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ZDZISŁAW  WYDERKA*

ON THE STRUCTURE OF TWO-PERSON, FINITE, ZERO-SUM GAMES
Abstract. The algebraical and topological structure of the set S? resp. of all n x m matrix 

games with saddle points (resp. with unique saddle point) in the space R"*m of all such games is 
studied. It has been shown that S f  is a closed cone with vertex zero and includes the origin. Moreover, 
it is neither convex nor dense subset of R" *m. The s e t i s  a non-convex cone which does not include 
the origin. It is neither closed nor open.

The concept of “reserve of non-saddlexity” has been also introduced.

1. Introduction. In his papers [8, pp. 43—44], [9, p. 9] N.N . Vorobyov is 
regretted that the authors of the papers from game theory consider only some 
particular games and the facts related to those games but the general classes or 
spaces of the games and some particular subsets of these spaces are not in 
consideration. In this note we study some properties of the subsets of the space 
'SC of all matrix games which contains:

a) the games with saddle points (the set S ’),
b) the games with unique saddle point (the set S j).

This is proved that S ’ and S ’ v are cones with vertex 0 (0 e S ’ while 0 ^ S ' ^  which 
are not convex sets. S ’ is a closed subset of SC which is not dense in 3C and — in 
general — is nowhere dense in SC. In general, Sf x is not closed nor open subset of 
9C. The concept of “reserve of non-saddlexity” of the game A S'  is introduced as 
the distance between A and the set S ’.

2. Algebraical and topological structure of the sets S  and S ’ x. Let us consider 
the space SC of all two-person, finite, zero-sum games r  with the fixed sets of pure 
strategies: {1, . . . ,  n} for the first and {1, . . . ,  m} for the second player, n, m >  1. 
Let A =  [Oj.j], i =  1, . . . ,  n , j  =  1, . . . ,  m be the payoff matrix of the game r ; 
then we identify the game r  with the matrix A (we will write r  and 
A exchangeable), so, the spaces SC and R "x m are isomorphic. The space SC with the 
usual operations and with the norm

(1) ||/1|| =  max max Ifljjl
1 j

is a Banach space. Let us denote by S ’ (resp. S ’1) the set of all games with a saddle 
point (resp. with the unique saddle point). M ore precisely, A e S ’ iff

max min aU} =  min max aitj = a io jo and A e  S' t  iff there is a unique pair (i0, j 0)
i j j i

with above property. Obviously, S ' 1 c  S ’.
In this paper the algebraical and topological structure of the sets S ’ and Sf x 

will be studied. From  the well-known properties of the max min and min max 
operations it follows the following
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TH EOREM  1. The set i f  is a cone with vertex 0 which includes the origin while 
i f  j  is a cone which does not includes the origin.

Let A e i f  (resp. A e i f x), A ^  0 be an arbitrary game. Then the line i f  such 
that A e i f  which is parallel to the line jV (T  =  [b ,j]  e yK iff 
b\ ,\  =  ^ 1,2 =  ••• =  bn m) is also included in the set i f ,  i f  c  i f  (resp. i f  c: i f  x), 
so, by Theorem 1

(2) Con{if )  c= i f  (resp. C on(if) c  i f  t),

where Con(&) denotes the conical hull of the set <&. In general Con ( if )  is a proper 
subset of the two-dimensional subspace (plane) determined by i f  and 0. The sets 
i f  and i f  x are set-theoretical sums of such a parts of those planes.

EXAM PLE 1. Let n =  2, m =  3, A =
1 2 3 

4 5 6
e  i f .

Then —A =
-1 - 2  - 3  

-4 - 5  - 6
g i f  also.

By Theorem 1 there exist a one-dimentional subspace of R6 which is included in 
i f ,  but by (2) there exists a two-dimensional subspace with this property.

In the case n =  m A. I. Sobolev proved [7] that the maximal dimension of the 
subspace of 9C included in i f  is equal (n —1)2+  1 for n ^  3 and is equal 3 for 
n =  m — 2.

REMARK 1. The sets i f  and i f  x are not convex.
To prove this remark let us consider the following 
EXAM PLE 2. Let n =  m, A l =  diag (al5 . . . ,  a i_ 1, 0 , a i+1, . . . ,  an), A 2 =  

=  diag (bl , . . . ,  bk- i , 0 , b k+x, . . . ,  bn) where i ^  k, a; , b, >  0 for j  =£ i, I ^  k. We 
have A x, A 2 e  i f  y a  i f  but for X g(0, 1), XAx +(1 — X)A2 $ i f .

TH EOREM  2. i f  is a closed subset o f  3C.
P r o o f. It suffices to prove that 3C\if  is open in 3C. Let T  =  [a ,/J  $ i f .  Denote 

k =  max min a, j  and K  =  min max Then K  — k >  0.
i j j i

Define e =  ^ ( K  — k) and let
2, t

W (r ,e )  =  {[aUj +  cifl]; \cUJ\ <  e for i =  1, . . . ,  n, j  =  1, . . . ,  m}

be an open heighbourhood of the game r .  Let r x =  [h ,j]  g ^ ( / \ e )  be an 
arbitrary game. Then

max min bLj <  max m in(a, j +  e) =  k +  e,
‘ j  > j  

min max bt j  >  min max (a, j  — e) =  K — e. 
j ‘ j > 

therefore T, $ i f ,  so, ^l(T , s) n  i f  =  0 .
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COROLLARY. Sf is not a dense subset o f  SC.
In general, Sf is not nowhere dense in 3C. We prove this fact by contradiction. 

