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RANDOM FIXED POINTS OF MULTIFUNCTIONS
IN GAMES AND DYNAMIC PROGRAMMING

Abstract. Recently several authors demonstrated random fixed point theorems for various
classes of multifunctions ([7], [8], [2], [3], [12], [10]). On the other hand we do not know any work
on applications of these theorems. In this paper we apply to games and dynamic programming
a random analogue of the Fan-Kakutani fixed point theorem. We consider a zero-sum two-person
game depending on a random parameter, and present sufficient conditions for the existence
of a measurable solution. Then we study the existence of measurable stationary optimal programs
in discounted dynamic programming with a random parameter.

1 Preliminaries. Let X, Y be non-empty sets. A multifunction ffrom X to Y
is a function defined on X whose values are non-empty subsets of Y. By the graph
of (o0 we mean

r<pm={(x,y)eX XY :ye f(x)}.

Let X, Y be linear spaces, and Z a convex subset of X. A multifunction ¢

from Z to Y is called concave if for all xI,x2eZ, Ae[0, ]

PUIXj +(1 -/1)x 2=> Ae?(-*i)+(1- /1) <p{x2).
It is easy to see that <pis concave iff its graph Hp is a convex subset of Z x V.
A real-valued function / defined on Z is called quasiconvex if for all xt,x2eZ,
Ael0, 1],

[(AXi-[-(1-A)x2) < max {/(x]j), [(x2)}.
The function / is quasi-concave if — is quasi-convex.

LEMMA 1.1. Let X, Y be linear spaces, Z a convex subset of X, (p a multifunc-
tionfrom Z to Y, and u a real-valuedfunction defined on I'tp. If e is concave, u quasi-
-concave, andfor each x e Z, u(x, ¢) is boundedfrom above on <p(x), then the function

v(x):= sup u(x,y), xezZ
+0)

ye
is quasi-concave, and the sets

0) = {ye<p{x):v(x) = u(x, y)}
are convex (possibly empty).
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Proof. Let xt,x2eZ and Ae[0, 1]. Then

V(Xx1+(l —X)x2) > sup u(Axt+(1-A)a2,v) =
¥ e AP + (1 - ))<p{x2)

= sup u(ax!'+(1- AR, A\ +(1 - Ay2 >

Y16 <f(V]), )m 61

A sup mill {«(xx,y j, «(x2,y2} =

yi eip(xi), yz € ip(xz)

min{ sup uix"yj, sup u(x2,>2} = min”Cxj), t;(x2} .
yi e tp(xi) yzhv(.xz)

Hence v is quasi-concave.

Now let xeZ, yt,y2e i*(x) and Ae[0, 1]. It follows from the concavity of
(p that e(x) is convex, thus Ayl+(l —X)y2 e cp(x). Then

u(x, Ayl +(1-X)y2 > min{«(x, yx), m(x, y2} = v(x).
Consequently, /.yl+(1-X)y2e 'p(x)-

Throughout the remainder of this section X, Y are metric spaces and (Q, si, P)
a probability space. The Borel c-field of X is denoted by 3tx- A functionf: Q -> X
is measurable if for each B e 33x, f~i(B) e si. The productQ x I'is always considered
with the product erfield si x :MX. A function u:Q x X-+Y is called a Caratheodory
map if for each ae Q, u(co, ¢) is continuous, and for each x e X, u(-, x) is measurable.
If X is separable and u is a Caratheodory map, then u is jointly measurable (see e.g.
[6, Theorem 6.1]).

Let g be a multifunction from X to Y. We call @ closed (compact, convex)
-valued if cp(x) is closed (compact, convex) for all xe X. For Ac Y we define

<p-UA) m={xeX :(p(x)n A# 0} .

The multifunction (p is said to be upper semicontinuous (abbreviated to u.s.c.) if
for each closed F <Y, cp~I(F) is closed in X. g is called lower semicontinuous if for
each open G<=Y, ~1G) is open. @ is continuous if it is upper and lower semi-
continuous.

