ISTYAN JUHÁSZ, WILLIAM A.R. WEISS*

NOWHERE DENSE CHOICES AND π-WEIGHT

Abstract. The paper is devoted to inequalities between $\pi_0(X)$ and $\pi_d(X)$ where $\pi_0(X) := \min\{\pi(U) : U \text{ open and non-empty subset of } X\},$

 $\pi_d(X) := \min\{|\mathscr{B}| : \text{ every open and dense subset of } X \text{ containes an element from } \mathscr{B}\}.$ From these definitions $\pi_d(X) \leq \pi_0(X)$ for every space X. In the paper we construct a space X for which $\pi_d(X) = \omega_1$ and $\pi_0(X) = 2^{\aleph_0}$.

We shall define two cardinal functions π_d and π_0 . We shall give conditions which ensure that $\pi_d(X) = \pi_0(X)$ and give a consistent example of a space X such that $\pi_d(X) < \pi_0(X)$.

Recall that for a topological space X, $\pi(X)$ denotes that least cardinal of a π -base for X, i.e.:

 $\min\{|\mathscr{B}|: \text{ for each non-empty open } U\subseteq X, \text{ there is } B\in\mathscr{B} \text{ such that } B\subseteq U\}.$ For a space X we denote by $\pi_0(X)$ the cardinal:

 $\min \{\pi(U): U \text{ is a non-empty open subset of } X\}.$

And we denote by $\pi_d(X)$ the cardinal

 $\min\{|\mathscr{B}|: \text{ for each dense open } U\subseteq X, \text{ there is } B\in\mathscr{B} \text{ such that } B\subseteq U\},$ where such families \mathscr{B} are called π_d -bases for X. All other terminology used in this article can be found in one of the standard textbooks [1], [3] or [5]. Furthermore we shall assume that all topological spaces under consideration are regular.

Motivation for the two new definitions comes from the following question. QUESTION. Given a collection $\mathscr U$ of non-empty open subsets of a space X, can I pick a point $x(U) \in U$ for each $U \in \mathscr U$ such that $\{x(U): U \in \mathscr U\}$ is nowhere dense?

Note that $x: \mathcal{U} \to X$ can be considered as a choice function. The question asks for a choice function with nowhere dense image, hence the first half of our title. Now suppose that \mathcal{U} is a π -base for an open subset $G \subseteq X$. Clearly, the image

Received March 08, 1983.

AMS (MOS) subject classification (1980). Primary 54E18. Secondary 54G10.

^{*} Istvan Juhász. Institute of Mathematics, Hungarian Academy of Science 1053, Budapest, Hungary.

William A. R. Weiss, Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S1A1.

any choice function on \mathcal{U} is dense in G, giving a negative answer to the question and the second half of our title.

A moment's thought will convince the reader that the question has a "NO" answer iff $\mathscr U$ is a π_d -base for X. Therefore the question has a "YES" answer for all collections $\mathscr U$ such that $|\mathscr U| \le \varkappa$ iff $\pi_d(X) > \varkappa$. The argument in the previous paragraph then shows that $\pi_d(X) \le \pi_0(X)$.

These considerations were first made by M. van de Vel. E. K. van Douwen observed that if $\pi_d(X) = \omega$, so does $\pi_0(X)$ and communicated the general problem of the relationship between π_d and π_0 to us.

We first draw some easy conclusions.

THEOREM 1. For each space X we have

- (a) $\pi_d(X) \leqslant \pi_0(X)$,
- (b) $\pi_0(X) \leq 2^{\pi_d(X)}$
- (c) $\pi_0(X) \leqslant \pi_d(X) \cdot \pi_{\chi}(X)$.

