
Z B IG N IE W  G AJDA*

A CH A R A CTER IZA TIO N  OF FU N C T IO N S  W IT H  DENSE 
GRAPH IN TH E PLANE OR HALF-PLANE

Abstract. Let R  be the set o f all real numbers. In the present paper we shall characterize 
functions f : R  -* R  which are either linear or have graph contained and dense in the plane or 
half-plane determined by a linear function. For this purpose we consider functions satisfying certain 
limitary conditions which are related to the additivity equation but considerably weaker than that.

Let us introduce the following
DEFINITION. A function / :  R  -» R is called limit-additive iff the following 

conditions are fulfilled:

(1) A V 0.. -v +>' > /(-«) —j7* /(*) +/00] ’
x , y e R  (z n) n e N

z n e  R , n e N

C-) A V {xn— ^ x , y n — ^ y j \ x ^ + f ( y n) — ^ f { x + y ) - ] ,
x ,  y  e  R  (x n) neN, ( y„)neN 

x„,  yn e R t n e  N

(3) A V [* « — ^ * > 2 / ( x „ ) — - > / ( 2 x ) ] .
x  e R  ( x n) n e N  

x n e  R , n e  N

Conditions (1) and (2) are, in a sense, mutually symmetric. Condition (3) can 
not be obtained from (2) by setting x  = y, since even then sequences (x„)neN and 
(y„)„e,v occuring in (2) may not coincide. Adding condition (3) we obtain the possi
bility of the choice of a common sequence in the case where x  — y.

Clearly, every additive function is limit-additive (it suffices to take constant 
sequences). There exist, however, limit-additive functions which are not additive. 
Indeed, one can easily check that an arbitrary fu n c tio n /: R R  with the graph 
being dense on the plane R 2 is limit-additive. Let us note that if a function J - .R -+ R  
is limit-additive and continuous then it is additive and consequently has the form

/ (x) =  a x , x e R ,
where a is a constant.
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Now, we are going to give some necessary and sufficient conditions for a limit- 
-additive function to be continuous.

LEM M A 1. Let f : R - > R  be a limit-additive function. Then, for any k  e N, 
k  ^  2, and each points , ... ,  x k e R, there exists a sequence (zn)neN o f real numbers 
such that

^  A'i +  + x k and / ( z j  _ _ _ ♦ / ( A-J+ ... + f(x k).

P ro o f. For k  = 2 the assertion of the lemma coincides with condition (1). 
Suppose that our lemma holds true for some k  e N, /c Ss 2 and for any system of 
k  points x 1} ...,  x k e R .  Fix k + 1 points , ... ,  x k+1 e R .  On account of our assump
tion, there exists a sequence (u„)neN such that

Un -^T a7> * 1  +  ■■■ +Xk > f ( Un) J  ( * l )  +  • ■ • + / ( * * )  •

In view of (1), for each n e  N  one can find a sequence (w„im)m6jV such that 

Wn,m «„ +*/c+1 and /(w „>m) — ^  /(u„) + / ( x t+1) .

Hence

A V A \w„im-un-xk+1\ <—,
n e  N  m'n e N  m mn W

A V AJ/K„,)-/K)-/(x,+1)|<-.
n e N  m " e N  m > m n H

We put m „!= m ax(m ', m"), n e N  and z„:=w„ mii, n e N . Then we have

|z n “ X l  ~  ••• ~  A'A'+ 1 1 ^

<  ■■■ +  ••• ~ Xk\ 0  ’

(/(Z,,1) - / ( * l )  — ■■■ — f ( Xk+ l)| ^

^ | / ( w „ , miI) - / ( « „ ) - / ( ^ + 1)| + [ / ( « , , ) - / ( * ! ) -  ... - / ( X k)| <

<  ^ +  [/(«»)- / ( * l ) -  ••• -/(•**)| —

whence
Xl +  ••• + '̂fc+ 1 and / ( - „ ) — -> / U l )  +  ... + /(* * + 1)

which, by induction, completes the proof.

THEOREM  I. I f  a limit-additive function f :  R -> R is continuous at a point 
then it is continuous everywhere.

P ro o f. Assume that /  is continuous at the point x 0 e R.
(a) Let (xn)neN be an arbitrary sequence of real numbers convergent to zero. 

Since
x 0 = (x0- x n)+ x„, n e N
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from (1) it follows that, for each n e N ,  there exists a sequence (z„,m)meN such that

~ n, m  * 0  > f ( ~ n , m )  j  (a 'q  X n)  +  f ( x n)  .

