
A N N A  K U C IA , AN D RZEJ N O W A K *

ON CARATH EO D O RY TYPE SELECTORS 
IN A HILBERT SPACE

Abstract. In this paper we consider a set-valued function of two variables, measurable in the 
first and continuous in the second variable. Using metric projections we construct for this function 
a family of selectors which are Caratheodory maps. The existence of Caratheodory selectors was 
studied by Castaing [2], [3], Cellina [4], Fryszkowski [9] and the first author [11].

1. Notation and definitions. Let (T , ST) be a measurable space, X  a topological 
space and Y  a Hilbert space. By 0>C(Y )  we denote the family of all non-empty 
closed convex subsets of Y. We shall consider 9 C( Y ) with the Vietoris topology 
(see e.g. [12, § 17.1]), and with the generalized Hausdorff metric

d is t( / l , B) =  sup { d ( a , B) , d ( b , A ) : a e A , b e B} ,

where d(a, B) =  inf {||« — ft|| : b e B}, A , B e . ? c(Y)  (we admit dist(/4, B) =  oo).
Let y 0 be a point of Y  and r a positive number. By B (y0, r) (E(y0, /•)) we denote 

the open (closed) ball with centre y 0 and radius r. For a set A c  Y  and r > 0, B(A,  r) 
denotes the /--ball about A.

Let ę : T ~ *  &C{Y)  be a multifunction (i.e. set-valued mapping). A function 
f : T - >  Y  is a selector for cp if / ( / )  e (p{t) for all t e T . A  multifunction q> is measur­
able if

{teT  : (p(t)r\G

for each open G <= Y  (such q  is called weakly measurable by Himmelberg [10] 
and Wagner [15], [16]).

We say f : T x X - * Y  is a Caratheodory map if f ( t ,  •) is continuous for each 
t e T ,  and / ( • ,  x) is measurable for each x  e  X.

If A is a non-empty closed convex subset of a Hilbert space Y, then for each 
y e Y  there is the unique point h ( y , A ) e A  such that

\ \y -h (y ,A ) \ \  = inf{ ||.v-fl|| : a e A }

(see e.g. [13, Theorem 2.1.2]). The function h: Y x (¥‘L( Y) -> Y  is called the metric
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projection. If  y  =  0 then we shall write h(A)  instead of //(0, A). By the uniqueness 
of h(y,  A),

(1.1) h ( y , A) = h ( A ~  v ) + y ,

where A —y  =  {a — y  : a e A).
Let a multifunction cp: T x X  -* ^ C(Y)  be given. For any function g : T  -> Y 

the mapping /(? , x) =  h(g(t) ,  cp(t, x)) is a selector for ę .  The aim of this paper 
is to formulate conditions under which /  is a Caratheodory map. In this way we 
obtain a family of Carathćodory selectors for <p.

2. Preliminary results. In this section we shall study inverse images of open 
balls under the metric projection. The following geometric lemma will be useful: 

LEMMA 1. Let Y  be a real Hilbert space, A e ^ c(Y),  y 0 =h(A)  and r >  0. 
For each v £ ^ 4 \5 ( ^ 0, r),

«.v«2 H M W .

P ro o f. I f 0 e A theny0 =  Oand the inequality holds. IfO £ A then ( y 0, o )> 0  
for all y e  A  ([13, Theorem 2.2.2]). For y  e A B(y0, r) we have

H I 2 =  ||>’o + ( . V - 3 ’o ) | |2 =  IÎ 0 II2 +  2 < v 0 , 3’ -.V'o> +  | | > ' - y o | | 2 s* W l ’ + r 2,

which completes the proof.
The next lemma will play the key role in the paper.
LEMMA 2. Let Y  be a real Hilbert space, .r(l a point o f  Y  and r a positive 

number. Then:
I. h ~ \B (x 0, r )) = U {Ae&c(Y):  A c  ( Y  \B (0 , q ) ) u  B ( x 0 r) a n d A n B ( 0 , q ) 

* 0 },
where the union is taken over all positive q satisfying

(2.1) j|x0|| —r < q < ||x0|| + r .

II. h ~ l(B(x0 , r)) =  U  { A e & c( Y ) : A  cz ( Y \ B ( 0 , q ) ) u  B [ x 0 , r - - )  and
\  n )

A n B ( 0 , q ) *  0 } ,

where the union is taken over all positive rationals q and all positive integers n satisfying 
the following conditions:

||x0|| —r < q <  ||x0|| +>• and — < r .
n

P ro o f. We shall prove the equality I. The proof of the second part of the 
lemma is quite similar, therefore we omit it.