Proof. (a) is above. To prove (b), let \mathscr{A} be a π_d -base of X of cardinality $\pi_d(X)$. For each $A \in \mathscr{A}$ pick $X(A) \in A$. Then $X(A) : A \in \mathscr{A}$ must be dense in some open set U. Since X is regular we must have

$$\pi_0(X) \leqslant \pi(U) \leqslant 2^{d(U)} \leqslant 2^{\pi_d(X)}.$$

Let us continue and prove (c). For each $A \in \mathcal{A}$, pick a local π -base $\mathcal{B}(A)$ for x(X) such that $|\mathcal{B}(A)| \leq \pi_{\chi}(X)$. It is now easy to check that $\bigcup \{\mathcal{B}(A) : A \in \mathcal{A}\}$ forms a π -base for U and verifies (c).

We shall see that for many types of spaces we actually have π_d equal to π_0 . We begin with the following useful lemma.

LEMMA 2. Suppose $\pi_0(X) = \varkappa$, \mathscr{A} is a family of $< \varkappa$ non-empty open subsets of X and \mathscr{B} is a family of $< \varkappa$ non-empty open subsets of X. Then there is a family \mathscr{C} of λ non-empty open sets precisely refining \mathscr{B} such that no $A \in \mathscr{A}$ is covered by finitely many members of \mathscr{C} . Furthermore \mathscr{C} can be chosen as a subfamily of any given π -base for X.

Proof. Enumerate \mathscr{B} as $\{B_{\alpha}: \alpha < \lambda\}$. We construct $\mathscr{C} = \{C_{\alpha}: \alpha < \lambda\}$ by recursively constructing C_{α} for $\alpha < \lambda$ with the inductive hypothesis at $\beta < \lambda$ that for each $\alpha < \beta$, C_{α} is a non-empty open subset of B_{α} such that no $A \in \mathscr{A}$ is covered by finitely many members of $\{\overline{C}_{\alpha}: \alpha < \beta\}$.

At stage β note that $\pi(B_{\beta}) \geqslant \kappa$, and

$$\left|\left\{A \setminus \bigcup_{\alpha \in F} \overline{C}_{\alpha} : A \in \mathscr{A} \text{ and } F \in [\beta]^{<\omega}\right\}\right| < \kappa.$$

Hence there is some open $G \subset B_{\beta}$ such that for all $A \in \mathscr{A}$ and for all $F \in [\beta]^{<\omega}$

$$(A \setminus \bigcup_{\alpha \in F} \overline{C}_{\alpha}) \setminus G \neq \emptyset.$$

Now pick a non-empty open C in our given π -base such that $\overline{C}_{\beta} \subseteq G$. This completes the induction and the proof.

The next lemma reduces the problem to considerations involving π -weight.

LEMMA 3. If X is a space, then X has an open subspace Y such that

$$\pi_d(Y) \leqslant \pi_d(X) \leqslant \pi_0(X) \leqslant \pi_0(Y) = \pi(Y).$$

Proof. Let \mathscr{A} be a π_d -base for X. It suffices to prove that there is an open $Y \subseteq X$ such that $\pi_0(Y) = \pi(Y)$ and $\{Y \cap A : A \in \mathscr{A}\}$ is a π_d -base for Y.

Suppose not. Consider a maximal pairwise disjoint family of open sets \mathscr{U} such that for all $U \in \mathscr{U}$, $\pi_0(U) = \pi(U)$. For each $U \in \mathscr{U}$, pick G(U), an open dense subset of U such that for all $A \in \mathscr{A}$, if $U \cap A \neq \emptyset$ then $(U \cap A) \setminus G(U) \neq \emptyset$. Since $\bigcup \mathscr{U}$ is dense in X, so is $G = \bigcup \{G(U) : U \in \mathscr{U}\}$ and no $A \in \mathscr{A}$ is contained in G, contradicting that \mathscr{A} is a π_d -base.

We can now state some theorems.

THEOREM 4. If X is a locally compact space, then $\pi_d(X) = \pi_0(X)$.

Proof. By Lemma 3 we can assume $\pi_0(X) = \pi(X)$ without loss of generality. Let $\varkappa = \pi_0(X) > \pi_d(X) = \lambda$ and show a contradiction.