A multifunction qpfrom £2to X is measurable if for each open G <X, cp~*(G) e si
(this is called weakly measurable by Himmelberg [6]). If X is separable, (p closed-
-valued and measurable, then Fpe si x 38x . The multifunction <is called separable
if it is closed-valued, measurable, and X contains a countable subset E such that
Er\(p(ad is dense in cp(o) for all coe 12. If A'is separable, @ measurable and cp(co) =

= int<p(co) for all coe Q, then @ is separable ([3, Proposition 4]).
Let g be a multifunction from Q x X to Y, and u a real-valued function defined
on rep. Define

v(co, x)s= sup u(co, X, Y),
y e cpCjo.x)

\I/(co, x) := {y e (p(co, X) : u(co, x,y) = v(co, X)}, coeQ, xeX.
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LEMMA 1.2. Let Ybe Polish, (Q,si, P) complete, p compact-valued, separable
in co and continuous in x. Assume that u is measurable in co, i.e.for each (x,y)e Xx Y
and each re R,
{coeQ :ye cp(co, x), u(co, X, y) >rjesi

and continuous in (x,y), i.e. for each coeQ, u(co, ¢) is continuous on
r<p(co,-) = {(x,y)eXx Y :ye <p(co, X)} .

Then v is a Caratlieodory map, and \ is a compact-valued multifunction measurable
in oo and u.s.c. in X.

Proof. It is well known that under our assumptions, v is measurable in o
(ef. [14, Theorem 9.1]; [11, Theorem 1.7]). Because of the continuity assumptions,
for each coeQ, v(m,-) is continuous and \j/(co, 0 is compact-valued and u.s.c.
([1, p. 122]). In order to prove measurability of i//(e, x) it suffices to show that
rip(-, x) e six&)Y ([6, Theorem 3.5]). We have

/> (", x) = {(0j, .v)eFtp(s, x) :u(co, x,y) = v(oj, X)} .

Since @ is closed-valued and measurable in co, r<p(-, x) e six 39Y. The functions
uand v are measurable in coand continuous in (X, y), so they are jointly measurable.
Thus r\I/(-,x)edx0SY, as a measurable subset of />(-,x).
By C(X) we denote the Banach space of all real-valued bounded continuous
functions on X with the sup norm. If X is compact, then C(X) is a Polish space.
A function F: Q x X -> X is a random contraction if for each xe X, F(-,X)
is measurable, and there is a measurable k :£2 -» [0, 1) such that for all @eQ,
xi,x2eX,
d(F(0),xl),F(co, x2)) < k{pj) d(xy, y2),

where d is the metric of X. A mapping £: Q -» X is called a random fixed point
of F if it is measurable and for each weQ,

F(co, c(co)) = e(w).

It holds the following random analogue of the Banach fixed point theorem:

THEOREM 13 ([5, Theorem 5]). If X is a Polish space and F\Q xX -> X
is a random contraction, then there exists the unique random fixed point of F.

Let D be a multifunction from Q to X with the si x*-measurable graph FD,
and let 9 be a multifunction from FD to X. D is called stochastic domain of <
A function ¢ :£2-> X is a random fixed point of ip if it is measurable, and for each
coe £2,

£(co)e D(@)n <p(co, (co)).

A multifunction @ with stochastic domain D is said to be measurable in co if for
all xe X and all open Gc X,

{coeQ :xeD (co), p(co,x)n G# 0}esi.

@ is called u.s.c. (continuous) in x if for each coe£2, the multifunction cp(co, ® is
u.s.c. (continuous) on D(co).
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The main results of this paper are based on the following stochastic version
of the Fan-Kakutani fixed point theorem:

THEOREM 1.4 ([3, Theorem 16, Remark 17]; [10, Theorem 6]). Let X be
a Frechet space (i.e. linear, metric, complete, locally convex), (Q, s$, P) a complete
probability space, and D a separable multifunction from Q to X with compact, convex
values. Let spbe a dosed convex-valued multifunctionfrom FD to X. Ife is measurable
in co, us.c. in x andfor each (co,x)eFD, ¥(uj, x) ¢ D(dj), then 9 has a random
fixed point.

