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FIELDS AND QUADRATIC FORM SCHEMES
WITH THE INDEX OF RADICAL NOT EXCEEDING 16

Abstract. Let g be an elementary 2-group with —eg and let d be
a mapping of g into the family of all subgroups of g. The triple S = (g, —1,d)
is called a quadratic form scheme if Q —C3 are fulfilled. The main result is: it
X\~ 16 or [fif: R]~ 16 then all these schemes can be obtained as the product of
schemes or schemes of form S*‘ from the schemes of fields C, R, F3 Fs, Q2 Qt

y/(—1), Qz (}/ —2) and radical schemes S™ We give a complete list of schemes for
|&i| ~ 16, [gr: R]~ 16 with all invariants.

Throughout the paper, k denotes a field of characteristic 92, g —
— g(k) = k*/k*2 is the group of square classes and g — q(k) =, |g(%)| its
cardinality. We denote by R(k) the Kaplansky’ radical of the field k.

In the paipers [1], [7] and [11] the classification of quadratic forms
with respect to their behaviour is given for all fields with g~ 8. It is
shown that there are exactly 27 equivalence classes of fields with g~ 8
(17 non-real and 10 formally real fields). Moreover, in [2] Cordes deter-
mined all possible sets of parameters g, t, m, s for any non-real field
with q< oo and [g:R] " 8.

In this paper we give the complete classification of all fields with
q —16 and of all fields with [gr:R]~ 16. More precisely, we classify
all schemes with g~ 16 and [gr: R]* 16 and show that these schemes
are realized by fields. Complete list of schemes with [gr:R] "~ 16 (and
their invariants) is contained in 4 tables at the end of this paper. We
see that there are 51 non-equivalent schemes with g = 16 (27 non-real
and 24 formally real schemes). Moreover, all these schemes can be ob-
tained as a product of schemes or schemes of form St from the schemes

S(C), S(R), S(F3, S{Fs), S(Q), S{Q2]/=1)), S(QA~=2)) and Sf, i= 1,2
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(where S# denotes the radical scheme of cardinality /? in the sense that
|R{Sf)| = q(Sf) = fi and s(Sf) = i).

Quadratic form schemes were introduced by C. Cordes in [2], but
the original definition of Cordes admits schemes, which are not realized
by fields (cf. [9]). Here we use the following definition of quadratic form
scheme ([9], Def. 1.1). Let g be an elementary 2-group with a distin-
guished eelement —leg, —a denotes the product —*a for aeg. Let d
be any mapping from g into the set of all subgroups of g. The triplet
{9, —I,d) will be denoted by S. An n-tuple ¢?-=m(al(..., a,), ateg is said
to be a form (over S). For forms (a), (a, b) and (alt...,a,) we denote
Ds(@) = (a), Ds(a, b) = a-d(ab), Ds(al5..., an) = (j Ds(aBor) (n”
353). The set D*tp) is said to be the set of ele)ineezstgazréb?esented by the

form <p (over S). If aeD s(<), we also write s«sa. S — (g, —I,d) is said
to be a quadratic form scheme if it satisfies the following conditions:

Cj:aeD(1,a) for any aeg.

Ca:ae D(1,b) 4# —be D(1, —a) for any a,b eg.

C3:D(a, b,c) = D(b, a, ¢) for any a,b,ce g.

It is evident that, for any field k, S(k) = (g{k), —k*2 dk) is quadratic
form scheme (dk(a) denotes the subgroup of g(k) consisting of elements
represented by the form (1, a). This scheme is said to be the scheme of
the field k.

Two schemes St = (gu —1I}dx) and S2— (g2 —12 d2) are said to be
equivalent (write Sx~ S2) if there exists a group isomorphism f :gt-> g2
such that /(—i) = —1 and f(dt(a)) = dZ(a)) for any ae fifi. The phrase
fields fcj and k2 are equivalent with respect to quadratic forms means
S(kt) S(k2. If for a scheme S there is a field k such that S~ S(k)
then we say that S is realized by the field k. Fundamental properties of
quadratic for schemes (in the sense of our definition) are given in [9].

