ZBIGNIEW GAJDA*

A CHARACTERIZATION OF FUNCTIONS WITH DENSE GRAPH IN THE PLANE OR HALF-PLANE

Abstract

Let R be the set of all real numbers. In the present paper we shall characterize functions $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ which are either linear or have graph contained and dense in the plane or half-plane determined by a linear function. For this purpose we consider functions satisfying certain limitary conditions which are related to the additivity equation but considerably weaker than that.

Let us introduce the following
DEFINITION. A function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is called limit-additive iff the following conditions are fulfilled:

$$
\begin{equation*}
\bigwedge_{x, y \in \boldsymbol{R}} \bigvee_{\substack{\left(z_{n}\right) n \in \mathbb{n}, z_{n} \in \boldsymbol{R}, \boldsymbol{n} \in \mathbb{N}}}\left[z_{n} \xrightarrow[n \rightarrow \infty]{ } x+y, f\left(z_{n}\right) \xrightarrow[n \rightarrow \infty,]{\longrightarrow} f(x)+f(y)\right], \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\bigwedge_{x, y \in R} \bigvee_{\substack{\left(x_{n}\right) n \in \in,\left(y_{n}\right) n \in \mathcal{N} \\ x_{n}, y_{n} \in R, n \in N}}\left[x_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} x, y_{n} \xrightarrow[n \rightarrow \infty]{ } y, f\left(x_{n}\right)+f\left(y_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} f(x+y)\right], \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\bigwedge_{x \in R} \bigvee_{\substack{\left(x_{n}\right) n \in N \\ x_{n} \in R, n \in N}}\left[x_{n} \xrightarrow[n \rightarrow \infty]{ } x, 2 f\left(x_{n}\right) \underset{n \rightarrow \infty}{ } f(2 x)\right] \tag{3}
\end{equation*}
$$

Conditions (1) and (2) are, in a sense, mutually symmetric. Condition (3) can not be obtained from (2) by setting $x=y$, since even then sequences $\left(x_{n}\right)_{n \in N}$ and $\left(y_{n}\right)_{n \in N}$ occuring in (2) may not coincide. Adding condition (3) we obtain the possibility of the choice of a common sequence in the case where $x=y$.

Clearly, every additive function is limit-additive (it suffices to take constant sequences). There exist, however, limit-additive functions which are not additive. Indeed, one can easily check that an arbitrary function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ with the graph being dense on the plane \boldsymbol{R}^{2} is limit-additive. Let us note that if a function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is limit-additive and continuous then it is additive and consequently has the form

$$
f(x)=a x, x \in \boldsymbol{R}
$$

where a is a constant.

Received March 15, 1982.
AMS (MOS) subject classification (1980). Primary 39B40, 26 A99.

* Instytut Matematyki Uniwersytetu Sląskiego, Katowice, ul. Bankowa 14, Poland.

Now, we are going to give some necessary and sufficient conditions for a limit--additive function to be continuous.

LEMMA 1. Let $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a limit-additive function. Then, for any $k \in N$, $k \geqslant 2$, and each points $x_{1}, \ldots, x_{k} \in \boldsymbol{R}$, there exists a sequence $\left(z_{n}\right)_{n \in N}$ of real numbers such that

$$
z_{n} \xrightarrow[n \rightarrow \infty]{ } x_{1}+\ldots+x_{k} \text { and } f\left(z_{n}\right) \xrightarrow[n \rightarrow \infty]{ } f\left(x_{1}\right)+\ldots+f\left(x_{k}\right) .
$$

Proof. For $k=2$ the assertion of the lemma coincides with condition (1).
Suppose that our lemma holds true for some $k \in N, k \geqslant 2$ and for any system of k points $x_{1}, \ldots, x_{k} \in \boldsymbol{R}$. Fix $k+1$ points $x_{1}, \ldots, x_{k+1} \in \boldsymbol{R}$. On account of our assumption, there exists a sequence $\left(u_{n}\right)_{n \in N}$ such that

$$
u_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} x_{1}+\ldots+x_{k}, f\left(u_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} f\left(x_{1}\right)+\ldots+f\left(x_{k}\right)
$$

In view of (1), for each $n \in N$ one can find a sequence $\left(w_{n, m}\right)_{m \in N}$ such that

$$
w_{n, m} \underset{m \rightarrow \infty}{ } u_{n}+x_{k+1} \text { and } f\left(w_{n, m}\right) \underset{m \rightarrow \infty}{\longrightarrow} f\left(u_{n}\right)+f\left(x_{k+1}\right)
$$