Hence

A  V  A  |z„,m-* o |
n e N  m'n e  N  m ^ m ' n H

A  V  A  |/ ( z n>J  - f ( x 0 -  x j  - f { x n)\ < i .
n e N  m " e  N  m ^ m "  tl

Put mn m ax(m ’„ , m "), — z„,m„, n e N .  Then

i i 1 \ z „ - x o <  —. n<= N
and "  t

| / ( 2„ ) - / ( a 'o ~ *„) —/(x„)| <  — , n e N ,
n

whence
(4) z„ — *o and /(z„) - / ( * „  -  x„) - / ( x „ )  0 .

By the continuity of /  at x0 we have

/ O J  —  /(*o ) and f ( x 0-x „ ) f ( x 0) 

which, together with (4), gives

(5) /(* „ )  — ^  0 ,  for any sequence (x„)„ 6 ,v such that x„ — ^  0 .

(b) Fix an x e R  and write 0 = x + ( — x). Using condition (1) again we find 
a sequence (z„)„6/v, z„ — ^ 0 ,  for which

/ ( - , ) „ “ - / W + / ( - x ) .

Hence and from (5) it follows that
/ ( - x) =  - f ( x ) ,  x e R .

(c) Now, choose an arbitrary x e R  and a sequence (x„)„eN, xn- ^ - ^ x .  On 
account of Lemma 1, for each n e N  one can find a sequence (z„,m)me7V such that

(6) zn>m— ^ x „ - x + x 0

(7) . (xn) + / ( -  x) + / ( x 0) =  f ( x n) - f ( x )  +  f { x o).

In view of (6) and (7) we have

A  V  A ,  K m - (*„- *  +  x0)| <  — ,
n e N  m'n e  N  m m ' ft

A  V A  \ f ( z „ ,J - ( f ( x „ ) - f ( x ) + f ( x 0)) \<  — .
n e N m * e N m > m *  H
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We put mn~max(m'„, m„), zn~ z„  mn, n e N .  With the aid of this notion we get

k - X o l  < <  — +  |x „ -x | 0 ,i i i  ■ ■ H 1 >* go

|/("n) -  ( f ( x „ ) - f ( x )  + / ( x 0))| <  — 0 .

Consequently,
z» ^ * x o and f ( z n) - f ( x „ )  + f ( x ) - f ( x 0) 0 .

Hence and from the continuity of /  at the point x 0 it follows that

which implies that /  is continuous at x.
LEM M A 2. I f  a function / :  R R is limit-additive and bounded in a neighbourhood 

o f  a point x 0 e R then it is bounded in a neighbourhood o f  zero.
P ro o f. Suppose that there exist M >  0 and c>>0 such that

(/GO| < M ,  for y e ( x 0 - 5 ,  x 0 +d).

Take an x e ( —<5,(5). Then x +  x 0 e (x0 —<5, x0 +  <5) and there exists a sequence 
(.z„)nsN, Z„~r^ x  + x 0 such that /(z„) — ^»/(x) + /(x 0).
For almost every n e N  we have

z„e(x0-<5, x0 +<5) and |/(z„)| M
whence

|/ ( x ) + / ( x 0)| < M .
Thus

|/(x ) | s: M  +  |/ ( x 0) | , for x e ( - d , 5 ) .

THEOREM  2. I f  f :  R  -> R is a limit-additive function bounded [in absolute 
value) on a set A c .  R  such that int A #  o then f  is continuous.

P ro o f. Taking Lemma 2 into account, we may suppose that there exist M  > 0 
and <5 > 0 such that

(8) |/(x ) | < M  for x e ( ~ 3 , S ) .

Assume that there exists a sequence of real numbers (x n)nsN, x„— such that 
the sequence (f(x„))„eN is not convergent to zero. Then there exist an s > 0  and 
a subsequence (*nfc)fc6iV of the sequence (x„)„eAr with the property |/(x„k)| >  e, k e N. 
From  the sequence (x„ ) one can still choose either a subsequence (x„ \ such

k / k s N  ^ kp ] p e N

that f \x „ k j 5= e, p e  N  or a subsequence |x„t j such that f[x„ k j <  — E> s e N .

