ANNA KUCIA, ANDRZEJ NOWAK*

ON CARATHÉODORY TYPE SELECTORS IN A HILBERT SPACE

Abstract. In this paper we consider a set-valued function of two variables, measurable in the first and continuous in the second variable. Using metric projections we construct for this function a family of selectors which are Carathéodory maps. The existence of Carathéodory selectors was studied by Castaing [2], [3], Cellina [4], Fryszkowski [9] and the first author [11].

1. Notation and definitions. Let (T, \mathcal{T}) be a measurable space, X a topological space and Y a Hilbert space. By $\mathcal{P}_c(Y)$ we denote the family of all non-empty closed convex subsets of Y. We shall consider $\mathcal{P}_c(Y)$ with the Vietoris topology (see e.g. [12, § 17.1]), and with the generalized Hausdorff metric

dist
$$(A, B) = \sup \{ d(a, B), d(b, A) : a \in A, b \in B \},\$$

where $d(a, B) = \inf\{\|a-b\| : b \in B\}, A, B \in \mathcal{P}_c(Y) \text{ (we admit dist}(A, B) = \infty).$

Let y_0 be a point of Y and r a positive number. By $B(y_0, r)(\overline{B}(y_0, r))$ we denote the open (closed) ball with centre y_0 and radius r. For a set $A \subset Y$ and r > 0, B(A, r)denotes the r-ball about A.

Let $\varphi: T \to \mathcal{P}_c(Y)$ be a multifunction (i.e. set-valued mapping). A function $f: T \to Y$ is a selector for φ if $f(t) \in \varphi(t)$ for all $t \in T$. A multifunction φ is measurable if

$$\{t \in T : \varphi(t) \cap G \neq \emptyset\} \in \mathcal{T}$$

for each open $G \subset Y$ (such φ is called weakly measurable by Himmelberg [10] and Wagner [15], [16]).

We say $f: T \times X \to Y$ is a Carathéodory map if $f(t, \cdot)$ is continuous for each $t \in T$, and $f(\cdot, x)$ is measurable for each $x \in X$.

If A is a non-empty closed convex subset of a Hilbert space Y, then for each $y \in Y$ there is the unique point $h(y, A) \in A$ such that

$$||y-h(y, A)|| = \inf \{||y-a|| : a \in A\}$$

(see e.g. [13, Theorem 2.1.2]). The function $h: Y \times \mathscr{P}_c(Y) \to Y$ is called the *metric*

Received March 15, 1981.

AMS (MOS) subject classification (1980). Primary 54C65. Secondary 49E10.

^{*} Instytut Matematyki Uniwersytetu Śląskiego, Katowice, ul. Bankowa 14, Poland.

projection. If y = 0 then we shall write h(A) instead of h(0, A). By the uniqueness of h(y, A),

(1.1)
$$h(y, A) = h(A - y) + y$$
,

where $A - y = \{a - y : a \in A\}.$

Let a multifunction $\varphi: T \times X \to \mathscr{P}_c(Y)$ be given. For any function $g: T \to Y$ the mapping $f(t, x) = h(g(t), \varphi(t, x))$ is a selector for φ . The aim of this paper is to formulate conditions under which f is a Carathéodory map. In this way we obtain a family of Carathéodory selectors for φ .

2. Preliminary results. In this section we shall study inverse images of open balls under the metric projection. The following geometric lemma will be useful:

LEMMA 1. Let Y be a real Hilbert space, $A \in \mathscr{P}_{c}(Y)$, $y_{0} = h(A)$ and r > 0. For each $y \in A \setminus B(y_{0}, r)$,

$$||y||^2 \ge ||y_0||^2 + r^2.$$

Proof. If $0 \in A$ then $y_0 = 0$ and the inequality holds. If $0 \notin A$ then $\langle y_0, y - y_0 \rangle \ge 0$ for all $y \in A$ ([13, Theorem 2.2.2]). For $y \in A \setminus B(y_0, r)$ we have

$$\|y\|^{2} = \|y_{0} + (y - y_{0})\|^{2} = \|y_{0}\|^{2} + 2\langle y_{0}, y - y_{0} \rangle + \|y - y_{0}\|^{2} \ge \|y_{0}\|^{2} + r^{2},$$

which completes the proof.

The next lemma will play the key role in the paper.