Let \mathscr{A} be a collection of open sets, of size λ , such that for each dense open $V \subseteq X$ there is some $A \in \mathscr{A}$ such that \overline{A} is compact and $\overline{A} \subseteq V$. Let \mathscr{B} be a π -base for X of size \varkappa . By Lemma 2, we can choose \mathscr{C} as in the statement of the lemma. Since \mathscr{C} refines \mathscr{B} , $\bigcup \mathscr{C}$ is dense, hence there is a compact $\overline{A} \subset \bigcup \mathscr{C}$ which contradicts the other property of \mathscr{C} .

THEOREM 5. $\pi_d(X) = \pi_0(X)$ if either (i) X is locally connected, or (ii) X is a linearly ordered topological space.

Proof. We first show that in each case (i) and (ii) there is a π -base \mathscr{U} for X such that if $U \in \mathscr{U}$ and \mathscr{V} is a pairwise disjoint subcollection of \mathscr{U} such that $U \subseteq \bigcup \mathscr{V}$ then there is some $V \in \mathscr{V}$ such that $U \subseteq V$. For case (i) this is immediate. For case (ii), let \mathscr{U} be the collection: $\{\{P\}: p \text{ is isolated}\} \cup \{(a, b): a \text{ has no immediate successor and } b \text{ has no immediate predecessor}\}.$

We now use this property of $\mathscr U$ to complete the proof that $\pi_d(X) = \pi_0(X)$. Let $\mathscr A \subseteq \mathscr U$ be a subcollection of size $< \pi_0(X)$. For each open V there is some $U(V) \in \mathscr U$ such that no element of $\mathscr A$ is contained in U(V). Let $\mathscr V$ be a maximal pairwise disjoint subcollection of $\{U(V): V \text{ is open in } X\}$; $\bigcup \mathscr V$ is dense, showing that $\mathscr A$ is not a π_d -base for X.

It is not true that $\pi_d(X) = \pi_0(X)$ for every X, but we only have consistent counterexamples. These use the following lemma.

LEMMA 6. If X is a non-separable Lusin space of cardinality ω_1 , then $\pi_d(X) \leq \omega_1$. Proof. Enumerate X as $\{x_\alpha : \alpha \in \omega_1\}$. Since every nowhere dense subset of X is countable, the following collection forms a π_d -base:

$${X \setminus \operatorname{cl}({x_{\beta} : \beta \in \alpha}) : \alpha \in \omega_1}.$$

In [6], there is constructed a dense Lusin subspace Y of 2^{\varkappa} , under the assumption BACH plus $\omega_1 < \varkappa < 2^{\omega_1}$. For this space we have $\pi_0(Y) = \varkappa$ and $\pi_d(Y) = \omega_1$.

We shall show that the inequality $\pi_0(X) \leq 2^{\pi_d(X)}$ is sharp by showing that it is relatively consistent that 2^{ω_1} is "anything reasonable" and there is a space X with $\pi_d(X) = \omega_1$ and $\pi_0(X) = 2^{\omega_1}$. This is accomplished by Lemma 6 and the following theorem.

THEOREM 7. CON (ZFC plus $2^{\omega_1} = \varkappa$) implies CON (ZFC plus $2^{\omega_1} = \varkappa$ plus there is a dense Lusin subspace of 2^{\varkappa} of cardinality ω_1).

Proof. We can suppose that we have

$$V = "ZFC$$
 plus CH plus $2^{\omega_1} = \kappa"$.

We shall construct a generic extension of V in order to prove the theorem. We first describe a partial order $\mathscr P$ in the model V. Using CH, let X be a dense Baire (for example, countably compact) subspace of 2^{\varkappa} of size ω_1 . Enumerate X as $\{x_{\alpha}: \alpha \in \omega_1\}$. Let $H(\varkappa)$ be the collection of all finite partial functions from \varkappa into 2. For each $\varepsilon \in H(\varkappa)$, denote by $[\varepsilon]$ the set $\{f \in 2^{\varkappa}: \varepsilon \subseteq f\}$ which is an elementary open subset of 2^{\varkappa} . Let $\mathscr D$ denote the set

$$\{D \in [H(\varkappa)]^{\leq \omega} : \bigcup \{[\varepsilon] : \varepsilon \in D\} \text{ is dense in } 2^{\varkappa}\}.$$