In this paper we adopt notation and terminology as introduced in
[9]. In particular g = q(S) is the cardinality of the group g, g2= g2(S) =
— |E\s(I> 1), R = R(S) = {aeg :Ds(l,—a) = g} denotes the radical of the
scheme S. The minimal number n such that —1eD(n X (1)) is denoted
by s = s(S) and called the stufe of S. If s < then s is a power of two
([9, Th. 3.4]) and S is said to be a non-real scheme. Otherwise S is for-
mally real. For any subgroup P CZg of index 2 we say that P is an or-
dering of S if D(a,b)CP for a,beP. We write r = r(S) for the cardina-
lity of the set of orderings of the scheme S. In [9] we defined also equi-
valent forms, Pfister forms and torsion forms. We denote by m = m(S)
the number of equivalence classes of 2-fold Pfister forms and u = u(S)
is the maximal dimension of anisotropic and torsion forms over S.

For any schemes St = {gu —I1d1} and S2— (g2 —12,d2) we write
®in ~2 to denote the product of these schemes, ie. S, f]S2— (fifi X
X g2>(—i, —12,d), where d(a,b) = d*a) X dz(b). Lastly we define the
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scheme St in the following way: if S = (g,—I,d) and {I,t} is a 2-ele-

ment group, then we put =g X {l,t} and, for aeg, d«a) = d(@) if
an —,dt{—1) = gf and gt(at) — {l,at}. Then (gt, —1,d“) is a quadratic
form scheme and we denote it by If the scheme S' is equivalent to

S* for some scheme S, then S' is said to be a power scheme. Fundamen-
tal properties of the product of schemes and of power schemes have been
proved by M. Kula in [¢].

In the tables 1 and 3 we give all the schemes with g~ 16 which can
be constructed as the power schemes or the products of the schemes S(C),
S(R), S(F3, S(FH and S(Q2. From [5] we conclude that all these schemes
are realized by fields. Further, by [9, Th.3.9 and Th.3.11], we calculate*
the invariants g2 R, m, s, r and u of these schemes. Using the results of
[9] and the methods of [1], [7] and [11] we can prove.

THEOREM 1 If S= (g,—I,d) is a quadratic form scheme and
g<8, then S is equivalent to one of the schemes in the table 1. All the-
se schemes are realized by fields.

Now we use Remark 4.9 of [9] and give a classification of the sche-
mes with [g:R]” s. Let S\ be the radical schemes of cardinality /3 i.e.
I"0Sf) 1= q(Sf) = P and s{S{) =i, i = 1,2 ([9], Def.4.2). We define the
sets of schemes X* = {So, SZB S35 Ss6} and X2 = {S13 Sz4, Sop" B P> z10m
S$i2>Sa13, Sa1s, S3I6 S317} (use the numeration of the schemes as in the ta-
ble 1). According to Remark 4.9 of [9] we get that the set of all schemes:
with [g:R]<s isX; wx; u X", where X[ = {Sn S{:Se XJ, X2=
= {Sn S{:SeX2>and X'= {Sn S*:SeX,}. We have.

THEOREM 2. If [g:R]”~ & then S is equivalent to one of the sche-
mes in the table 2. All these schemes are realized by fields.

The main result of this paper says that the table 3 contains all the

schemes with q = 16. This table presents also the fields Q2 (y —1) and

Q2(V—2) whose schemes cannot be obtained from the simplest schemes
by two standard operations on the schemes. The invariants of these two
exceptional fields we calculate by using the theory of quadratic forms
over dyadic local fields as developed in Lam [s], pp. 152—166.

First we investigate all the schemes with g = 16 and non-trivial ra-
dical. If |R(S)| 9”1, then [g:R] s and from Theorem 4.7 [9] we get the
decomposition S S" (] , B=\R, i—1,2 and q(S) s. Thus S' is
one of the schemes in the table 1 We get.

PROPOSITION 3. The table 3 contains all the schemes with g = 16
and |R| 1 All these schemes are realized by fields.

Next, let S be a power scheme. Then S = SJ for some scheme SO
with g(S0) = s. Thus So is equivalent to one of the schemes Ss1—Sas17 in
the table 1. Using 3.15 from [9] we get

PROPOSITION 4. If S is a power scheme with q = 16, then S
N S(k((1)) for some field k with q(k) = s.



Thus we can assume that S is a scheme with q(S) = 16, R(S) = {1}
and S is not a power scheme. We shall use two following lemmas.

LEMMA 5. If g~ 4 then the following statements are equivalent:
(@) S is not a power scheme;

(b) for any subgroup hdg of index 2 there exist elements agh and

beh, b 1such that (1,a)« b;

(c) for any aeg, a=£ %1, |D(1, a)|™ 4 or ID(1, —a)| > 4.

Moreover, if S is a non-real scheme, then each of (a), (b), (c) is equiva-
lent to

(e") for any agg.a ~ 1, |D(1, a)|" 4

The proof of Lemma 5 is omitted since the result follows directly
from 3.13 and 3.14 of [9].