Let A £ 3PC{Y) be such that y 0 = h(A)  e B (x0, r). We shall show the existence 
of positive q satisfying (2.1) such that

(2.2) A C ( Y \ B ( 0 , q ) ) v B ( x o , r)  and A n B ( 0 , q ) ć  0 .

There is ć /> 0  such that B(y0, d) <= B(x0, r), i.e. |.v0 —r 0|| + d <  r. It follows from 
Lemma 1 that

(2 .3)  |M |2 ^  b o V + d 2
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lor y  e A \ B ( y 0, d). Let q > 0  be such that

It implies ||x0j| —r < q <  || A'01 +/'• Suppose there is y e A n B ( 0 , q )  such that 
y  <£ B(y0, d). Because of (2.3), |j’|| >  q which is inconsistent with y  e B (0 , q). Hence, 
A r*B(0, q) <= B(y0, d). Then

The intersection of A  and B(0, q) is non-empty, because j '0 is a common point 
o f these sets. Thus A  satisfies (2.2).

Now assume that A  e &C(Y)  satisfies (2.2). Since A n  B(0, q) #  0 ,  h(A) e B(0, q). 
On the other hand, h(A) e ( Y x^B(0,  q ) )u B (x 0, r). Hence, h(A) e B (x0> r), which 
completes the proof of the first part of the lemma.

3. Continuity of metric projections. In this section we shall study the continu­
ity of the function h(y ,  •).

THEOREM  1. Let Y  be a real Hilbert space. For each y  e Y  the function 
h(y,  •): &>C(Y ) Y  is continuous in the Viet oris topology and in the generalized 
Hausdorff metric.

P ro o f. Because of (1.1), it suffices to consider the case y =  0. The continuity 
of h in the Vietoris topology is an immediate consequence of Lemma 2.1. Now 
we show that h is continuous in the generalized Hausdorff metric. Let A e &>C(Y )  
be arbitrary but fixed. Denote y 0 = h(A). We shall prove that for each /•>() there 
is s > 0  such that if F e 0 “c(Y )  and dist (A , F) <s ,  then h( F ) e  B (y0, r). We have 
to consider two cases:

1°. There is s > 0 such that B(A,  s) <= B(y0, r). If F e  &>C(Y )  and dist (A , F) < s, 
then F <= B(A,  s). Hence, h(F) e B(y0, r).

2°. For each s > 0 ,  B(A,  s ) \ B ( y 0, r) ^  0 .  Preliminary we shall show the 
existence of .v>0 such that [|z|| >  ||j>0|[ +5 for each z e B(A,  s ) \ B ( y 0, /). Fix

r i, i,
0 < s < — and z e B(A,  s ) \ B ( y 0, r). Let y e  A be such that ||>’—z | |< j .  Since

y  $ B , it follows from Lemma 1 that

A =  n ( y \ B ( 0 ,  9)))u ( A n B ( 0 , q ) ) c ( Y \ B ( 0 , q ) ) v B ( y 0, d) 

c  ( Y \ B ( 0 ,  q ) ) u B ( x 0, r).

Thus

It is not difficult to see that for s satisfying

we have
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For such j  and i \  =  ||jo|| if z e B(A,  s ) \ B ( y 0, r) then ||z|| >  r1. Let F e  3PC(Y ) 
be such that d is t(^ , F) < s. Since F<= B (A , s), h(F)  e B(y0, r ) v ( B ( A ,  s ) \ B ( y 0, r)). 
It follows from A c z B ( F , s )  that F n B ( 0 ,  r t) #  0 . Then ||A(F)|| </•-, and, con­
sequently, h{F)e  B{y0, r). It completes the proof of the continuity of h at A in the 
generalized HausdorJT metric.

REM ARK 1. The Yietoris topology and the topology of the Hausdorff distance 
coincide on the family of all compact subsets of Y. On ■9>c( Y) these two topologies 
are incomparable. The continuity of metric projections in the Hausdorff metric 
was studied by several authors (see e.g. Filippov [8, Lemma 5], Daniel [5, Theorem 2.2], 
Tolstonogov [14, Theorem 1.1]). The corresponding result for the Vietoris topology 
seems to be new.

4. Measurability of metric projections. Let (T, 2T) be a measurable space,
Y  a Hilbert space, (p:T->0>c(Y)  a measurable multifunction, and g : T - * Y  
a measurable function. In this section we shall prove the measurability of the function 
t -> h(g(t) ,  where h is the metric projection.

