a stochastic integral and p, is a local integrable
[0]

martingale. In this paper for the proofs we use some ideas from [4],

Definitions and notations. Let (Q,?F,P) be a complete probability space and
(&,, t ™ 0) be an increasing family of sub-a-fields of ~ We shall assume that
contains all null sets of 3F and that the family (#j, f ~ 0)is continuous from the
right. We shall say that function / belongs to D[0, T] iff/is finite, right conti-
nuous and has finite left limits for all te [0, T].

Process (xt,t ~ 0)is cadlag, if, for almost all oj, the function t -* x,(co) is finite,
right continuous and has finite left limits for all te R+. Let Ji2 be the set of all
martingales p, with respect to the family (J5,,t ~ 0), such that p, is cadlag and

SupfEfN2< oo

tzo
holds true. We shall say that process nt is continuous, if, for almost all co the
function t “mxt(s® is continuous. Let Jt\ be a subset of JI12, containing all
continuous martingales. For each pte M 2 wf is a submartingale, and from
Meyer’stheorem there exists only one integrable process </i, p)tand a martingale
v, such that
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holds. Let Jt\ be a class of all martingales n, such that <ji, ju>(is continuous. Let
/:[0,00)x£2-»R be a random function. We assume that

@i/ is 36Bx"-measurable and for every ®m is J*-measurable.
o

(ii) P{coeC2: éfZ(t,a))d<n,n\ < 00y = 1.

Let us denote by 1% the class ofall random functions satisfying (i) and (ii), and

by M2 we cenote the class of all /e A , satisfying the condition
00

(iii) E %f 2d(n,n), < 00.

.00
Let Jf.dnt denote stochastic integral, where xte M \. It is known that
0

stochastic integral exists for all /e/£. If/ eM 2, then for each (eR +
I, = 6/ dM

t t
is an integrable martingale and £[J/d”~J2 = £[J/2</i,/i>s] holds true.
0 0
Process fit,t 0 is a local integrable martingale, if there exists an increasing
sequence of stopping times (r,) such that limt, = + 00 a.e. and each x, reduces
n

the local martingale nt. We recall that t, reduces nt, iff fi, At,, is an uniformly
integrable martingale S', Alnadapted. The class of all local integrable martin-
t

gales we denote by 13/2.1f/ e 1% nte Jt@,then It = \f dnse \Me and iffite 1Jt@
0

t t
then I, = J/dns:= limjf(s a T,)d/iSAtne 1Jig.

0 "o

Uniqueness of solutions of stochastic differential equations. Let/ and g be two

functions mapping R+xR->R. We shall assume that/ and g are Borel
measurable and bounded on every finite interval. Hence, if xteD, then the
functions

a->/(£,*,), 0)->g(t,x,)

arfe & t measurable. Processes f(t,xt) and g(t,xt) are Borel measurable and
locally bounded a.e. so the integrals

t t

\f(s,x9ds and \ g(s,xs)d(n, n>s
0 0

exist. Let us consider the equation:

t t

(@) xt(qj) = X0+ %)f(s,xs)ds+ %g(s,xs)dns, t~ 0, nell(Z.
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DEFINITION 1 By asolution ofthe equation (I) we mean a probability space
with an increasing family of sub-<r-fields (Q, S*, P, S',) and a family of stochastic
processes {x,,p,) defined on it such that

(i) with probability one x, and p, belong to D and /z0 = 0,

(if) they are adapted to S', for each ft,

(iii) p, is an integrable or local integrable martingale,

(iv) (x,,pt) satisfies

t t

Xt~x0 = (f)f(s,xs)ds+ %g(s,xs)dps a.e.

DEFINITION 2. We shall say that the pathwise uniqueness holds for (1) if, for
any two solutions (x,, p.,) and (xj, p't) defined on the same probability space
{Q, s", P, S-), x0= x0 and p, = pt imply x, = xt.

Let p.,eJt2 and f,g are Borel measurable and bounded on every finite
interval. We can prove the following.