LEMMA 6. If g(S) = 16 and there exist b,c eg such that (1, a) does
not represent b,c,bc, then |D {l,a)|"4.

This is a direct conclusion from the igroup theory.

Now we investigate all the non-real schemes with q=.16, \R\= 1
which are not power schemes. We classify the possible cases depending
on the values of two invariants: s(S) and g2(S).

PROPOSITION 7. If q(S) = 16, s(S) = 1, |IR(S)) = 1 and S is not
a power scheme, then S is equivalent to Si9 or S410 in table 3.

Proof. If s= 1then —1= 1 and (1,1) is the unique binary form
(up to equivalence) which represents all the 16 elements of g. First we
assume that all binary forms (which are not equivalent to (1,1)) repre-
sent 4 elements and let (1,a) b. Then D(l,a) = D(l, b) = D(l, ab) =
~{l,a,b,ab}. We consider a subgroup hdg, [g:h] = 2 containing
a and b. Then there exist ¢,d eg, 1* ceh such that (1,d) « ¢ (Lemma
5(b)). It is clear that ¢ a, b, ab. We have 0(1,c) = D(l,d) = D(I, cd) "
= {l,c, d, cd} and {a, b, c,d} is an F2basis of g Because of (a, b)«lI,
we have deD(l, c)d D(l, ac,bc) and there exists an x eD(l,ac) such
that {x,bc)"d, ie. (1, bed)« dx. But (1,ac) a, b, ab,c, d, cd, abc, be,
acd, ad and (1, bed) a b, ab, c, d, cd, abed, acd, bd, be, so x = abed. We
get D(1,ac) = D(l, bd) =.D(1, abed) — {1, ac, bd, abed} and D(l, bed) =
— D(l, abc) = 0(1, ad) = {1, bed, abc, ad}. From (1, ad)«abc it follows

that ae D(abcd, be)d D(l, ac, be) = U D(l,x)= U 0(1, x) =
x € D (ac, be) X € acD (1, ab)
U D(l, x) = D(l, ¢) w D(l, ac) D(l be) w D(l, abc), a contradi-
x € ¢D (1, a)

ction to D(I a) = {1, a, b, ab}.

We conclude that at least one binary form represents 8 elements
of g and let D(l, a) = h, |h|] = 8. Then there exists d gh such that (1, d)«
A"beh and b~l,a. Let {a, b, c} be an F2basis cf D(l,a). Then {a, b,
d} is F2hasis of D(l, b) and
(A) (1, x) a,ax for x = c, ac, be, abc,
(B) (1,y) b, by fory =d, ad, bd, abd.
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Now we have

(1,a) c=(cd,acd)«d-"be D{ld) ClID{L cd, acd) = there exists
a 2 e D(I, cd) such that (z,acd) « b =>(1, abed) bz,

But (1, cd) a, b, acd, bed and (1, abed) a, b, bed, acd, hence ze{c,d} X
X {1, a, b, ab}.

First we assume that z=4d, i.e. (1,cd)~d and (1 abed) « bd. We
shall show that all binary forms (except (1, 1)) represent 8 elements. For
x = c,ac and y = d,bd in (A) and (B) we get
(AY) D(l,e)={1,4a, ¢ ac, d, ad, cd, acd}, D(1,d)= {1, b, c, be, d, bd, cd, bed},
(B) D(l, ac) = {1, a, ¢, ac, bd, abd, bed, abed), D(l, bd) = {1, b, d, bd, ac,

abc, acd, abed}.
We have (I,bc)«d and (1,ad)« c, by (A), hence the forms (l,be),
(1, ad) represent 8 elements. Similarly, by (B, (1, abc) za bd and (1, abc)”
~ aimplies (1, abd) «s abc, thus the forms (1, abc) and (1, abd) represent 8
elements too. This implies D(1, cd) = {1, c, d, cd, ab, abc, abd, abed) and
D(l, ab)= {1, a, b, ab, cd, acd, bed, abed), hence D(1, abcd) = {1, ab, cd, abed,
bd, ad, be, ac}. Analogously (1, acd) « c,ab and (1, bed) » d, ab, so these
forms represent 8 elements. We conclude that, if z = d, then all the bi-
nary forms (except (1, 1)) represent 8 elements. Similarly, for z —ad, all
the binary forms represent 8 elements. It is easy to prove that the group
isomorphism a->a, b->b, e->ac, d->ad is an equivalence map (cf. [9],
Def.3.7). Thus we obtain equivalent schemes for z —d and z = ad. Ana-
logously we get equivalent schemes if z = bd or abd.

