WŁADYSŁAW KULPA*

RIGID GRAPHS OF MAPS

Abstract. In this note we construct maps between metric separable connected spaces X and Y such that the graphs are connected, dense and rigid subspaces of the Cartesian product $X \times Y$. From this result it follows that there is no maximal topology among metric separable connected topologies on a given set X.

In this note we shall construct maps between metric separable connect spaces X and Y such that the graphs are connected, dense and rigid subspaces of the Cartesian product $X \times Y$. The first construction of a map $f: R \to R$ with the connected and dense graph in the plane and satisfying the Cauchy equation f(x)+f(y)=f(x+y) was given by F.B. Jones [3] in 1942. More general construction one can find in [4]. In order to obtain the existence of rigid graphs of maps, we shall utilize, in the proof, an idea of W. Sierpiński from [5]. A similar method is also used in de Groot's paper [2].

Spaces considered here are assumed to be separable and metric, i.e. we assume that they are subspaces of the Hilbert's cube I^{ω} .

A continuous map $f: X \to Y$, X, $Y \subset I^{\omega}$, is called a *continuous displacement* [2], iff there exists a subset $V \subset X$ such that

$$|f(V)| = 2^{\omega}$$
 and $V \cap f(V) = \emptyset$,

Let us notice that each homeomorphism $f: X \to X$ different from the identity map, and where X is a connected subspace of I^{ω} , is a continuous displacement. Indeed, since $f \neq \operatorname{id}_X$, there exists a point $x \in X$ such that $f(x) \neq x$. Choose disjoint open sets V, $W \subset X$ such that $x \in V$ and $f(x) \in f(V) \subset W$. Since X is a connected metric space hence $|V| = 2^{\omega}$. Thus, $|f(V)| = 2^{\omega}$ and $V \cap f(V) = \emptyset$.

For more exhaustive information on continuous displacements, the reader can refer to de Groot's paper [2].

Received April 04, 1983.

AMS (MOS) subject classification (1980). Primary 54C08.

Instytut Matematyki Uniwersytetu Śląskiego, Katowice, ul. Bankowa 14, Poland

A space X is said to be *rigid* if it admits between itself no homeomorphsim different from the identity map. An abound information on rigid spaces can be found in Charatonik's paper [1].

For each map $f: X \to Y$, let G(f) denotes the graph of the map f:

$$G(f) = \{(x, y) \in X \times Y : y = f(x)\}.$$

Let $\pi: X \times Y \to X$ means the projection and let the symbols Int, Bd mean respectively interior and boundary operations.

Let us start from a

LEMMA. If $f: X \to Y$ is a map between connected metric separable spaces such that for each non-empty open set $G \subset X \times Y$ with non-empty boundary

$$G(f) \cap \operatorname{Bd}_{X \times Y} G \neq \emptyset$$
,

then the graph is connected and dense in $X \times Y$.

Proof. It is obvious that the graph must be dense in $X \times Y$, because the sets of the form $U \times V$, U open in X and V open in Y, create a base for the topology of the space $X \times Y$.

In order to see that the graph must be connected we shall utilize two results from [4]. It was proved in ([4, Lemma 1]) that if X and Y are connected spaces and G is a non-empty subset of $X \times Y$ then one of the following conditions is satisfied:

- (a) $\operatorname{Int}_{X} \pi(\operatorname{Bd}_{X \times Y} G) \neq \emptyset$,
- (b) there exists an $x \in X$ such that $\pi^{-1}(x) \subset \operatorname{Bd}_{X \times Y} G$,
- (c) G is dense in $X \times Y$.

Secondly ([4, Lemma 2]), if D is a dense subset of a connected space Z such that for each non-empty open set $G \subset Z$ with $D \not = G$,

$$D \cap \operatorname{Bd}_z G \neq \emptyset$$

then D is a connected set.

Put D = G(f) and $Z = X \times Y$. Let us verify that the condition $D \cap Bd_Z G \neq \emptyset$ is satisfied for each non-empty open set $G \subset Z$ for that $D \not\subset G$.

- (1) If $\operatorname{Int}_{X}\pi(\operatorname{Bd}_{Z}G)\neq\emptyset$ then according to the assumption $D\cap\operatorname{Bd}_{Z}G\neq\emptyset$.
- (2) If there exists an $x \in X$ such that $\pi^{-1}(x) \subset \operatorname{Bd}_z G$ then it is clear that $D \cap \operatorname{Bd}_z G \neq \emptyset$.
 - (3) If $G \Rightarrow D$ is dense in Z then

$$D \cap \operatorname{Bd}_{\mathbb{Z}} G = D \cap (\mathbb{Z} \setminus G) = D \setminus G \neq \emptyset.$$

Thus, the lemma is proved.