THEOREM 1 Let

t t

x(t) = X0+ %f(s, xs)ds + ]bg(s, xs)dps, t~ 0

and assume that
1° there exists a positive increasing function r(u), ue(0,00) such that

Igf(S,X)'gf(S,y)l §r(lx'yl)! vaeR

| r_2(w)d« = + oo,
o+

2° there exists afunction #:R + xR + ->R +, continuous and non-decreasing in
xeR +, such that for every (£)x), (ty), t* 0, x,yeR

\F(t,x)-f(t,y)\ ~ <P(t,\x-y\),
3° for every random variable 1:Q -> R+ such that EC < oo the inequality
E*(t,Q V*(t,EQ

for some constant V is true,
4° the right - hand maximum solution M (t;0,0) of the non-random differential
equation

I=V>(t,y)

through (0,0) exists in every interval [0, f], t > 0. Thenfor every two solutions x,,
Xt of (1) we have

E\x. —X.I A M(t; 0,0), t~0.
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Proof. Let a0= 1> at > a2 > mm > ak-*0 be defined by

k) ai flk-i
Jr-2u)du =1, Jr_2u)du = 2,... J r~2(u)du = k,

Then there exists twice continuously differentiable function \Jk(u) on [0, oo0) such
that i/k(0) = O,
0, 0<un ak,
between 0 and 1, ak< u< ak-ly
1, ak-i < u,
0, 07 u” ak,
between 0 and }(':r‘_z(u), ak < u < a*-l,
ak-t s?m
We extend t/*u) on (—00, 00) such that
<h(«) = ~*(N)-

VK{u) is a twice continuously differentiable function on (—00, 00) and i/k{u) | |u.
Let (x,, n,) and (x',,n;) be two solutions of (1) on the same probability space
satisfying the following

x0= x0 and nt = nt.

Then
I i
X (t)-x’(t) = Jo[f(s,xs)-f(s,x's)]ds+ %[g(s,xs)-g(s,x's)]dns.

By Ito’s formula we have

if(x (t)-x" (1)) = j Wn(x(s)-x"(s))[f(s,x9)-F(s,x"9)]ds +
0

t
+ {)Fn(x(s)-x'(s)) [g(s,xs)-g(s, xM] d/is-+

11
+ ;%K{x(s)-x'{s))[g{s,xs)-g{s,x's)]Zd(n,n>s =

h +72 + 13-
12e IM\, hence E(12) = 0 for t ® «,, where z, is stopping time reducing 12.

E\\ < £ {| |/(*.*3-/(s»*i)|ds},
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E\I3\ < . 0<Ar’1'(x(s)-x'(s))r2(|xs-x;|)d<)U,)u)s}"

A max {2 YE((n,n>t- (ti, ) 0) A

Aa,$junan-i

a.c ™Mo

2 M n->o00
Also we have by assumption
<A,(X(s)-x'(s)) t [x(s)-x"(s)I-

Hence, and by Fatou’s lemma we have
E|x(t)-x'(0] « EJ|/(s,x9)-/(s,X;)|ds
0

and

t
E\x(t) —x’(H\ N E J <E(S, |x(s) —x'(s)])ds,
0

Ex(f) =X'(Ol < V {<P(s, £]x(s) —x'(s)|)ds,
0

therefore by Opial’s theorem

@) E\x{t) —x'(t)] ~ M(t;0,0), t~ r..

As t, was reducing sequence of stopping times such that limt, = + oo a.e. we

n
have for sufficiently N t, a t = t.ae. and that completes the proof.

COROLLARY. If(M{t; 0,0) = 0), then, under the assumptions of Theorem 1,
the pathwise uniqueness holds for solutions of (1).

THEOREM 2 (Stochastic version of Osgood’s criterion). 1fthe assumptions of
Theorem 1 are satisfied, and $(t,x) = a(t)q(x), where a(t) is non-negative,
continuousfunction on [0, oo) and q(x) is continuous concave, non-decreasing in R,
q(x) 0 and

f ——dx = + 00
0+

then pathwise uniqueness holds for (1).
Proof. In a similar way as in Theorem 1 we get

E\x(t) —x'(H\ » E Ja(s)q(|x(s) —=x'(s)])ds <

"1 a9(EX(S) —X())ds,
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and

t

?3) Elx(t) —x'(t)| » e+ Ja(s)<I(E|x(s)—x'(s)])ds, e > 0.
0
Inequaluty (3) is Bihari’s type, hence we have

£x(t) —x'()] A G_1[G(e)+ Ja(s)ds], t~ 0,
0

1 J t

where G(t) = J ds, and, for etends to 0, we have G*“ 1[G () + éa(s)ds] Q.