Finally, let \mathcal{P} be the set

$$\{\langle Y, \mathscr{V} \rangle : Y \in [X]^{\leq \omega} \text{ and } \mathscr{V} \in [\mathscr{D}]^{\leq \omega}\}$$

with the ordering $\langle Y_1, \mathscr{V}_1 \rangle \leqslant \langle Y_2, \mathscr{V}_2 \rangle$ iff $Y_2 \subseteq Y_1, \mathscr{V}_2 \subseteq \mathscr{V}_1$ and for each $D \in \mathscr{V}_2$,

$$Y_1 \setminus Y_2 \subset \bigcup \{[e] : e \in D\}.$$

Let \mathscr{G} be \mathscr{G} -generic over V. We claim that $V[\mathscr{G}] \models "2^{\omega_1} = \varkappa$ and there is a dense Lusin subspace of 2^{κ} of size ω_1 ".

Let $X^* = \bigcup \{Y : \text{ for some } \mathscr{V}, \langle Y, \mathscr{V} \rangle \in \mathscr{G} \}$. Observe that P is countably closed and hence $V[\mathscr{G}]$ contains no new countable subsets of V. Since $V \models CH$ and P is 2^{ω} -centered, all cardinals are preserved. We know that $|X^*| = \omega_1$ by considering the following dense sets:

$$\{\langle Y, \mathscr{V} \rangle : \text{for some } \alpha > \beta, x_{\alpha} \in Y\}, \beta \in \omega_1.$$

It remains to show that X^* is a dense Lusin subspace of 2^* . X^* is dense in 2^* because the following sets are dense in P:

$$\big\{\big\langle Y,\,\mathscr{V}\big\rangle:\,Y\cap\big[\varepsilon\big]\neq\,\emptyset\big\}\,,\,\,\varepsilon\!\in\!H(\varkappa)\,.$$

Note that for each $D \in \mathcal{D}$, the set $\{\langle Y, \mathscr{V} \rangle : D \in \mathscr{V}\}$ is dense. We will show that this implies that every dense open subset of X^* is co-countable. Let U be a dense open subset of 2^* . Let E be a maximal pairwise disjoint collection of elementary open subsets of U. $|E| \leq \omega$ and hence $D = \{\varepsilon : [\varepsilon] \in E\} \in \mathcal{D}$. For some $\langle Y \rangle$, $\langle Y, \{D\} \rangle \in \mathscr{G}$ and since elements of \mathscr{G} are compatible we have that $X^* \setminus U \subseteq Y$ and is hence countable.

We note that this proof can be generalized to obtain the following corollary. COROLLARY 8. CON (ZFC plus $2^{(\lambda^+)} = \varkappa$) implies CON (ZFC plus there is a space X with $\pi_d(X) = \lambda^+$ and $\pi_0(X) = \varkappa$).

We also note that this theorem gives a consistant example of an L-space of weight 2^{ω_1} where 2^{ω_1} is arbitrarily large. See [2], [4] and [6].

Now we will show that the existance of a dense subspace X of $2^{(2^{\omega_1})}$ such that $\pi_d(X) < \pi_0(X) = 2^{\omega_1}$ is denied by Martin's Axiom and is hence independent of ZFC.

Let X be a space and \mathcal{U} be a collection of subsets of X. We denote by $\mathcal{P}(X, \mathcal{U})$ the set

$$\{\langle S, \mathscr{V} \rangle : S \in [X]^{<\omega} \setminus \{\emptyset\}, \mathscr{U} \in [\mathscr{V}]^{<\omega} \text{ and } S \cap \bigcup \mathscr{V} = \emptyset\}$$

with the partial ordering $\langle S_1, \mathscr{V}_1 \rangle \leq \langle S_2, \mathscr{V}_2 \rangle$ iff $S_2 \subseteq S_1$ and $\mathscr{V}_2 \subseteq \mathscr{V}_1$.