LEMMA 2. Let Y be a real Hilbert space, x_0 a point of Y and r a positive number. Then:

I. $h^{-1}(B(x_0, r)) = \bigcup_{q} \{ A \in \mathscr{P}_c(Y) : A \subset (Y \setminus \overline{B}(0, q)) \cup B(x_0, r) \text{ and } A \cap B(0, q) \neq \emptyset \},$

where the union is taken over all positive q satisfying

(2.1) $\|x_0\| - r < q < \|x_0\| + r.$ II. $h^{-1}(B(x_0, r)) = \bigcup_{q, n} \{A \in \mathscr{P}_c(Y) : A \subset (Y \setminus B(0, q)) \cup \overline{B}\left(x_0, r - \frac{1}{n}\right) \text{ and } A \cap B(0, q) \neq \emptyset\},$

where the union is taken over all positive rationals q and all positive integers n satisfying the following conditions:

$$||x_0|| - r < q < ||x_0|| + r \text{ and } \frac{1}{n} < r.$$

Proof. We shall prove the equality I. The proof of the second part of the lemma is quite similar, therefore we omit it.

Let $A \in \mathscr{P}_c(Y)$ be such that $y_0 = h(A) \in B(x_0, r)$. We shall show the existence of positive q satisfying (2.1) such that

(2.2)
$$A \subset (Y \setminus \overline{B}(0,q)) \cup B(x_0,r) \text{ and } A \cap B(0,q) \neq \emptyset.$$

There is d > 0 such that $\overline{B}(y_0, d) \subset B(x_0, r)$, i.e. $||x_0 - y_0|| + d < r$. It follows from Lemma 1 that

(2.3)
$$||v||^2 \ge ||v_0||^2 + d^2$$

for $y \in A \setminus B(y_0, d)$. Let q > 0 be such that

$$||y_0||^2 < q^2 < ||y_0||^2 + d^2.$$

It implies $||x_0|| - r < q < ||x_0|| + r$. Suppose there is $y \in A \cap \overline{B}(0, q)$ such that $y \notin B(y_0, d)$. Because of (2.3), ||y|| > q which is inconsistent with $y \in \overline{B}(0, q)$. Hence, $A \cap \overline{B}(0, q) \subset B(y_0, d)$. Then

$$A = (A \cap (Y \setminus \overline{B}(0, q))) \cup (A \cap \overline{B}(0, q)) \subset (Y \setminus \overline{B}(0, q)) \cup B(y_0, d)$$
$$\subset (Y \setminus \overline{B}(0, q)) \cup B(x_0, r).$$

The intersection of A and B(0, q) is non-empty, because y_0 is a common point of these sets. Thus A satisfies (2.2).

Now assume that $A \in \mathscr{P}_c(Y)$ satisfies (2.2). Since $A \cap B(0, q) \neq \emptyset$, $h(A) \in B(0, q)$. On the other hand, $h(A) \in (Y \setminus \overline{B}(0, q)) \cup B(x_0, r)$. Hence, $h(A) \in B(x_0, r)$, which completes the proof of the first part of the lemma.

3. Continuity of metric projections. In this section we shall study the continuity of the function $h(y, \cdot)$.

THEOREM 1. Let Y be a real Hilbert space. For each $y \in Y$ the function $h(y, \cdot): \mathscr{P}_c(Y) \to Y$ is continuous in the Vietoris topology and in the generalized Hausdorff metric.

Proof. Because of (1.1), it suffices to consider the case y = 0. The continuity of h in the Vietoris topology is an immediate consequence of Lemma 2.I. Now we show that h is continuous in the generalized Hausdorff metric. Let $A \in \mathcal{P}_c(Y)$ be arbitrary but fixed. Denote $y_0 = h(A)$. We shall prove that for each r > 0 there is s > 0 such that if $F \in \mathcal{P}_c(Y)$ and dist(A, F) < s, then $h(F) \in B(y_0, r)$. We have to consider two cases:

1°. There is s > 0 such that $B(A, s) \subset B(y_0, r)$. If $F \in \mathscr{P}_c(Y)$ and dist (A, F) < s, then $F \subset B(A, s)$. Hence, $h(F) \in B(y_0, r)$.

2°. For each s > 0, $B(A, s) \setminus B(y_0, r) \neq \emptyset$. Preliminary we shall show the existence of s > 0 such that $||z|| \ge ||y_0|| + s$ for each $z \in B(A, s) \setminus B(y_0, r)$. Fix $0 < s < \frac{r}{2}$ and $z \in B(A, s) \setminus B(y_0, r)$. Let $y \in A$ be such that ||y-z|| < s. Since $y \notin B\left(y_0, \frac{r}{2}\right)$, it follows from Lemma 1 that