REMARK. Un'der the assumptions of Theorem 2, ifa(t) = 1, we have often
used inequality:

E\x(t) —x'(H\ < Jq(E|x(s)—x'(s)ds, t ™0,
0

hence pathwise uniqueness holds for (1).

Uniqueness of solutions of stochastic differential equations in multi-di-
mensional case. Let a(t,x) = [atj(t,x)~], b{t,x) = [ft,(t,X)], i= 1, ji=
= be defined on [0, oo) x R", Borel measurable and bounded. We
consider the equation:

4 dxt = a(t,xtydnt+ b(t,x,)dt, t~ O,ntedte,
or, in component wise
r
dx,(f) = £ <ruj(t>xt)dHj(t) + bi(t,xt)dt, i=1
j= i
Let p, = (fij(t), ..., nr(tj) e .Jf\ and nk}t be absolutely continuous with
respect to Lebesgue measurefor k,i = 1, ..., I. Let the densities (Pi,k{t) be bounded

for k,i =1, ..., r and the following assumptions be satisfied:
1° there exists a positive, increasingfunction q (x), X € (0, 00), q (O) = Osuch that

|I<r(t, xX) —er(t, Y)t| ~e(\x~y\), (t, x) e [0, oo) X R",
2> there exists positive, non-decreasing function ¢ ¢ x), x € [0, go), such that
\b(t,x)-b(t,y)\ N <>(x—y)), xjeR™",
3° the function
a2(x)x~1+ (p(x)
is concave,
4° J+ [e2(x)x_1+ <p(x)]_1ldx = +oo0.
0

Then the pathwise uniqueness holds for (4).
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Proof. In a similar way as in Theorem 1we define functions il/m(x) on [0, 00)
such that

0, O™ u” am,
iam(« = ™ between 0 and g2(u)u, am< u < am- 1,
am-i N w,

fm(x) = <MM) for *eR"-
Let x(J) and x'(t) be the solutions of equation (4). By Ito’s formula we have

IMx(t)-x'(t)) = a martingale + £ 8’\ (X 5x;)|>i(s,x9)-i>i(s,x;)]ds +
1=10 oxi

Lk 1doxiog X Lk %)= Ouk(s, X))

H<Tjk(s, X,)- <Tik(s, Xi))]d </';, Hj)s = [1+ [2+ /3
but as i//fmis bounded,

df,,

N AN =
dxt m(|x|? $KO0, KO = const.,

X|
axidng ’\1|’1‘1 ) N2 A2 —CQOR,
(/1) = 0,
1 o1 .
gy ~2g (XTI Xix’*x’]{i,,-zz|ké| K*(s,x9-ffils,x;)*

*KK(s, xJ-FTM(s, x;))d</ij, i >S}],
and from the assumption we have

E(13) sc ’2£ [F jOX Txs—x'l _IX[*s*x"g2(|]xs—x'l)ds] +
+\e[v Bk 2«lc(|xs- x;i)g2(|xs- x;i)ds
L
and

-E[V j &2i/C(]xs—x'])g2(|xs—x'|)ds

A 2K—2v %E\xs $x,-x-s$om_iJds » C't’Om- i —»0.

By Fatou’s lemma

Elx(-x;i < cf £{<p(|x5x;i)+|xs—x ;1 V (ixs-x;i)}ds,
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By Jensen’s inequality
E\xt—xt\=0, t~ 0,

which completes the proof.
Uniqueness criterion for some integral equations. We consider the equation

t t

(5) X, = x0+ g)g{s, xs)dfis+ Bf(s, xs)das, t" 0;

x0is S'q - measurable random variable;/ and g are Borel measurable and

bounded on every finite interval, fite 1Ji\, a, e V+—V +where V +is the set of all
t

increasing, adapted, cadlag processes A, such that A0 = 0. Integral j f (s, x9dasis
0
meant in a Stjeltjes-Lebesgue sense. Under the above assumptions both integrals

exist and we always can write the right term of equality (5).

Let <a,a>(be absolute continuous with respect to Lebesgue measure and its
density (pt be bounded in R and let the assumptions of Theorem 1be satisfied. Then
pathwise uniqueness for (5) holds.

We can prove it in a similar way as in Theorem 1.
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