2. Random minimax theorem. In this section we give a random analogue of the
Ky Fan minimax theorem (c.f. [4]).

Let X, The non-empty sets and (Q, s¢, P) a probability space. Let A be a multi-
function from Q to X, B a multifunction from Q to Y, and/ a real-valued function
defined in the graph of AxB,

r(AxB) = {(co, x, y)e£2xX x Y :xeA(a>), yeB(a>)} .

We shall consider a family {6fffUEfl of zero-sum two-person games, where
Ga = (A(co), B(co), /(to, ¢)); o is interpreted as a state of nature, A(co) and B(co)
are sets ofstrategies, and/(co, ¢) is the payofffunction in state co. A pair (x0, y0)
e A(a>)x B(co) is a solution of the game Gw if

max /(cw, X, >0)=/(co, x0,j 0)= min /(co, x0)y).

xeA(co) yeB(cw)
We present sufficient conditions for the existence of a solution depending measur-
ably on o

THEOREM 2.1. Let X, Y be Frechet spaces and (Q, si, P) a complete pro-

bability space. Let A, B be convex compact-valued and separable, f measurable in
co and continuous in (x, r). Iffor each (w, x, r)e T(A x B) the sets

Hoj,y) ,={x"e A(co):/(co, x",y) = max /(co,z,Yy)},
z e A(0))

ip(co, x) ={/6B(co):/(co,x,/) = min /(co, X, 2)}

z e B(co)

are convex, then there exists a measurable £:£2 -> X x Y such that for each ®eQ,
£(co) = (£]j (co), 42(ft>)) is a solution of the game Gaj.
Proof. Define a new multifunction <° from I\AxB) to Xx Y by

0(co, X, y)~ <p(oo, y)xip{co, x).

Note that (x0,j>0) is a solution of Ga iff (x0,y0) e A(co) x B(co) and (x0, >0) e
e 0(co, x0,y0). We prove that <P satisfies assumptions of Theorem 1.4. The multi-
function A x B is convex compact-valued and separable. It follows from Lemma 1.2
that (pand tp are compact-valued, measurable in coand u.s.c. in the second variable.
Hence is convex compact-valued, measurable in co, and u.s.c. in (x, j). In order
to complete the proof we apply Theorem 1.4.

REMARK 2.1. If the function / in Theorem 2.1 is quasi-concave in x and
quasi-convex iny, then the sets g>(coy) and >p(oj, X) are convex (see Lemma 1.1).
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REMARK 2.2. We have considered zero-sum two-person games for the sake
of simplicity. Our result can be easily generalized for noncooperative n-person
games.

3. Measurable stationary optimal programs in discounted dynamic programming.
W. Sutherland [13] studied a deterministic model of the economy and presented
sufficient conditions for the existence of a stationary optimal program. In this
section we present a random analogue of his result.

Let (2, s¢, P) be a probability space. We shall consider a family of dynamic
programming models Mm= (S, <p(co, ¢), r(m, ), /A«>)), coe£2, where S is the set
of states of some controlled system, the same for all models; e is a multifunction
from Q xS to S, <p(co, s) is the set of all states attainable from s in one step; r is
a bounded from above real-valued function defined on rep, /-(co, ¢ is the reward
function in the model Mm\ft:£2 -» [0, 1), /?(co) is the discount factor in Ma.

We assume that the random parameter coe £2 is known prior to the decision
making. Suppose we start to control our system when it is in state sOe S. At the
first step we choose Sj e cp(co, sO) and receive a reward r(@>, sQ st). At the second
step we choose s2e <p(co, sj, and so on. Such a sequence {s,,}'Qis called a program
starting from sO for the model M QL Future rewards are discounted with the factor
fi(co), so to a program {?} there corresponds the total discounted reward

00

R(co, s0,sIf ...)>= £ Pn(co)r((o,sn,sn+l).
n=0

A program {sj is optimal if it maximizes R(a>, s0, st, ...) among all programs
starting from the same state sO. The decision problem associated with the model
Mm is following: given 9 find an optimal program starting from jO. The value
function of the model Mm is defined by

|/(co, s):=sup”(ca, S, SIs s2, ...),

where supremum is taken over all programs such that sO=s. It is well known
that V satisfies the optimality equation
(3.1) K(co,s)= sup (r(a),s, t)+l1(a>) V((o, t)), coeG, seS.

t e <p(0),s)

If r(co, ® is bounded, then V(co, ) is the unique solution of this equation. A program
{jn} is optimal in the model Mm iff

(3.2) V (co, s,,) = /"(co, S,,, S,+1) +P((0) V(co, s,,+1), n=0,1,2,...