Suppose, for instance, that we have a sequence (y„)neN, y„ - —̂  0 such that /(} ’„) >  s, 
n £ N. Let us choose numbers N  e N  and n0 e N  so that N e > M  and Ny„0 e ( —<5, <5). 
According to Lemma 1, there exists a sequence (zm)meN such that zm— ^  N  • y„o 
and f ( z m) — -£ N f ( y J  ^  N e > M .
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Hence

(9) V A zme ( - 5 , d ) ,
mi  e  N  m > m  1

(10) V A /(Zm) > M  .
m i e /V m > m 2

For m >  m ax(w !, m2) conditions (9) and (10) are incompatible with (8). If  we have 
a sequence (v„)neN, ^  0 such that f(y„) <  - s ,n e N ,  we obtain the contradiction 
in a similar manner, using the boundedness of /  from below. So we have

(11) / (* „ )— -> 0 , for any sequence (x„)„eN such that x„

Putting x =  j  =  0 in ( l ) ,  we obtain the existence of a sequence (z„)„sA,, z„ —  ̂ 0 ,  
for which / ( z „ ) ^ v  2/(0). This, jointly with (11), implies /(0 ) =  0. Consequently 
we obtain the continuity o f/ at zero. In virtue of Theorem 1 , / i s  continuous every
where on R.

Now, we are going to investigate some properties of discontinuous limit- 
-additive functions. It follows from Theorem 2 that such functions cąn not be bounded 
in absolute value on any non-degenerate interval. In the sequel, the word ’’interval” 
will always mean a bounded non-degenerate interval. The example of an arbitrary 
function/: R  -> R  which has the graph contained and dense in one of the half-planes 
{(x, y) e R 2 : y  ^  0} or {(x, y) e R 2 : y  ^  0} shows that a discontinuous limit-additive 
function may be bounded from one side. In the same way as in the proof of Lemma 2 
one can show that any limit-additive function bounded below (above) on some 
interval is bounded below (above) on every interval.

For any function f : R - + R  bounded below on every interval, the function 
(p f ‘. R —> R

(12) <Pf(x)~ sup in f{ /( z ) : z e ( x —S,  x + £ )} , x e R
(5> 0

is well defined.
Analogously, for any function f  . R - * R  bounded above on every interval we 

define the function \l/f : R - + R  by the formula

(13) \j/f (x)-— inf sup {/(z) : ze (x -< 5 , x + d )} , x e R .
c5> 0

LEMMA 3. I f  J:  R R is bounded below {above) on every interval, then the 
function <pf  (function ij/f ) is lower (upper) semi-continuous.

For the proof see e.g. [2] or [3].
Up to now, we have only made use of property (1) from the definition of limit- 

-additive functions. From now on, we shall be applying properties (2) and (3), too.
LEMMA 4. I f  J  : R  -> R  is a limit-additive function bounded below (above) 

on every interval, then the function <pf  (function ij/f ) is additive.
P ro o f. We proceed only with the proof for the function cpf . Fix numbers 

x , y e R ,  e > 0 ,  6 >  0, t ]>0, arbitrarily. Wc have

(14) V  / ( wo) <  inf { /(« ) : w e(x — 6,  x  +<5)} + —
Mo e (*  — d,  *  + 5) ^
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(15) V  f ( w 0) < M { f ( w ) : w e ( y - t i , y + t i ) } + ^ - .
Koe(.y-n,y+’i) 3

Observe that u0 + w0 e ( x + y - d - t j ,  x + y  + d + t]). It follows from (1) that there 
exists a sequence (z„)neN, z„ — ^  «0 +  wo such that

/ ( * « )  — ^  f ( u 0) + / ( w 0) .

Hence

and

( 16) v A
«o e N  Mo

z „ e ( x + . F - < 5 - ? 7 ,  x + y + 6 + r i ) ,  f ( z „ )  < / ( u 0) + / ( w 0) +  y}
(14), (15) and (16) yield

in f{ /(z ) : z e ( x + ^  —<5 —;/,x+ j;+ <5  +>/)} ^  / ( u 0) + / ( w 0) + y  <

inf {/(u) : u e (x -  <5, x + (5)} +  inf { /( tv): w e ( y - q ,  y+rj)} +£.

Since e >  0 has been chosen arbitrarily, we have

(17) in f{ /(z ) : z e ( x + j - < 5-? 7, x+j;+(5+>?)} in f{ /(w ): u e ( x  — 3,  x+c))} +

+ inf{/(w ) : u -e (} '- ł|,} -+ t/)j < <pf (x) +  <pf (y).

As inequality (17) holds for all § > 0, rj > 0, we obtain the subadditivity of cpf :

(18) <pf (x + y)  < <pf  (x) +  <ps (y ), x , y e R .

Fix again numbers x , y e R ,  t; >  0. S >  0 arbitrarily. We have

(19) V  / ( z o) < in f { / ( z ) : z e ( x + y - d ,  x+y+<5)}+-^ .
zo e (x + y-5, x+ ? + «?) 2

i s  ó \  i s  , n
One can choose */0 e I x — — , X + — J and Wq e l j - — , j ’+  - -  1 so that z0 =  m0 +  h’0 .