THEOREM 9. Assume MA. If $\varkappa \leq 2^{\omega}$ and X is a dense subspace of 2^{\varkappa} , then $\pi_d(X) = \pi_0(X) = \varkappa$.

Proof. We show that if $\lambda < \varkappa$, then $\pi_d(X) > \lambda$. Suppose not and derive a contradiction by assuming that \mathscr{A} is a π_d -base of size λ . Without loss of generality assume that each $A \in \mathscr{A}$ is an elementary open set. Since $\lambda < \varkappa$ we can find $Y \in [\varkappa]^{\omega}$ such that the support of any $A \in \mathscr{A}$ is disjoint from Y. Let \mathscr{U} be the collection of all elementary open sets with support contained in Y.

Let us notice the following facts. \mathscr{U} is countable. If $A \in \mathscr{A}$ and $\mathscr{V} \in [\mathscr{U}]^{<\omega}$, then either $\bigcup \mathscr{V} = 2^{\times}$ or $X \cap (A \setminus \bigcup \mathscr{V}) \neq \emptyset$. If $\mathscr{U}' \subseteq \mathscr{U}$ such that for each $U \in \bigcup \mathscr{U}$, $U \cap \bigcup \mathscr{U}' = \emptyset$ then $\bigcup \mathscr{U}'$ is a dense open subset of 2^{\times} .

Now consider $\mathscr{P}(X, \mathscr{U})$. From the above facts, we have that $\mathscr{P}(X, \mathscr{U})$ is σ -cen tered and that for each $A \in \mathscr{A}$, the set

$$\{\langle S, \mathscr{V} \rangle : S \cap (A \setminus \bigcup \mathscr{V}) \neq \emptyset\}$$

is dense in $\mathcal{P}(X, \mathcal{U})$. Furthermore, for each $U \in \mathcal{U}$ the set

$$\{\langle S, \mathscr{V} \rangle : U \cap \bigcup \mathscr{V} \neq \emptyset\}$$

is also dense in $\mathcal{P}(X, \mathcal{U})$.

Let $\mathscr{G} \subseteq \mathscr{P}(X, \mathscr{U})$ be a filter which meets each of the dense sets above; and let $G = \bigcup \{\bigcup \mathscr{V} : \text{ for some } S, \langle S, \mathscr{V} \rangle \in \mathscr{G} \}$. Then G is a dense open set contradicting that \mathscr{A} is a π_d -base for X.

Only MA for σ -centered posets was used above. In the following theorem we use only MA for a countable poset.

THEOREM 10. Assume MA. If X is separable then $\pi_d(X) = \pi_0(X)$.

Proof. Since $\pi(X) \leq 2^{d(X)} \leq c$, it suffices to show that if $\pi_d(X) = \lambda < c$ then $\pi_0(X) = \lambda$. We suppose $\pi_0(X) = \kappa > \lambda$ and derive a contradiction. By Lemma 3 we can assume that $\pi(X) = \kappa$. We can also assume, without loss of generality, that X is countable and has no isolated points.

Let $\mathscr A$ be a π_d -base for X of cardinality λ , and let $\mathscr B$ be a π -base for X of cardinality κ . Let $\mathscr C$ be the family obtained from Lemma 2. Let $\mathscr D$ be a complete pairwise disjoint subfamily of $\mathscr C$ such that $\bigcup \mathscr D$ is dense in X. Let $\mathscr U = \{D \setminus F \colon D \in \mathscr D \text{ and } F \in [X]^{<\omega}\}$.

Now consider $\mathscr{P}(X, \mathscr{U})$. This is countable, and each set $\{\langle S, \mathscr{V} \rangle \in \mathscr{P}(X, \mathscr{U}) : S \cap (A \setminus \mathcal{V}) \neq \emptyset \}$, where $A \in \mathscr{A}$, is dense in $\mathscr{P}(X, \mathscr{U})$. Also each set $\{\langle S, \mathscr{V} \rangle \in \mathscr{P}(X, \mathscr{U}) : D \cap \bigcup \mathscr{V} \neq \emptyset \}$, where $D \in \mathscr{D}$, is also dense. MA allows us to find a filter $\mathscr{G} \subseteq \mathscr{P}(X, \mathscr{U})$ which meets each of the above dense sets.