THEOREM. Let X and Y be metric separable and connected spaces. Then there exists a family $\mathscr{C} \subset \operatorname{Map}(X, Y)$, $|\mathscr{C}| = 2^{\circ}$, $c = 2^{\circ}$, such that:

- (1) each graph G(f), $f \in \mathcal{C}$, is a connected, dense and rigid subspace of the product $X \times Y$,
 - (2) no two distinct graphs G(f) and G(g), $f, g \in \mathcal{C}$, are homoemorphic.

Proof. Assume that the product $X \times Y$ is a subspace of the Hilbert cube I^{ω} , $X \times Y \subset I^{\omega}$. Consider the family

$$\{(f_\alpha:S_\alpha\to I^\omega):\alpha<2^\omega\}$$

of all the continuous displacement $f_{\alpha}: S_{\alpha} \to I^{\omega}$, where S_{α} is a \mathcal{G}_{δ} subset of I^{ω} , such that

$$\pi \left[S_{\alpha} \cap (X \times Y) \right] = 2^{\omega},$$

where $\pi: X \times Y \to X$ is the projection. Let us well order the set X;

$$X = \{x_{\alpha} : \alpha < 2^{\omega}\}$$

and let us put, for each $\alpha < 2^{\omega}$, $Q_{\alpha} = \{x_{\alpha}\} \times Y$. Let $\{P_{\alpha} : \alpha < 2^{\omega}\}$ be a well-ordering of the family

$$\{\operatorname{Bd}_{X\times Y}G: G \text{ is open in } X\times Y \text{ and } \operatorname{Int}_X\pi(\operatorname{Bd}_{X\times Y}G)\neq\emptyset\}.$$

We shall define by induction sets

$$A_{\sigma} = \{p_{\sigma}, q_{\sigma}, r_{\sigma}, s_{\sigma}, t_{\sigma}\} \subset X \times Y, \alpha < 2^{\omega}$$

satisfying the following conditions:

- (1) $p_{\alpha} \in P_{\alpha}$, $q_{\alpha} \in Q_{\alpha}$, r_{α} , $s_{\alpha} \in S_{\alpha} \cap (X \times Y)$, $s_{\alpha} \neq t_{\alpha}$ and $\pi(s_{\alpha}) = \pi(t_{\alpha})$,
- (2) if $x, y \in \bigcup \{A_{\alpha} \setminus \{t_{\alpha}\} : \alpha < 2^{\omega}\}$ and $x \neq y$ then $\pi(x) \neq \pi(y)$,
- (3) for each $\alpha < 2^{\omega}$, $f_{\alpha}(r_{\alpha}) \notin \bigcup \{A_{\beta} : \beta < 2^{\omega}\}$.

Suppose that the sets A_{β} have been choosen for each $\beta < \alpha$. Put

$$Z_{\alpha} = \bigcup \{A_{\beta} : \beta < \alpha\}.$$

We have $|Z_{\alpha}| < 2^{\omega}$.

(a) Let us choose a $p_{\alpha} \in P_{\alpha}$ such that

$$p_{\alpha} \in P_{\alpha} \setminus \{f_{\beta}(r_{\beta}) : \beta < \alpha\} \text{ and } \pi(p_{\alpha}) \notin \pi(Z_{\alpha}).$$

(b) Choose a $q_{\alpha} \in Q_{\alpha}$ such that

$$q_{\alpha} = q_0$$
 whenever $Q_{\alpha} \cap (Z_{\alpha} \cup \{p_{\alpha}\}) \neq \emptyset$

or

$$q_{\alpha} \in Q_{\alpha} \setminus \{f_{\beta}(r_{\beta}) : \beta < \alpha\}$$
 whenever $Q_{\alpha} \cap (Z_{\alpha} \cup \{p_{\alpha}\}) = \emptyset$.

(c) Let $V_{\alpha} \subset S_{\alpha}$ be a set such that

$$|f_{\alpha}(V_{\alpha})| = 2^{\omega} \text{ and } V_{\alpha} \cap f_{\alpha}(V_{\alpha}) = \emptyset.$$

Choose points r_{α} , $s_{\alpha} \in S_{\alpha} \cap (X \times Y)$ such that

$$r_{\alpha}$$
, $s_{\alpha} \in f_{\alpha}^{-1}[f_{\alpha}(V_{\alpha}) \setminus (Z_{\alpha} \cup \{p_{\alpha}, q_{\alpha}\})] \setminus \{f_{\beta}(r_{\beta}) : \beta < \alpha\}$,
 $\pi(r_{\alpha}) \neq \pi(s_{\alpha})$ and $\pi(r_{\alpha}), \pi(s_{\alpha}) \notin \pi(Z_{\alpha} \cup \{p_{\alpha}, q_{\alpha}\})$.