$$||y||^2 \ge ||y_0||^2 + \frac{r^2}{4}.$$

Thus

$$||z|| \ge ||y|| - s \ge \sqrt{||y_0||^2 + \frac{r^2}{4}} - s.$$

It is not difficult to see that for s satisfying

$$0 < s < \frac{1}{2} \left(\sqrt{\|y_0\|^2 + \frac{r^2}{4} - \|y_0\|} \right)$$

we have

$$\sqrt{\|y_0\|^2 + \frac{r^2}{4}} - s \ge \|y_0\| + s.$$

4 — Annales

For such s and $r_1 = ||y_0|| + s$, if $z \in B(A, s) \setminus B(y_0, r)$ then $||z|| \ge r_1$. Let $F \in \mathscr{P}_c(Y)$ be such that dist(A, F) < s. Since $F \subset B(A, s)$, $h(F) \in B(y_0, r) \cup (B(A, s) \setminus B(y_0, r))$. It follows from $A \subset B(F, s)$ that $F \cap B(0, r_1) \ne \emptyset$. Then $||h(F)|| < r_1$ and, consequently, $h(F) \in B(y_0, r)$. It completes the proof of the continuity of h at A in the generalized Hausdorff metric.

REMARK 1. The Vietoris topology and the topology of the Hausdorff distance coincide on the family of all compact subsets of Y. On $\mathcal{P}_c(Y)$ these two topologies are incomparable. The continuity of metric projections in the Hausdorff metric was studied by several authors (see e.g. Filippov [8, Lemma 5], Daniel [5, Theorem 2.2], Tolstonogov [14, Theorem 1.1]). The corresponding result for the Vietoris topology seems to be new.

4. Measurability of metric projections. Let (T, \mathcal{T}) be a measurable space, Y a Hilbert space, $\varphi: T \to \mathcal{P}_c(Y)$ a measurable multifunction, and $g: T \to Y$ a measurable function. In this section we shall prove the measurability of the function $t \to h(g(t), \varphi(t))$, where h is the metric projection.

THEOREM 2. Let (T, \mathcal{F}) be a measurable space, Y a real separable Hilbert space, and $\varphi: T \to \mathcal{P}_c(Y)$ a measurable multifunction. Then for each measurable $g: T \to Y$ the function $t \to h(g(t), \varphi(t))$ is a measurable selector for φ .

Proof. First we prove that $h(\varphi(\cdot))$ is a measurable function. Let *D* be a countable dense subset of *Y*. The family of all balls B(x, r), where $x \in D$ and *r* is a positive rational, is a countable open base for *Y*. It suffices to show that inverse images of these balls under *h* belong to the σ -algebra \mathcal{T} . By Lemma 2.II and the measurability of φ , we have

$$\{t \in T : h(\varphi(t)) \in B(x, r)\} = \bigcup_{q, n} \left(\left\{ t \in T : \varphi(t) \subset \left(Y \setminus B(0, q)\right) \cup \overline{B}\left(x, r - \frac{1}{n}\right) \right\} \cap \left\{ t \in T : \varphi(t) \cap B(0, q) \neq \emptyset \right\} \right) \in \mathcal{T},$$

where the union is taken over all positive rationals q and all positive integers n satisfying

$$||x|| - r < q < ||x|| + r$$
 and $\frac{1}{n} < r$.

Since φ and g are measurable, the multifunction

$$\varphi(t) - g(t) = \{y - g(t) : y \in \varphi(t)\}$$

is also measurable. Because of (1.1),

$$h(g(t), \varphi(t)) = h(\varphi(t) - g(t)) + g(t)$$

and, consequently, the function $t \to h(g(t), \varphi(t))$ is measurable.

REMARK 2. Similar results to Theorem 2 were obtained by Bocşan ([1, Theorem 1]) and Engl and Nashed ([7, Lemma 2.2]) under assumption that the measurable space (T, \mathcal{T}) is complete.

5. Carathéodory type selectors. Our main result is an immediate consequence of two previous theorems.

THEOREM 3. Let (T, \mathcal{F}) be a measurable space, X a topological space, Y a real separable Hilbert space, and $\varphi: T \times X \to \mathcal{P}_c(Y)$ a multifunction. We assume that for each $x \in X$, $\varphi(\cdot, x)$ is measurable and for each $t \in T$, $\varphi(t, \cdot)$ is continuous in the Vietoris topology or in the generalized Hausdorff metric. Then for each measurable $g: T \to Y$ the function $f(t, x) = h(g(t), \varphi(t, x))$ is a Carathéodory selector for φ .

Proof. It follows from Theorem 2 that $f(\cdot, x)$ is measurable for each $x \in X$. In virtue of Theorem 1, for each $y \in Y$ the function $h(y, \cdot)$ is continuous in the Vietoris topology and in the generalized Hausdorff metric. Thus $f(t, \cdot)$ is continuous as the composition of continuous functions.