Hence

$$
\begin{gathered}
\bigwedge_{n \in N} \bigvee_{n_{n}^{\prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime}}\left|w_{n, m}-u_{n}-x_{k+1}\right|<\frac{1}{n}, \\
\bigwedge_{n \in N} \bigvee_{m_{n}^{\prime \prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime \prime}}\left|f\left(w_{n, m}\right)-f\left(u_{n}\right)-f\left(x_{k+1}\right)\right|<\frac{1}{n} .
\end{gathered}
$$

We put $m_{n}:=\max \left(m_{n}^{\prime}, m_{n}^{\prime \prime}\right), n \in N$ and $z_{n}:=w_{n, m_{n}}, n \in N$. Then we have

$$
\begin{gathered}
\left|z_{n}-x_{1}-\ldots-x_{k+1}\right| \leqslant \\
\leqslant\left|w_{n, m_{n}}-u_{n}-x_{k+1}\right|+\left|u_{n}-x_{1}-\ldots-x_{k}\right|<\frac{1}{n}+\left|u_{n}-x_{1}-\ldots-x_{k}\right|_{n \rightarrow \infty}-\infty \\
\left|f\left(z_{n}\right)-f\left(x_{1}\right)-\ldots-f\left(x_{k+1}\right)\right| \leqslant \\
\leqslant\left|f\left(w_{n, m_{n}}\right)-f\left(u_{n}\right)-f\left(x_{k+1}\right)\right|+\left|f\left(u_{n}\right)-f\left(x_{1}\right)-\ldots-f\left(x_{k}\right)\right|< \\
<\frac{1}{n}+\left|f\left(u_{n}\right)-f\left(x_{1}\right)-\ldots-f\left(x_{k}\right)\right| \underset{n \rightarrow \infty}{ } 0
\end{gathered}
$$

whence

$$
z_{n} \underset{n \rightarrow \infty}{ } x_{1}+\ldots+x_{k+1} \text { and } f\left(z_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} f\left(x_{1}\right)+\ldots+f\left(x_{k+1}\right)
$$

which, by induction, completes the proof.
THEOREM 1. If a limit-additive function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is continuous at a point then it is continuous everywhere.

Proof. Assume that f is continuous at the point $x_{0} \in \boldsymbol{R}$.
(a) Let $\left(x_{n}\right)_{n \in N}$ be an arbitrary sequence of real numbers convergent to zero. Since

$$
x_{0}=\left(x_{0}-x_{n}\right)+x_{n}, n \in N
$$

from (1) it follows that, for each $n \in N$, there exists a sequence $\left(z_{n, m}\right)_{m \in N}$ such that

$$
z_{n, m} \underset{m \rightarrow \infty}{\infty} x_{0}, f\left(z_{n, m}\right) \underset{m \rightarrow \infty}{ } f\left(x_{0}-x_{n}\right)+f\left(x_{n}\right)
$$

Hence

$$
\begin{gathered}
\bigwedge_{n \in N} \bigvee_{m_{n}^{\prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime}}\left|z_{n, m}-x_{0}\right|<\frac{1}{n}, \\
\bigwedge_{n \in N} \bigvee_{m_{n}^{\prime \prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime \prime}}\left|f\left(z_{n, m}\right)-f\left(x_{0}-x_{n}\right)-f\left(x_{n}\right)\right|<\frac{1}{n} .
\end{gathered}
$$

Put $m_{n}:=\max \left(m_{n}^{\prime}, m_{n}^{\prime \prime}\right), z_{n}:=z_{n, m_{n}}, n \in N$. Then

$$
\left|z_{n}-x_{0}\right|<\frac{1}{n}, n \in N
$$

and

$$
\left|f\left(z_{n}\right)-f\left(x_{0}-x_{n}\right)-f\left(x_{n}\right)\right|<\frac{1}{n}, n \in N
$$

whence

$$
\begin{equation*}
z_{n} \underset{n \rightarrow \infty}{\rightarrow} x_{0} \text { and } f\left(z_{n}\right)-f\left(x_{0}-x_{n}\right)-f\left(x_{n}\right)_{n \rightarrow \infty} 0 \tag{4}
\end{equation*}
$$

By the continuity of f at x_{0} we have

$$
f\left(z_{n}\right)_{n \rightarrow \infty}^{\longrightarrow} f\left(x_{0}\right) \text { and } f\left(x_{0}-x_{n}\right)_{n \rightarrow \infty} f\left(x_{0}\right)
$$

which, together with (4), gives

$$
\begin{equation*}
f\left(x_{n}\right)_{n \rightarrow \infty} 0, \text { for any sequence }\left(x_{n}\right)_{n \in N} \text { such that } x_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \text {. } \tag{5}
\end{equation*}
$$