THEOREM  2. Let (T, ST) be a measurable space, Y  a real separable Hilbert 
space, and cp: T  -> ^ C(Y)  a measurable multifunction. Then fo r  each measurable 
g : T  -> Y  the function t -* h(g(t  ), ę ( t )) is a measurable selector fo r  q>.

P ro o f. First we prove that /?(</>( •)) is a measurable function. Let D be a count­
able dense subset of Y. The family of all balls B(x,  r), where x  e D  and r is a positive 
rational, is a countable open base for Y. It suffices to show that inverse images 
of these balls under h belong to the a-algebra 3T. By Lemma 2.II and the measura­
bility of (p, we have

{teT  : h(cp(t))eB(x, r)} =  U  ( j ( e T  : cp{t) c  ( Y \ B ( 0,  q ) ) v s (x ,

n { t e T  : <p(t) n  B(0 , q) #

where the union is taken over all positive rationals q and all positive integers n 
satisfying

u n u u 1x —r < q <  x + 1• and — <  r .
n

Since cp and g  are measurable, the multifunction

¥>(0 - 0 ( 0  =  { y - 9 (  0 : y ^  ¥>(0 } 

is also measurable. Because of (1.1),

h(g( t ) ,  <p(t)) = h (¥>(0 —0 (0 ) + 0 (0

and, consequently, the function t -> h{g{t),  ę( t ) )  is measurable.
REM ARK 2. Similar results to Theorem 2 were obtained by Boc§an ([1, 

Theorem 1]) and Engl and Nashed ([7, Lemma 2.2]) under assumption that the 
measurable space (T', ST) is complete.
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5. Caratheodory type selectors. Our main result is an immediate consequence 
of two previous theorems.

THEOREM  3. Let (T, ZT) be a measurable space, X  a topological space, Y  a real 
separable Hilbert space, and cp: T x  X  -> &C(Y)  a multifunction. We assume that 
for each x  e X, (/>(•, x) is measurable and fo r  each t e T, ę ( t , •) is continuous in the 
Vietoris topology or in the generalized Hausdorff metric. Then for each measurable 
g : T  -*■ Y  the function f ( t ,  x) = h(g(t) ,  <p(t, x)) is a Caratheodory selector for cp.

P ro o f. It follows from Theorem 2 that / ( • ,  x) is measurable for each x e X .  
In virtue of Theorem 1, for each y e  Y  the function h(y,  ■) is continuous in the 
Vietoris topology and in the generalized Hausdorff metric. Thus f ( t ,  •) is continuous 
as the composition of continuous functions.

REMARKS 3. A multifunction is continuous in the Vietoris topology iff it 
is lower and upper semi-continuous. For compact-valued multifunctions the con­
tinuity in the Vietoris topology is equivalent to the continuity in the Hausdorff 
distance. These two notions of continuity are incomparable for closed convex-valued 
multifunctions.

4. Theorem 3 admits the following generalization: Suppose T  is endowed 
with the family of c-fields {,f'x}xeX, for each x e X ,  <p(-, x) is .^-m easurable, and 
the other assumptions of Theorem 3 are satisfied. Tf g : T  -» Y  is measurable with 
respect to the c-algebra P) STx , then for each t e T the functionf { t ,  •) is continuous,

x e X

and for each x e  X, / ( • ,  x) is ^ .-m easurable. The same proof holds. This theorem 
is of special interest in the case when X  is an interval on the real line and {&~x}xex 
is an increasing family of ff-fields. A. Fryszkowski called our attention to the 
problem of the existence of such ” non-anticipative” Caratheodory selectors.

5. We can generalize Theorem 3 in the other way. Suppose for each t e T  
the multifunction q>(t, ■) is defined on a non-empty set D ( t ) c z X  instead of on 
the whole space X.  In this case f ( t ,  •) is also defined on D(t).  We say that such 
a multifunction (p is measurable in t if for each x e  X  and each open G <=. Y,

{ t e T  : <p(t, x) r\G  #  0  and x e D( t ) } e ćT .

In the same way we define the measurability of f ( - , x ) .  With this meaning of the 
measurability, Theorem 3 holds.

6. Under assumptions of Theorem 3 the existence of Caratheodory selectors 
cannot be deduced from known general results ([2], [3], [9], [11]), because we admit 
X  to be an arbitrary topological space.

7. Ekeland and Valadier [7] used similar methods in the proof of the representa­
tion theorem for a multifunction of two variables.
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