For to be a nowhere dense subset of SC it suffices to prove by [5, Ch. XI, §4, 
Theorem 3] that in an arbitrary ball ^ ( r , e )  there is a ball aU'{T',t!'), 
< r( r ,£ ')  c  <%(r,s) such that < r ( r ,  s’) 0 ^  =  0. Let us consider the following

EXAM PLE 3. Let n =  m =  2, T  =
2

1,9
e <  0,45. Then

but in the ball ° il {r , e) there is no ball aW with desirable property.
In general the set  ̂ is not closed nor open. Let us consider the following

EXAM PLE 4. Let n =  m =  2, r  = e  and let 0 <  e <  e <
1

Then J \
1 1 — s

0 2
e ^ ( r , e )  but J \  so, Sf x is not open set. But the

interior of Sf x is non-empty by Example 3.
3. The concept of “ reserve of non-saddlexity” . Now we introduce one new idea 

which is related to some ideas known from stability theory and controllability 
theory of linear autonom uous dynamical systems.

The space of all linear homogeneous autonom uous systems

x =  Ax,  x  e R",

is isomorphic with the space R" *" of all quadratic matrices A. In this space the set 
of all stable systems is an open cone with vertex 0 (0 £ HT). For an arbitrary 

system A e W  we may define some number d >  0 (which is called “reserve of  
stability”) as the distance between A and the nearest unstable system. Therefore 
all systems {A +  C\ \ctJ\ <  5 for all i , j )  are stable still.

Similarly, the space of all linear autonom uous control systems

x =  Ax +  Bu, x e R " , u e R m,

may be identified with the space R" *(n + m) of all pairs of matrices ( A , B) of the 
dimensions n x n and n x m  respectively. In this space the set of all controllable 
(in Kalman sense) systems is a cone with vertex 0 (0 ^ 3£) and is an open set. For 
the system (A , B) it is defined [3] some number y >  0 (which is called “reserve of  
controllability”) as the distance between the system (A,B)  and the nearest 
uncontrollable system. Then all perturbed systems {(A ,B) +  (C, D)} such that the 
norm of perturbation is smaller than y are controllable.

By an analogical way we define the idea of “reserve of non-saddlexity”. Let 
F $ be an arbitrary game.

D EFIN ITIO N . Reserve o f  non-saddlexity of the game r  iś the distance a (F) 
(in the norm  (1)) between the game r  and the set Sf.
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If r  then a ( r)  >  0 and for T  e 9  we have a ( r )  =  0. If we perturbe the 
matrix A  by some matrix G such that |gUj\ <  a ( r )  for all i , j  then the perturbed 
game F  — A +  G $ 6 f .

Those three ideas are very im portant if we know the elements of the 
corresponding matrices with some given accuracy (not exactly) or by some 
experimental data. In practice, calculation of the numbers d,y,<x(F) is very 
difficult.

REM ARK 2. The idea “reserve o f  saddlexity” which may be define in the 
similar way is not well-defined: there are some games from £f  with positive 
reserve of saddlexity (as in the Example 4) and some other games with null reserve 
of saddlexity (as in the Example 3).

4. Few words about the games without saddle points. Now we give a few words 
about those games from 9£ which have a solution in mixed strategies (denote this 
set by 9 >). Let denotes the set of all games from 3C with the unique solution in 
mixed strategies. Obviously, Zf c= Żf, Ł <=. x, Ż?x c  9*. By the well-known J. 
von N eum ann theorem we have Ś? =  SC. The set is a cone with vertex 
0 (0 <£ and, by the next example, this is not convex set.

EXAM PLE 5. Let n =  2, m =  3, A l =
100 170 80 

120 1000 280

A 2 —
100 10 20 
90 30 110

, A =  0,1. We have A 1, A 2 e 6 f 1 c  Sf x and denote

by A  the game

A =  XA1 +  { l - X ) A 2 =
100 26 26 

93 127 127

The optimal mixed strategies are:
34 74 

108’ 108
for the first player and

101 7 
108’ ’ 108

or 0 ). for the second one. Therefore A & S f , .  
108 108 ' 1

Topological structure of the set was studied in [1], This is proved that P x 
is an open, dense subset of the space SC.

5. Some other classes of games. Some similar problems for other classes of 
games were studied in [2], [4], [6].

In [2] this is proved that in the space of all continuous games over unit square 
the set of all games with the unique solution is a dense set of G a-type.

In [4] some maximal subspace of the linear space of all continuous games 
over unit square is constructed such that every game from this subspace has 
a saddle point.
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By using of some modification of the well-known Lucas’ example the author 
of the paper [6] gives one hypothesis concerning the set of all cooperative 
n-person games which have a solution is a dense subset of the space of all 
cooperative n-person games.
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