(b) Fix an $x \in R$ and write $0=x+(-x)$. Using condition (1) again we find a sequence $\left(z_{n}\right)_{n \in N}, z_{n \rightarrow \infty} 0$, for which

$$
f\left(z_{n}\right)_{n \rightarrow \infty}^{\longrightarrow} f(x)+f(-x) .
$$

Hence and from (5) it follows that

$$
f(-x)=-f(x), x \in \boldsymbol{R}
$$

(c) Now, choose an arbitrary $x \in R$ and a sequence $\left(x_{n}\right)_{n \in N}, x_{n \rightarrow \infty} x$. On account of Lemma 1, for each $n \in N$ one can find a sequence $\left(z_{n, m}\right)_{m \in N}$ such that

$$
\begin{equation*}
z_{n, m \rightarrow \infty} x_{n}-x+x_{0} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(z_{n, m}\right) \underset{m \rightarrow \infty}{ } .\left(x_{n}\right)+f(-x)+f\left(x_{0}\right)=f\left(x_{n}\right)-f(x)+f\left(x_{0}\right) . \tag{7}
\end{equation*}
$$

In view of (6) and (7) we have

$$
\begin{gathered}
\bigwedge_{n \in N} \bigvee_{m_{n}^{\prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime}}\left|z_{n, m}-\left(x_{n}-x+x_{0}\right)\right|<\frac{1}{n}, \\
\bigwedge_{n \in N} \bigvee_{m_{n}^{\prime \prime} \in N} \bigwedge_{m>m_{n}^{*}}\left|f\left(z_{n, m}\right)-\left(f\left(x_{n}\right)-f(x)+f\left(x_{0}\right)\right)\right|<\frac{1}{n} .
\end{gathered}
$$

We put $m_{n}:=\max \left(m_{n}^{\prime}, m_{n}\right), z_{n}:=z_{n, m_{n}}, n \in N$. With the aid of this notion we get

$$
\begin{gathered}
\left|z_{n}-x_{0}\right| \leqslant\left|z_{n, m_{n}}-\left(x_{n}-x+x_{0}\right)\right|+\left|x_{n}-x\right|<\frac{1}{n}+\left|x_{n}-x\right| \underset{\vec{n} \rightarrow \infty}{ } 0 \\
\left|f\left(z_{n}\right)-\left(f\left(x_{n}\right)-f(x)+f\left(x_{0}\right)\right)\right|<\frac{1}{n} \xrightarrow[n \rightarrow \infty]{ } 0
\end{gathered}
$$

Gonsequently,

$$
z_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} x_{0} \text { and } f\left(z_{n}\right)-f\left(x_{n}\right)+f(x)-f\left(x_{0}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

Hence and from the continuity of f at the point x_{0} it follows that

$$
f\left(x_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} f(x)
$$

which implies that f is continuous at x.
LEMMA 2. If a function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is limit-additive and bounded in a neighbourhood of a point $x_{0} \in \boldsymbol{R}$ then it is bounded in a neighbourhood of zero.

Proof. Suppose that there exist $M>0$ and $\delta>0$ such that

$$
|f(y)| \leqslant M, \text { for } y \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

Take an $x \in(-\delta, \delta)$. Then $x+x_{0} \in\left(x_{0}-\delta, x_{0}+\delta\right)$ and there exists a sequence $\left(z_{n}\right)_{n \in N}, z_{n} \longrightarrow x+x_{0}$ such that $f\left(z_{n}\right) \xrightarrow[n \rightarrow \infty]{ } f(x)+f\left(x_{0}\right)$.
For almost every $n \in N$ we have

$$
z_{n} \in\left(x_{0}-\delta, x_{0}+\delta\right) \text { and }\left|f\left(z_{n}\right)\right| \leqslant M
$$

whence

$$
\left|f(x)+f\left(x_{0}\right)\right| \leqslant M
$$

Thus

$$
|f(x)| \leqslant M+\left|f\left(x_{0}\right)\right|, \text { for } x \in(-\delta, \delta)
$$

THEOREM 2. If $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is a limit-additive function bounded (in absolute value) on a set $A \subset \boldsymbol{R}$ such that int $A \neq \varnothing$ then f is continuous.

Proof. Taking Lemma 2 into account, we may suppose that there exist $M>0$ and $\delta>0$ such that

$$
\begin{equation*}
|f(x)| \leqslant M \text { for } x \in(-\delta, \delta) \tag{8}
\end{equation*}
$$