Let $G = \bigcup \{ \bigcup \mathscr{V} : \langle S, \mathscr{V} \rangle \in \mathscr{G} \text{ for some } S \}$. Since \mathscr{G} meets each of the first type of dense set, no $A \in \mathscr{A}$ is contained in G. Since \mathscr{G} meets each of the second type of dense set and X has no isolated points, G is a dense open subset of X. This contradicts that \mathscr{A} is a π_d -base for X.

The result of van Douven that $\pi_d(X) = \omega$ implies $\pi_0(X) = \omega$ can be gleaned from the proof of this last theorem. If $\mathscr A$ is a countable π_d -base for X, let Y be a countable subset of X meeting each set in $\mathscr A$. Now follow the proof of Theorem 10 for the subspace $\operatorname{Int}(Y)$ of X. MA is not needed since only countable many dense sets need to be met. However, van Douwen's original proof is easier and more straightforward.

We have one more result about π_d and π_0 . It uses the following lemma, which is of independent interest.

LEMMA 11. If X has no isolated points and $c(X) = \omega$, then either there is a Suslin tree of open subsets of X or there is a countable collection of open subsets of X such that for each $F \in [X]^{<\omega}$, $\bigcup \{C \in \mathscr{C} : C \cap F = \emptyset\}$ is dense.

Proof. We build a tree of open subsets of X, by recursion on the levels of the tree, starting with $T_0 = \{X\}$. If level T_α has been defined and $t \in T_\alpha$ we define the node of t, N(t), to be a maximal non-trivial collection of open subsets of t such that for all U, $V \in N(t)$ $\overline{U} \cap \overline{V} = \emptyset$. Let $T_{\alpha+1} = \bigcup \{N(t) : t \in T_\alpha\}$.

If $\lim(\lambda)$ and we have T_{α} for all $\alpha < \lambda$, consider the tree $\bigcup \{T_{\alpha} : \alpha < \lambda\}$. For each branch b of this tree consider $\operatorname{Int}(\bigcap b)$. Let $T_{\alpha} = \{\operatorname{Int}(\bigcap b) : b \text{ is a branch of } \bigcup \{T_{\alpha} : \alpha < \lambda\} \setminus \{\emptyset\}$.

Note that since $c(X) = \omega$ this recursion stops after at most ω_1 steps and that the resulting tree T has no uncountable chains or antichains.

If T is not a Suslin tree, then $|T| = \omega$. In this case, let $\mathscr{C} = T$. Since \mathscr{C} is closed under finite intersections, it only remains to prove that for any $x \in X \cup \{C \in \mathscr{C} : x \in C\}$ is dense. To this end let $p \in X$ and show that p is in the closure of $\bigcup \{C \in \mathscr{C} : x \in C\}$. However, this result is obtained by a straightforward consideration of the ways in which p and x can "leave" the tree construction and is therefore left for the reader (i.e. it is messy to write out).

Recall that the Novak number of a space X is

 $n(X) = \min\{x : X \text{ can be covered by } x \text{ nowhere dense sets}\}.$

COROLLARY 12. If X has no isolated points, then $n(X) \leq 2^{c(X)}$.

Proof. This follows from the proof of the lemma since each element of T and each branch of T determine a nowhere dense set, and their union is all of X. The tree T has at most $(c(X))^+$ elements and $2^{c(X)}$ branches.

We use Lemma 11 in the following theorem.