REMARKS 3. A multifunction is continuous in the Vietoris topology iff it is lower and upper semi-continuous. For compact-valued multifunctions the continuity in the Vietoris topology is equivalent to the continuity in the Hausdorff distance. These two notions of continuity are incomparable for closed convex-valued multifunctions.

4. Theorem 3 admits the following generalization: Suppose T is endowed with the family of σ -fields $\{\mathcal{T}_x\}_{x\in X}$, for each $x \in X$, $\varphi(\cdot, x)$ is \mathcal{T}_x -measurable, and the other assumptions of Theorem 3 are satisfied. If $g: T \to Y$ is measurable with respect to the σ -algebra $\bigcap_{x\in X} \mathcal{T}_x$, then for each $t \in T$ the function $f(t, \cdot)$ is continuous, and for each $x \in X$, $f(\cdot, x)$ is \mathcal{T}_x -measurable. The same proof holds. This theorem is of special interest in the case when X is an interval on the real line and $\{\mathcal{T}_x\}_{x\in X}$ is an increasing family of σ -fields. A. Fryszkowski called our attention to the problem of the existence of such "non-anticipative" Carathéodory selectors.

5. We can generalize Theorem 3 in the other way. Suppose for each $t \in T$ the multifunction $\varphi(t, \cdot)$ is defined on a non-empty set $D(t) \subset X$ instead of on the whole space X. In this case $f(t, \cdot)$ is also defined on D(t). We say that such a multifunction φ is measurable in t if for each $x \in X$ and each open $G \subset Y$,

 $\{t \in T : \varphi(t, x) \cap G \neq \emptyset \text{ and } x \in D(t)\} \in \mathcal{F}.$

In the same way we define the measurability of $f(\cdot, x)$. With this meaning of the measurability, Theorem 3 holds.

6. Under assumptions of Theorem 3 the existence of Carathéodory selectors cannot be deduced from known general results ([2], [3], [9], [11]), because we admit X to be an arbitrary topological space.

7. Ekeland and Valadier [7] used similar methods in the proof of the representation theorem for a multifunction of two variables.

REFERENCES

 G. BOCŞAN, On best approximation of the generalized random variables in a convex random subset of a Hilbert space, Seminarul de Teoria Funcțiilor si Matematici aplicate, seria A, Universitatea din Timişoara 49 (1979).

- [2] C. CASTAING, Sur l'existence des sections séparément mesurables et séparément continues d'une multi-application, Séminaire d'Analyse Convexe, Montpellier 14 (1975).
- [3] C. CASTAING, À propos de l'existence des sections séparément mesurables et séparément continues d'une multi-application séparément measurable et séparément semi-continue inferieurement, Séminaire d'Analyse Convexe, Montpellier 6 (1976).
- [4] A. CELLINA, A selection theorem, Rend. Sem. Mat. Univ. Padova 55 (1976), 143-149.
- [5] J. W. DANIEL, The continuity of metric projections as functions of the date, J. Approx. Theory 12 (1974), 234-239.
- [6] I. EKELAND, M. VALADIER, Representation of set-valued mappings, J. Math. Anal. Appl. 35 (1971), 621–629.
- [7] H. W. ENGL, M. Z. NASHED, Stochastic projectional schemes for random linear operator equations of the first and the second kind, Numer. Funct. Anal. Optim. 1 (1979), 451-473.
- [8] A. F. FILIPPOV, Classical solutions of differential equations with multivalued right-hand side, Vestnik Moskov, Univ. Ser. I Mat. Mekh. 22 (1967), 16-26. English transl.: SIAM J. Control Optim. 5 (1967), 609-621.
- [9] A. FRYSZKOWSKI, Carathéodory type selectors of set-valued maps of two variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. 25 (1977), 41-46.
- [10] C. J.HIMMELBERG, Measurable relations, Fund. Math. 87 (1975), 53-72.
- [11] A. KUCIA, On the existence of Carathéodory selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. 32 (1984), 233-241.
- [12] K. KURATOWSKI, Topology, vol. 1, Academic Press, New York, 1966.
- [13] P.-J. LAURENT, Approximation et Optimisation, Hermann, Paris, 1972.
- [14] A. A. TOLSTONOGOV, The topological structure of continuous multivalued mappings, Sibirsk. Mat. Zh. 16 (1975), 837–852 (in Russian).
- [15] D. H. WAGNER, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859–903.
- [16] D. H. WAGNER, Survey of measurable selection theorems: An update, in Measure Theory Oberwolfach 1979, Lecture Notes in Mathematics 794, Springer, 1980.