Assume that there exists a sequence of real numbers $\left(x_{n}\right)_{n \in N}, x_{n \rightarrow \infty} 0$ such that the sequence $\left(f\left(x_{n}\right)\right)_{n \in N}$ is not convergent to zero. Then there exist an $\varepsilon>0$ and a subsequence $\left(x_{n_{k}}\right)_{k \in N}$ of the sequence $\left(x_{n}\right)_{n \in N}$ with the property $\left|f\left(x_{n_{k}}\right)\right| \geqslant \varepsilon, k \in N$. From the sequence $\left(x_{n_{k}}\right)_{k \in N}$ one can still choose either a subsequence $\left(x_{n_{n_{p}}}\right)_{p \in N}$ such that $f\left(x_{n_{k_{p}}}\right) \geqslant \varepsilon, p \in N$ or a subsequence $\left(x_{n_{k_{s}}}\right)_{s \in N}$ such that $f\left(x_{n_{k_{s}}}\right) \leqslant-\varepsilon, s \in N$. Suppose, for instance, that we have a sequence $\left(y_{n}\right)_{n \in N}, y_{n \rightarrow \infty} 0$ such that $f\left(y_{n}\right) \geqslant \varepsilon$, $n \in N$. Let us choose numbers $N \in N$ and $n_{0} \in N$ so that $N \varepsilon>M$ and $N y_{n_{0}} \in(-\delta, \delta)$. According to Lemma 1 , there exists a sequence $\left(z_{m}\right)_{m \in N}$ such that $z_{m \rightarrow \infty} N \cdot y_{n_{0}}$ and $f\left(z_{m}\right)_{m \rightarrow \infty} N f\left(y_{n_{0}}\right) \geqslant N \varepsilon>M$.

Hence

$$
\begin{align*}
& \bigvee_{m_{1} \in N} \bigwedge_{m \geqslant m_{1}} z_{m} \in(-\delta, \delta), \tag{9}\\
& \bigvee_{m_{2} \in N} \bigwedge_{m \geqslant m_{2}} f\left(z_{m}\right)>M .
\end{align*}
$$

For $m \geqslant \max \left(m_{1}, m_{2}\right)$ conditions (9) and (10) are incompatible with (8). If we have a sequence $\left(y_{n}\right)_{n \in N}, y_{n \overrightarrow{n \rightarrow \infty}} 0$ such that $f\left(y_{n}\right) \leqslant-\varepsilon, n \in N$, we obtain the contradiction in a similar manner, using the boundedness of f from below. So we have

$$
\begin{equation*}
f\left(x_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0 \text {, for any sequence }\left(x_{n}\right)_{n \in N} \text { such that } x_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \text {. } \tag{11}
\end{equation*}
$$

Putting $x=y=0$ in (1), we obtain the existence of a sequence $\left(z_{n}\right)_{n \in N}, z_{n \vec{n} \rightarrow} 0$, for which $f\left(z_{n}\right) \xrightarrow[n \rightarrow \infty]{ } 2 f(0)$. This, jointly with (11), implies $f(0)=0$. Consequently we obtain the continuity of f at zero. In virtue of Theorem $1, f$ is continuous everywhere on \boldsymbol{R}.

Now, we are going to investigate some properties of discontinuous limit--additive functions. It follows from Theorem 2 that such functions can not be bounded in absolute value on any non-degenerate interval. In the sequel, the word "interval" will always mean a bounded non-degenerate interval. The example of an arbitrary function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ which has the graph contained and dense in one of the half-planes $\left\{(x, y) \in \boldsymbol{R}^{2}: y \geqslant 0\right\}$ or $\left\{(x, y) \in \boldsymbol{R}^{2}: y \leqslant 0\right\}$ shows that a discontinuous limit-additive function may be bounded from one side. In the same way as in the proof of Lemma 2 one can show that any limit-additive function bounded below (above) on some interval is bounded below (above) on every interval.

For any function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ bounded below on every interval, the function $\varphi_{f}: \boldsymbol{R} \rightarrow \boldsymbol{R}$

$$
\begin{equation*}
\varphi_{f}(x):=\sup _{\delta>0} \inf \{f(z): z \in(x-\delta, x+\delta)\}, x \in \boldsymbol{R} \tag{12}
\end{equation*}
$$

is well defined.
Analogously, for any function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ bounded above on every interval we define the function $\psi_{f}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ by the formula

$$
\begin{equation*}
\psi_{f}(x):=\inf _{\delta>0} \sup \{f(z): z \in(x-\delta, x+\delta)\}, x \in \boldsymbol{R} \tag{13}
\end{equation*}
$$

LEMMA 3. If $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is bounded below (above) on every interval, then the function φ_{f} (function ψ_{f}) is lower (upper) semi-continuous.

For the proof see e.g. [2] or [3].
Up to now, we have only made use of property (1) from the definition of limit--additive functions. From now on, we shall be applying properties (2) and (3), too.

LEMMA 4. If $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is a limit-additive function bounded below (above) on every interval, then the function φ_{f} (function ψ_{f}) is additive.