THEOREM 13. Assume MA. If $c(X) = \omega$ and $\pi(X) < c$, then $\pi_d(X) = \pi_0(X)$. Proof. Suppose $\pi_d(X) < \pi_0(X)$. By Lemma 3 we can assume $\pi_0(X) = \pi(X)$. Let $\mathscr A$ be a π_d -base for X of cardinality $\pi_d(X)$. By Lemma 2 there is a π -base $\mathscr C$ such that no finite subcollection of $\mathscr C$ covers any element of $\mathscr A$. Let $\mathscr C_1$ be a maximal pairwise disjoint subcollection of $\mathscr C$, By Lemma 11 obtain a countable collection $\mathscr C_2$ of open subsets of X such that for each $F \in [X]^{<\omega}$, $\bigcup \{C \in \mathscr C_2 : C \cap F = \varnothing\}$ is dense.

Let $\mathscr{U} = \{C_1 \cap C_2 : C_1 \in \mathscr{C}_1 \text{ and } C_2 \in \mathscr{C}_2\}$. Then \mathscr{U} has the following properties:

- (i) no finite subcollection of \mathcal{U} covers an element of \mathcal{A} ;
- (ii) for each $F \in [X]^{<\omega}$, $\bigcup \{U \in \mathcal{U} : U \cap F = \emptyset\}$ is dense.

Now, consider $\mathcal{P}(X, \mathcal{U})$. Since \mathcal{U} is countable, $\mathcal{P}(X, \mathcal{U})$ is σ -centered. By property (i) for each $A \in \mathcal{A}$ the set

$$\{\langle S, \mathscr{V} \rangle : S \cap (A \setminus \bigcup \mathscr{V}) \neq \emptyset\}$$

is dense in $\mathscr{P}(X, \mathscr{U})$. Fix a π -base \mathscr{B} of size < C. By property (ii), for each $B \in \mathscr{B}$ the set

$$\{\langle S, \mathscr{V} \rangle : \bigcup \mathscr{V} \cap B \neq \emptyset\}$$

is dense in $\mathscr{P}(X, \mathscr{U})$. Let $\mathscr{G} \subseteq \mathscr{P}(X, \mathscr{U})$ be a filter meeting each of the above dense sets. Let

$$G = \{ \bigcup \mathscr{V} : \langle S, \mathscr{V} \rangle \in \mathscr{G} \text{ for some } S \}.$$

Then G is a dense open subset of X witnessing that \mathcal{A} is not a π_A -base for X.

We could have eliminated the hypothesis " $\pi(X) < C$ " from Theorem 13 if we could have constructed \mathscr{U} in the proof such that it "self-witnessed denseness" as in the proofs of Theorems 9 and 10. We need an extension of Lemma 10, which, in conclusion, we ask as a question.

QUESTION 14. Assume MA. Suppose X is a space with $c(X) = \omega$ and no isolated points. Does there exist a countable family $\mathcal U$ of open subsets of X with the following two properties:

- 1. for each finite $F \subseteq X$, $\bigcup \{U \in \mathcal{U} : U \cap F \neq \emptyset\}$ is dense;
- 2. if $\mathscr{V} \subseteq \mathscr{U}$ such that for each $U \in \mathscr{U}$, $(\bigcup \mathscr{V}) \cap U \neq \emptyset$, then $\bigcup \mathscr{V}$ is dense in X?

REFERENCES

- [1] J. BERWISE, Handbook of Mathematical Logic, North Holland, 1977.
- [2] E. VAN DOUWEN, F. TALL, W. WEISS, Non-metrizable hereditarily Lindelöf spaces with point-countable bases from CH, Proc. Amer. Math. Soc. 64 (1977), 139—145.
- [3] R. ENGELKING, General Topology, Polish Scientific Publishers, Warsaw, 1977.
- [4] A. HAJNAL, I. JUHÁSZ, On hereditarily α-Lindelöf and hereditarily α-separable spaces II, Fund. Math. 81 (1974), 147—158.
- [5] I. JUHÁSZ, Cardinal Functions Ten Years Later, Mathematical Centre, Amsterdam, 1980.
- [6] F. D. TALL, Some applications of a generalized Martin's Axiom, Trans. Amer. Math. Soc. (to appear).