In view of (2) there exist sequences (w„)„eAr and « ) „ 6iV, un ir r ^ u 0, w„ - - ^ w0 such 
that /(m„)+/(w„) — ^ / ( z 0). Hence

(20) v  A
n0 e N  n^no

S <5 \  f  S <5 \  "
« „ e (  x - - 3 x + - J ,  w „ e f  + - J , / ( « „ ) + / ( w„) < / ( z 0) + y

From  (19) and (20) we obtain

i n f | / ( u ) : u e ^ x - y , x + - 0 j + i n f  j / ( w )  : w e ( y - ^ ,  J’ + ^ j  <

e
^  / ( zo )+ y  <  in f{ /(z) : z e ( x + y - d , x + y+ (5 )}+ £ .
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Letting e tend to zero we get

^  in f{ /(z ) : z e ( x + y  — d , Jc+.y+<5)} < <pf ( x +y ) .

Since inequality (21) holds true for all <5>0, the function cpf  is superadditive:

Conjunction of conditions (18) and (22) gives the additivity of ę f . In the same 
manner one may prove that condition ( 1) leads to superadditivity of rj/f  and condi
tion (2) to its subadditivity.

As is well known any lower (upper) semi-continuous function is bounded 
below (above) on every compact interval. Hence and from Lemmas 3 and 4 as 
well as from the properties of the additive functions we obtain immediately the 
following

THEOREM  3. I f  f  : R  -> R  is a limit-additive function bounded below {above) 
on every interval, then the function ę f  (function il/f ) is additive and continuous.

LEMMA 5. Let f : R - > R b e a  limit-additive function. For any x e R  and each 
k e N  there exists a sequence o f  real numbers (x„)neN such that

P ro o f. For k =  1 the assertion of our lemma coincides with condition (3). 
Suppose that this assertion holds true for any x e R  and some k e  N. Therefore, 
for arbitrarily fixed x e R  there exists a sequence (yn),teN such that

From (3) it follows that to each n e N  there corresponds a sequence (xn> m)m e ,v such 
that

(22) <pf(x) + <pf (y) < <pf ( x + y ) ,  x ,  y e  R.

x  and 2kf ( x n) — ^ f ( 2 kx).

Hence

n e N  m'n e N  m&m'n 2  11
A V A
. _  ____/ / 11

A V A \2f(xnJ - f ( y „ ) \ < -
_  *7 . . . . ____ "  '  1 M

Put mn~m ax(m '„ , m"), x„!=  for n e N .  Then we get
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\2k+if (x„) —f( 2 k+1x)\ < \2k+if ( x ntnJ - 2 kf ( y ^ \  + \2kf ( y n) - f ( 2 k+1x)\ <

< 2k ~  + \2kf ( y n) - f ( 2 k+ix)\ - . 0 ,

Consequently
x„----- > .x and 2k+lf ( x n) ----- > f (2k+'x) .

n n-> oo */ v n / r t->oo*, v  7

By induction, the assertion of our lemma holds true for any k  e TV.
LEMMA 6. Let / :  R R be a limit-additive function. For any x  e R, I, k e TV,
I

r =  — ex/sta a sequence o f real numbers (x„)„ e N such that x„ — rx w/iJ

/(*„) ;rr^? '/(x ).
/

P ro o f . Fix x e /?, /, A: e TV, r-= —k. On account of Lemma 5 there exists a sequen
ce (y„)neN with the property

x  1
y „ ^  j k and J(y„)— r >jk f ( x ) .

Hence
0 ’,,—  rx and l f (y„)— ^  rf (x) .

In view of (1), for each n e TV one can find a sequence (x„)in)meN such that 

Xn.rn — ^  b'n and /(x„, J  — //(>'„)

which implies that

A V A, \x,um- l y n\ <  —,
n e N  ml  e N  m ^ m m H

and

A V A |/(*„,j  - //(>’„)| < — •
it e N  m" e  N  ftn e  N  m" e iV m ̂  m "

Setting mn ■•= max (m ', m "), x„ ■= x„ ,„n, n e N  we obtain

|x „ - rx | < |x„,m„ - / j ;n| +  |/j >I - r v |  ^  ^- +  |/ rB- r x |  — 0 ,

|/ (x „ ) - r / (x ) | < \ f ( x „ , , J - l f ( y n)\ + \ l f ( y„)-r f (x) \  < -j- + \ l f {)’„ ) - rf{x)\ ~ -* 0

which ends the proof.
LEMMA 7. Le t f :  R-> R  be a limit-additive function. For any x , y  e R , I, k e TV,

I
I <  2\  there exists a sequence (z„)neN such that

H rx + (l — r)y  and / ( .„ )  _ _ »  r/(x )  +(1 -  /■) f ( y ) .