Proof. We proceed only with the proof for the function φ_{f}. Fix numbers $x, y \in \boldsymbol{R}, \varepsilon>0, \delta>0, \eta>0$, arbitrarily. Wc have

$$
\begin{equation*}
\bigvee_{u_{0} \in(x-\delta, x+\delta)} f\left(u_{0}\right)<\inf \{f(u): u \in(x-\delta, x+\delta)\}+\frac{\varepsilon}{3} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigvee_{w_{0} \in(y-\eta, y+\eta)} f\left(w_{0}\right)<\inf \{f(w): w \in(y-\eta, y+\eta)\}+\frac{\varepsilon}{3} \tag{15}
\end{equation*}
$$

Observe that $u_{0}+w_{0} \in(x+y-\delta-\eta, x+y+\delta+\eta)$. It follows from (1) that there exists a sequence $\left(z_{n}\right)_{n \in N}, z_{n} \xrightarrow[n \rightarrow \infty]{ } u_{0}+w_{0}$ such that

$$
f\left(z_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} f\left(u_{0}\right)+f\left(w_{0}\right) .
$$

Hence

$$
\begin{equation*}
\bigvee_{n_{0} \in N} \bigwedge_{n \geqslant n_{0}}\left[z_{n} \in(x+y-\delta-\eta, x+y+\delta+\eta), f\left(z_{n}\right)<f\left(u_{0}\right)+f\left(w_{0}\right)+\frac{\varepsilon}{3}\right] \tag{16}
\end{equation*}
$$

(14), (15) and (16) yield

$$
\begin{aligned}
& \inf \{f(z): z \in(x+y-\delta-\eta, x+y+\delta+\eta)\} \leqslant f\left(u_{0}\right)+f\left(w_{0}\right)+\frac{\varepsilon}{3} \leqslant \\
& \leqslant \inf \{f(u): u \in(x-\delta, x+\delta)\}+\inf \{f(w): w \in(y-\eta, y+\eta)\}+\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ has been chosen arbitrarily, we have
(17) $\inf \{f(z): z \in(x+y-\delta-\eta, x+y+\delta+\eta)\} \leqslant \inf \{f(u): u \in(x-\delta, x+\delta)\}+$

$$
+\inf \{f(w): w \in(y-\eta, y+\eta)\} \leqslant \varphi_{f}(x)+\varphi_{f}(y)
$$

As inequality (17) holds for all $\delta>0, \eta>0$, we obtain the subadditivity of φ_{ρ} :

$$
\begin{equation*}
\varphi_{f}(x+y) \leqslant \varphi_{f}(x)+\varphi_{f}(y), x, y \in \boldsymbol{R} . \tag{18}
\end{equation*}
$$

Fix again numbers $x, y \in R, \varepsilon>0, \delta>0$ arbitrarily. We have

$$
\begin{equation*}
\bigvee_{z_{0} \in(x+y-\mathfrak{d}, x+y+\boldsymbol{d})} f\left(z_{0}\right)<\inf \{f(z): z \in(x+y-\delta, x+y+\delta)\}+\frac{\varepsilon}{2} \tag{19}
\end{equation*}
$$

One can choose $u_{0} \in\left(x-\frac{\delta}{2}, x+\frac{\delta}{2}\right)$ and $w_{0} \in\left(y-\frac{\delta}{2}, y+\frac{\delta}{2}\right)$ so that $z_{0}=u_{0}+w_{0}$. In view of (2) there exist sequences $\left(u_{n}\right)_{n \in N}$ and $\left(w_{n}\right)_{n \in N}, u_{n \rightarrow \rightarrow \infty} u_{0}, w_{n \rightarrow \infty} w_{0}$ such that $f\left(u_{n}\right)+f\left(w_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} f\left(z_{0}\right)$. Hence
(20) $\bigvee_{n_{0} \in N} \bigwedge_{n \geqslant n_{0}}\left[u_{n} \in\left(x-\frac{\delta}{2}, x+\frac{\delta}{2}\right), w_{n} \in\left(y-\frac{\delta}{2}, y+\frac{\delta}{2}\right), f\left(u_{n}\right)+f\left(w_{n}\right)<f\left(z_{0}\right)+\frac{\varepsilon}{2}\right]$.

From (19) and (20) we obtain

$$
\begin{gathered}
\inf \left\{f(u): u \in\left(x-\frac{\delta}{2}, x+\frac{\delta}{2}\right)\right\}+\inf \left\{f(w): w \in\left(y-\frac{\delta}{2}, y+\frac{\delta}{2}\right)\right\} \leqslant \\
\leqslant f\left(z_{0}\right)+\frac{\varepsilon}{2}<\inf \{f(z): z \in(x+y-\delta, x+y+\delta)\}+\varepsilon
\end{gathered}
$$

Letting ε tend to zero we get

$$
\begin{align*}
\inf \{f(u) & \left.: u \in\left(x-\frac{\delta}{2}, x+\frac{\delta}{2}\right)\right\}+\inf \left\{f(w): w \in\left(y-\frac{\delta}{2}, y+\frac{\delta}{2}\right)\right\} \leqslant \tag{21}\\
& \leqslant \inf \{f(z): z \in(x+y-\delta, x+y+\delta)\} \leqslant \varphi_{f}(x+y)
\end{align*}
$$