Throughout the remainder of this section we shall assume that S is a metric
space, and e,r,fi depend measurably on co.

A program {$,} is called stationary if sn=s0forn- 0, 1, 2, ... Such a program
is denoted by  +We shall give sufficient conditions for the existence of a stationary
optimal program which depends measurably on co. First we examine the existence
of stationary programs.

LEMMA 3.1. IfS is a convex compact subset of a Frechet space, and the multi-
function (p is dosed convex-valued and u.s.c. in s, then for each toe Q there exists
a stationary program in the model Ma.
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Proot. Note that s°° is a stationary program in the model A/miffse e(co, s).
By the Fan-Kakutani fixed point theorem, for each coeQ there is seS such that
s e <p(co, S).

THEOREM 3.2. Let S be a convex compact subset ofa Frechet space, (Q, $4, P)
a complete probability space, <p closed convex-valued multifunction from Q xS to S
which is separable in o and continuous in s, r measurable in & and continuous in
(5, t), and [l measurable. Iffor each coe Q and each se S the set

(3.3) iff(co, s) — {te (p{o0j, s) : V(co, s) = r(a>, s, t)+P(a>) V(a>, 0}

is convex, then there exists a measurable f: Q -* S such thatfor each oje Q, /(0j)®
is an optimal program in the model Mw.

Proof. By (3.2), s°° is optimal in Ma iff se ip(co, s). We show that ip satisfies
assumptions of Theorem 1.4 with D(co) =S for all coe£2. First we prove that V
is a Caratheodory map. For ue C(S) we define

(3.4) L(co,u)(a)= sup (/'(0>, s, t)+ft(co) u(t)), coeQ, seS.
te (p((0,5)

L is a random contraction on C(5) (see [11, Lemma 3.1]). By Theorem 1.3, L has
the unique random fixed point C(S). For each coeQ, £(oj) is a solution
of the optimality equation (3.1), thus V(u>, s) = £(@>) (7). Hence Kisa Caratheodory
map.

In virtue of Lemma 1.2, ip is a compact-valued multifunction, measurable
in coand u.s.c. ins. We have assumed that ip is convex-valued. Because of Theorem
1.4, p has a random fixed pointf\£2~>S. Thus for each a>eQ, f(a>)" is an optimal
program in Mu..

Now we replace rather technical assumption about convexity of ip(u>, s) by
some additional conditions on ¢ and r.

THEOREM 33. Let S, (Q,P), o rand[i be as in Theorem 3.2. If s
Concave in s and r is concave in (s, t), then there exists a measurable function
/"' Q S such that for each oj e Q, f(co)°° is an optimal program in Mm.

Proof. We show that under our assumptions the multifunction p defined by
(3.3) is convex-valued, and apply Theorem 3.2. Denote by CC(S) the set of all
ue C(S) which are concave. It is not difficult to see that CC(S) is a closed
subset of C(S). Hence CC(S) is a Polish space. Restrict the operator L defined
by (3.4) to £2xCC(S). Under our assumptions, L(co, ¢ is an endomorphism of
CC(S) for each weQ. Then L is a random contraction on CC(S). By the same
argument as in the proof of Theorem 3.2, we obtain the concavity of V(m, ¢
Then the function r+fiV is concavein (s, t). Because of the optimality equation
(3.1) and Lemma 1.1, p is convex-valued.

REMARK 3.1. We can generalize our model to the case when the state space
also varies with cu. Theorems 3.2 and 3.3 hold if we assume that S is a separable
multifunction from Q to a Frechet space X with compact convex values.

REMARK 3.2. In [9] we studied similar problems in a stochastic dynamic
programming model.
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