P ro o f. According to Lemma 6 there exist sequences (x„)„tiY, (yn)nsN such that

r x ’

>’n — r  (1 -  r) ) ', f(y„) (1 -  r) f ( y )  .



From (1) it follows that for each n e  N  there exists a sequence (znm)meN such that

Z„,m — - f (Z«.m)  — ^  / ( * „ )  + /(> '„ )  •
Hence

A V A
n e N  m'n e N  m>m'n H

A V A„ -/(*„) -/(v„)| < --.
n e N  m "e  N  m" H

Putting mn~ m a x ( m ’n, m"),  z„ := z„mn, for neJV we get

< |zn,m„ - . v „ - +  |-v„ — rx| + 1r„ — (1 — r)j’| <

< -  +  |.v„ -  rx\ +  |.v„ -  (1 -  r) v| — 0 ,

|/(z„) -  r f (x)  — (t -  r) / ( v)| < |/(-„ ,...) - / ( * „ ) - / (v „ ) | +  |/(x„) -  rf(x)\ +

+  | / ( v „ ) - ( l  - r ) / ( . v ) |  ^ -J- +  | / ( . v „ ) - r / ( x ) | + | / ( y „ ) - ( l  -r) /(>>)|  — -  0

which completes the proof.
Recall that by the graph of a function f : R - * R  we mean the set {(.v, y) e R 2 : 

y=f ( x ) } .  We consider the plane R 2 with its natural topology.
THEOREM 4. I f f : R  -> /? /,v a limit-additive function, then the following four 

cases are the only possible:
(i) /  «  an additive and continuous function-,

(ii) f  is a function with the dense graph in R 2;
(iii) there exists an additive and continuous function <pf . R  -> R such that the 

graph o f  f  is contained and dense in the half-plane {(x, y) e R 2 : y  ^  (pf (x ) ) ;
(iv) there exists an additive and continuous function iJ/f : R - + R  such that 

graph o f f  is contained and dense in the half-plane {(x, y) e R 2 : y  ^  \j/f (x)}. 
Conversely, every function fulfilling one o f  the conditions (i)—(iv) is limit-additive.

P ro o f. Suppose/ :  R  -> R  to be limit-additive. In virtue of the previous theorems 
and lemmas the following cases are the only possible:

(i) /  is an additive and continuous function;
(ii') the restriction of /  to any interval is unbounded from above and from 

below;
(iii') /  is a function bounded from below and unbounded from above on every 

interval;
(iv') /  is a function bounded from above and unbounded from below on every 

interval.
Suppose that (ii') holds and choose an arbitrary rectangle^(a, b) x (c, d). Since the 

set A-.= !/•=  — : / ,  A- e N,  / <  2*4 is dense in the interval (0 ,1), we deduce that
I 2 I

V r f ( x ) + ( l - r ) f ( y ) e ( c , d )
r e  A



provided f i x )  < c, f ( y )  > d; the existence of such a pair (x,  y) e (a, b)2 results from 
our assumption. Let (z„)„eN be such a sequence that

zn— ^  n c + ( l - r ) .y  and /(z„) — rf{x)  +(1 - r )  f ( y ) .

Hence, for sufficiently large n e N ,  we have (z„,/(z„)) e (a, b)x ( c ,  d). Now, supppose 
that (iii') holds and let ę f  : R  -» R  denote the function defined by (12); cpf  is additive 
and continuous. Moreover, the definition of q>f  yields f i x )  ^  <Pf{x), for x e R .  
Suppose that (a, b) x (c, d) cz {(x, j ’) e R2 : y  > cpf  (x)}. Then

Since / i s  not upper-bounded on {a, b), one can find a y e  (a, b) such that f ( y )  > d. 
Proceeding further in the same way as in case (ii') we prove that there exists a : e ( a ,A )  
such th a t/(z )  e (c , d). Consequently, condition (iii) holds true. Using the properties 
of the function ipf  defined by (13) one can show that (iv') implies (iv). It is easy 
to check the converse: every function f : R - + R  fulfilling one of the conditions 
(i)—(iv) is limit-additive.

Our last theorem gives full description of the class of limit-additive functions.
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whence

V /(*) <c •
x  e (a,b)
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