Since inequality (21) holds true for all $\delta>0$, the function φ_{f} is superadditive:

$$
\begin{equation*}
\varphi_{f}(x)+\varphi_{f}(y) \leqslant \varphi_{f}(x+y), x, y \in \boldsymbol{R} . \tag{22}
\end{equation*}
$$

Conjunction of conditions (18) and (22) gives the additivity of φ_{f}. In the same manner one may prove that condition (1) leads to superadditivity of ψ_{f} and condition (2) to its subadditivity.

As is well known any lower (upper) semi-continuous function is bounded below (above) on every compact interval. Hence and from Lemmas 3 and 4 as well as from the properties of the additive functions we obtain immediately the following

THEOREM 3. If $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is a limit-additive function bounded below (above) on every interval, then the function $\varphi_{f}\left(\right.$ function $\left.\psi_{f}\right)$ is additive and continuous.

LEMMA 5. Let $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a limit-additive function. For any $\boldsymbol{x} \in \boldsymbol{R}$ and each $k \in N$ there exists a sequence of real numbers $\left(x_{n}\right)_{n \in N}$ such that

$$
x_{n \rightarrow \infty} x \text { and } 2^{k} f\left(x_{n}\right) \underset{n \rightarrow \infty}{ } f\left(2^{k} x\right) .
$$

Proof. For $k=1$ the assertion of our lemma coincides with condition (3). Suppose that this assertion holds true for any $x \in \boldsymbol{R}$ and some $k \in N$. Therefore, for arbitrarily fixed $x \in \boldsymbol{R}$ there exists a sequence $\left(y_{n}\right)_{n \in N}$ such that

$$
y_{n} \underset{n \rightarrow \infty}{ } 2 x \text { and } 2^{k} f\left(y_{n}\right) \underset{n \rightarrow \infty}{ } f\left(2^{k+1} x\right)
$$

From (3) it follows that to each $n \in N$ there corresponds a sequence $\left(x_{n, m}\right)_{m \in N}$ such that

$$
x_{n, m} \xrightarrow[m \rightarrow \infty]{\longrightarrow} \frac{y_{n}}{2} \text { and } 2 f\left(x_{n, m}\right) \xrightarrow[m \rightarrow \infty]{ } f\left(y_{n}\right) .
$$

Hence

$$
\begin{gathered}
\bigwedge_{n \in N} \bigvee_{m_{n}^{\prime} \in N} \bigwedge_{m>m_{n}^{\prime}}\left|x_{n, m}-\frac{y_{n}}{2}\right|<\frac{1}{n}, \\
\bigwedge_{n \in N} \bigvee_{m_{n}^{\prime \prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime \prime}}\left|2 f\left(x_{n, m}\right)-f\left(y_{n}\right)\right|<\frac{1}{n} .
\end{gathered}
$$

Put $m_{n}:=\max \left(m_{n}^{\prime}, m_{n}^{\prime \prime}\right), x_{n}:=x_{n, m_{n}}$, for $n \in N$. Then we get

$$
\left|x_{n}-x\right| \leqslant\left|x_{n, m_{n}}-\frac{y_{n}}{2}\right|+\left|\frac{y_{n}}{2}-x\right| \leqslant \frac{1}{n}+\frac{1}{2}\left|y_{n}-2 x\right| \underset{n \rightarrow \infty}{ } 0
$$

and

$$
\begin{gathered}
\left|2^{k+1} f\left(x_{n}\right)-f\left(2^{k+1} x\right)\right| \leqslant\left|2^{k+1} f\left(x_{n, m_{n}}\right)-2^{k} f\left(y_{n}\right)\right|+\left|2^{k} f\left(y_{n}\right)-f\left(2^{k+1} x\right)\right| \leqslant \\
\leqslant 2^{k} \frac{1}{n}+\left|2^{k} f\left(y_{n}\right)-f\left(2^{k+1} x\right)\right| \underset{n \rightarrow \infty}{ } 0 .
\end{gathered}
$$

Consequently

$$
x_{n \rightarrow \infty} x \text { and } 2^{k+1} f\left(x_{n}\right) \underset{n \rightarrow \infty}{ } f\left(2^{k+1} x\right)
$$

By induction, the assertion of our lemma holds true for any $k \in N$.
LEMMA 6. Let $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a limit-additive function. For any $x \in \boldsymbol{R}, l, k \in N$, $r:=\frac{l}{2^{k}}$ there exists a sequence of real numbers $\left(x_{n}\right)_{n \in N}$ such that $x_{n} \xrightarrow[n \rightarrow \infty]{ } r x$ and $f\left(x_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} r f(x)$.