(d) Finally, choose $t_{\alpha} \in X \times Y$ such that

$$t_{\alpha} \in \{\pi(s_{\alpha})\} \times Y \setminus \{f_{\beta}(r_{\beta}) : \beta \leq \alpha\}.$$

One can verify that the conditions (a)-(d) imply the conditions (1)-(3). Let us put $S = \{s_{\alpha} : \alpha < 2^{\omega}\}$. The set S can be represented as the union

$$S = \bigcup \{B_{\gamma} : \gamma < 2^{\mathfrak{c}}\}, \ \mathfrak{c} = 2^{\omega},$$

such that

$$\gamma \neq \gamma'$$
 implies $B_{\gamma} \neq B_{\gamma'}$.

Define for each $\gamma < 2^c$ the set

$$K_{\gamma} = \bigcup \{\{p_{\alpha}, q_{\alpha}, r_{\alpha}, d_{\alpha}^{\gamma}\} : \alpha < 2^{\omega}\},$$

where

$$d_{\alpha}^{\gamma} = \begin{cases} s_{\alpha}, & \text{if } s_{\alpha} \in B_{\gamma}, \\ t_{\alpha}, & \text{if } s_{\alpha} \notin B_{\gamma}. \end{cases}$$

Let $g_{\nu}: X \to Y$ be such that $G(g) = K_{\nu}$.

Since each set K contains the set $\bigcup \{p_{\alpha}, q_{\alpha}\}: \alpha < 2^{\omega}\}$ hence according to Lemma each of the sets, $K_{\nu} < 2^{c}$, is dense and connected in the product $X \times Y$.

Now, suppose that there exists a continuous displacement $f: K_{\gamma} \to K_{\gamma'}$, γ , $\gamma' < 2^c$. Since $K_{\gamma'} \subset X \times Y \subset I^{\omega}$, we can consider the map f as a continuous displacement $f: K_{\gamma} \to I^{\omega}$.

By Lavrientieff's Theorem there exists a continuous extension of $f, f^* : K_y^* \to I^\omega$, where $K_y^* \supset K_y$ is a \mathscr{G}_δ subspace of I^ω . According to the construction there exists an $\alpha < 2^\omega$ such that

$$f^* = f_\alpha$$
 and $S_\alpha = K_\gamma^*$.

Consider the point $r_{\alpha} \in S_{\alpha}$. By the construction we get

$$r_{\alpha} \in S_{\alpha} \cap K_{\gamma}$$
 and $f_{\alpha}(r_{\alpha}) \notin K_{\gamma'}$, for each $\gamma' < 2^{c}$.

Hence

$$f(r_{\alpha}) = f^{*}(r_{\alpha}) = f_{\alpha}(r_{\alpha}) \notin K_{\gamma'},$$

hat contradicts with $f(r_{\alpha}) \in K'_{\gamma}$.

COROLLARY. There exist 2^c non-homeomorphic, connected rigid subspaces of the Hilbert cube I^{ω} .

If we put in Theorem X = Y = R then we get

COROLLARY. On the set of reals, there exist 2^c non-homeomorphic metric connected separable and rigid topologies which are finer than the natural topology of the space R of reals.

COROLLARY. There is no maximal topology among metric separable connected topologies on the set X.

Proof. Suppose that X is a maximal connected metric separable space. Let $f: X \to Y$ be a map such that the graph $G(f) \subset X \times Y$ is a rigid connected and dense subspace of the product $X \times Y$. The projection $\pi: G(f) \xrightarrow{\text{onto}} X$ induces a topology on the set X which is finer than the previous topology.

REFERENCES

- [1] J. J. CHARATONIK, On chaotic curves, Colloq. Math. 41 (1979), 219-227.
- [2]. J. DE GROOT, Groups represented by homeomorphism groups I, Math. Ann. 138 (1959), 80-102.
- [3] F. B. JONES, Connected and disconnected plane sets and the functional equation f(x)+f(y)=f(x+y), Bull. Amer. Math. Soc. 48 (1942), 115—120.
- [4] W. KULPA, On the existence of maps having graphs connected and dense, Fund. Math. 76 (1972), 207-211.
- [5] W. SIERPIŃSKI, Sur les types d'ordre des ensembles lineaires, Fund. Math. 37 (1950), 253-264.