Proof. Fix $x \in R, l, k \in N, r:=\frac{1}{2^{k}}$. On account of Lemma 5 there exists a sequence $\left(y_{n}\right)_{n \in N}$ with the property

$$
y_{n} \xrightarrow[n \rightarrow \infty]{ } \frac{x}{2^{k}} \text { and } f\left(y_{n}\right) \xrightarrow[n \rightarrow \infty]{ } \frac{1}{2^{k}} f(x) .
$$

Hence

$$
l y_{n} \underset{n \rightarrow \infty}{ } r x \text { and } l f\left(y_{n}\right) \xrightarrow[n \rightarrow \infty]{ } r f(x) .
$$

In view of (1), for each $n \in N$ one can find a sequence $\left(x_{n, m}\right)_{m \in N}$ such that

$$
x_{n, m} \xrightarrow[m \rightarrow \infty]{ } l y_{n} \text { and } f\left(x_{n, m n}\right) \xrightarrow[m \rightarrow \infty]{ } I f\left(y_{n}\right)
$$

which implies that

$$
\begin{aligned}
& \bigwedge_{n \in N} \bigvee_{m_{n}^{\prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime}}\left|x_{n, m}-l y_{n}\right|<\frac{1}{n}, \\
& \bigwedge_{n \in N} \bigvee_{m_{n}^{\prime \prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime \prime}}\left|f\left(x_{n, m}\right)-l f\left(y_{n}\right)\right|<\frac{1}{n} .
\end{aligned}
$$

Setting $m_{n}:=\max \left(m_{n}^{\prime}, m_{n}^{\prime \prime}\right), x_{n}:=x_{n, m_{n}}, n \in N$ we obtain

$$
\begin{gathered}
\left|x_{n}-r x\right| \leqslant\left|x_{n, m_{n}}-\left|y_{n}\right|+\left|l y_{n}-r x\right| \leqslant \frac{1}{n}+\left|l y_{n}-r x\right|_{\overrightarrow{n \rightarrow \infty}} 0\right. \\
\left|f\left(x_{n}\right)-r f(x)\right| \leqslant\left|f\left(x_{n, m_{n}}\right)-\left|f\left(y_{n}\right)\right|+\left|l f\left(y_{n}\right)-r f(x)\right| \leqslant \frac{1}{n}+\left|l f\left(y_{n}\right)-r f(x)\right| \underset{n \rightarrow \infty}{ } 0\right.
\end{gathered}
$$

which ends the proof.
LEMMA 7. Let $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a limit-additive function. For any $x, y \in \boldsymbol{R}, l, k \in N$, $l<2^{k}, r:=\frac{l}{2^{k}}$ there exists a sequence $\left(z_{n}\right)_{n \in N}$ such that

$$
z_{n} \xrightarrow[n \rightarrow \infty]{ } r x+(1-r) y \text { and } f\left(z_{n}\right)_{n \rightarrow \infty} r f(x)+(1-r) f(y) .
$$

Proof. According to Lemma 6 there exist sequences $\left(x_{n}\right)_{n \in N},\left(y_{n}\right)_{n \in N}$ such that

$$
\begin{aligned}
x_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} r x, & f\left(x_{n}\right) \xrightarrow[n \rightarrow \infty]{ } r f(x), \\
y_{n} \xrightarrow[n \rightarrow \infty]{ }(1-r) y, & f\left(y_{n}\right) \xrightarrow[n \rightarrow \infty]{ }(1-r) f(y) .
\end{aligned}
$$

From (1) it follows that for each $n \in N$ there exists a sequence $\left(z_{n, m}\right)_{m e N}$ such that

Hence

$$
z_{n, m} \underset{m \rightarrow \infty}{ } x_{n}+y_{n}, \quad f\left(z_{n, m}\right) \underset{m \longrightarrow \infty}{\longrightarrow} f\left(x_{n}\right)+f\left(y_{n}\right) .
$$

$$
\begin{gathered}
\bigwedge_{n \in N} \bigvee_{m_{n}^{\prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime}}\left|z_{n, m}-x_{n}-y_{n}\right|<\frac{1}{n}, \\
\bigwedge_{n \in N} \vee_{m_{n}^{\prime \prime} \in N} \bigwedge_{m \geqslant m_{n}^{\prime \prime}}\left|f\left(z_{n, m}\right)-f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\frac{1}{n} .
\end{gathered}
$$

Putting $m_{n}:=\max \left(m_{n}^{\prime}, m_{n}^{\prime \prime}\right), z_{n}:=z_{n, m_{n}}$, for $n \in N$ we get

$$
\begin{gathered}
\left|z_{n}-r x-(1-r) y\right| \leqslant\left|z_{n, m_{n}}-x_{n}-y_{n}\right|+\left|x_{n}-r x\right|+\left|y_{n}-(1-r) y\right| \leqslant \\
\leqslant \frac{1}{n}+\left|x_{n}-r x\right|+\left|y_{n}-(1-r) y\right| \frac{n-\infty}{} 0, \\
\left|f\left(z_{n}\right)-r f(x)-(1-r) f(y)\right| \leqslant\left|f\left(z_{n, m_{n}}\right)-f\left(x_{n}\right)-f\left(y_{n}\right)\right|+\left|f\left(x_{n}\right)-r f(x)\right|+ \\
+\left|f\left(y_{n}\right)-(1-r) f(y)\right| \leqslant \frac{1}{n}+\left|f\left(x_{n}\right)-r f(x)\right|+\left|f\left(y_{n}\right)-(1-r) f(y)\right| \xrightarrow[n \rightarrow \infty]{ } 0
\end{gathered}
$$

which completes the proof.
Recall that by the graph of a function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ we mean the set $\left\{(x, y) \in \boldsymbol{R}^{2}\right.$: $y=f(x)\}$. We consider the plane \boldsymbol{R}^{2} with its natural topology.

THEOREM 4. If $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is a limit-additive function, then the following four cases are the only possible:
(i) f is an additive and continuous function;
(ii) f is a function with the dense graph in \boldsymbol{R}^{2};
(iii) there exists an additive and continuous function $\varphi_{j}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ such that the graph of f is contained and dense in the half-plane $\left\{(x, y) \in \boldsymbol{R}^{2}: y \geqslant \varphi_{f}(x)\right\}$;
(iv) there exists an additive and continuous function $\psi_{f}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ such that graph of f is contained and dense in the half-plane $\left\{(x, y) \in \boldsymbol{R}^{2}: y \leqslant \psi_{f}(x)\right\}$.
Conversely, every function fulfilling one of the conditions (i)-(iv) is limit-additive.
Proof. Suppose $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ to be limit-additive. In virtue of the previous theorems and lemmas the following cases are the only possible:
(i) f is an additive and continuous function;
(ii') the restriction of f to any interval is unbounded from above and from below;
(iii') f is a function bounded from below and unbounded from above on every interval;
(iv') f is a function bounded from above and unbounded from below on every interval.
Suppose that (ii') holds and choose an arbitrary rectangle $(a, b) \times(c, d)$. Since the set $A:=\left\{r=\frac{l}{2^{k}}: l, k \in N, l<2^{k}\right\}$ is dense in the interval $(0,1)$, we deduce that

$$
\bigvee_{r \in A} r f(x)+(1-r) f(y) \in(c, d)
$$

provided $f(x)<c, f(y)>d$; the existence of such a pair $(x, y) \in(a, b)^{2}$ results from our assumption. Let $\left(z_{n}\right)_{n \in N}$ be such a sequence that

$$
z_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} r x+(1-r) y \text { and } f\left(z_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} r f(x)+(1-r) f(y) .
$$

Hence, for sufficiently large $n \in N$, we have $\left(z_{n}, f\left(z_{n}\right)\right) \in(a, b) \times(c, d)$. Now, supppose that (iii') holds and let $\varphi_{f}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ denote the function defined by (12); φ_{f} is additive and continuous. Moreover, the definition of φ_{f} yields $f(x) \geqslant \varphi_{f}(x)$, for $x \in \boldsymbol{R}$. Suppose that $(a, b) \times(c, d) \subset\left\{(x, y) \in \boldsymbol{R}^{2}: y>\varphi_{f}(x)\right\}$. Then

$$
c>\varphi_{f}\left(\frac{a+b}{2}\right) \geqslant \inf \{f(x): x \in(a, b)\}
$$

whence

$$
\bigvee_{x \in(a, b)} f(x)<c .
$$

Since f is not upper-bounded on (a, b), one can find a $y \in(a, b)$ such that $f(y)>d$. Proceeding further in the same way as in case (ii') we prove that there exists a $z \in(a, b)$ such that $f(z) \in(c, d)$. Consequently, condition (iii) holds true. Using the properties of the function ψ_{f} defined by (13) one can show that (iv') implies (iv). It is easy to check the converse: every function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ fulfilling one of the conditions (i)-(iv) is limit-additive.

Our last theorem gives full description of the class of limit-additive functions.

REFERENCES

[1] J. ACZÉL, Lectures on functional equations and their applications, Academic Press, New York and London, 1966.
[2] S. ŁOJASIEWICZ, Wstep do teorii funkcii rzeczywistych, PWN, Warszawa, 1976.
[3] B. SZ-NAGY, Introduction to real functions and orthogonal expansions, Akadémiai Kiado, Budapest, 1964.