Further we assume that z ~ c¢. Then (l,cd)«ic and (1, abed) « be.
Putting x = ¢, be and y —d,ad in (A) and (B) we get

D(1,¢c) = {1,D(lta, e, ac, d, ad, cd, acd},
D(l, be) — {1, a, be, abc, d, ad, bed, abed}.

D(1d) = {1, b, e, be, d, bd, cd, bed},
D(l, ad) = {1, b, ad, abd, c, be, acd, abed}.

Suppose that |D(1, ab)] = 8. From (1,ab) c,d we get (1, ab) «5 cd, hence
(1, cd) s» abd. Since (1, abed) ~ ad we have the case, which has been dis-
cussed for z —abd. So the case |D(1, ab)| = 4, i.e. D(l,ab) = {1, a,b, ab}
remains to be considered. We want to Show that all the remaining bi-
nary forms represent 4 elements. The forms (1, cd), (l,acd), (1, bed) and
(l,abed) do not represent a,b,ab, hence they do not represent g/2 = 8
elements. Further, (l,acd)«ic and (1, bed) « b, hence |D(l, cd)| =|D(1,
acd)| = |D(1, bcd)| = 4. This implies that (l,ac) and (1, abc) do not repre-
sent c¢,d,cd and neither of (1, bd) and (1, abd) represents a,c,ae, so also
these forms represent 4 elements. If z = ac, be, abc, we obtain the equi-
valent schemes, as above.
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We conclude that for s = 1 there exist at most 2 non-equivalent
schemes with trivial radical which are not power schemes. Hence S —
= Sig if all binary forms (except (1, 1)) represent 8 elements and S * S 4li
otherwise.

In the proof of the next proposition we use the following.

LEMMA 8. If S= (g,—I1,d) is a non-real quadratic form schema,
2< g< ooand g2= 2then s(S) = 2 and S is realized by the power series
field Fs((t4)... ((t,,)), where g = 2n+1.

The proof is the same as in [3, Prop. 1]. It is easy to see that S is
realized by the field F(tj))... ((tn)).

COROLLARY 9. Let S be a non-real scheme and fS— jR(S)|="L.
(i) If [Ds{1,1): R(S)] = 1, then SAS ( or S*,

@iy If [Ds(l, 1): R(S)] = 2, then SAS"' n S*= S'n §jJ, where S' is the
scheme from Lemma 8 and $%b are the radical schemes of cardina-

lity p.

Proof. The first result follows directly from [9, Th.4.7]. As far as
the second result is concerned we observe that, if SQis any non-real sche-
me with |R(SO)| = 1, then q(SO 7" 2. Using [Os(l, 1): R(S)] = 2 we get
-1 g¢fi(S), hence S= S/R f-| S(=5 n * by [9, Th.4.7 (i)]. Moreover
q(S/R) =[g{S) :R(S)]>4 and ~(S/R) = [Os(l, 1) :R(S)] = 2, thus the
scheme S' = S/R satisfies the assumptions of Lemma 8, as required.

PROPOSITION 10. If g(S) = 16, s{S) = 2, |[R(S)] = 1 and S is not
a power scheme, then S is equivalent to Slls, Siig or Sa2 in the table 3.

Proof. Ifs(S) —2then 1~ —1 and the form (1,1) is not universal,
i.e. ID(1, 1)) = 8 or 4, by Lemma 8. Moreover, if xeO(l, 1) then (I,x)«
« *1, %X.

L |0(1, )| = 8. First we shall show that 0(1,x) D(l, 1) for
xeO (I, 1), x="1. Otherwise, if D(l,x") —D(l, 1) for some x'eD (I,1),
x'77 1, then (I,x")?»y for any yeD(l, 1), so (1, —y)« —1,y, —x and
0(1, —y) =0(1,1) for any yeD(1,1), y¥=I1,x'. Moreover, 0(1,1) =
= 0(1,1) 0O(1,x)d 0(1, —x"), hence D(l, —x') = 0(1,1). Thus we ob-
tain 0(1,x) = 0(1,1) for any xe 0(1,1), x~ —1. But [g:0(1, )] =2
implies that there exist 2 g 0(1, 1) and y e 0(1, 1), y =1 such that (1, 2)
«y (Lemma 5), hence (1,—y )« —z, —y e 0(1,1), — g0(1,1), a con-
tradiction. Thus we have 0(1, x) » 0(1,1) for any xe D(l, 1), i~ |.

Now suppose that |0(l,a)] = |0(1, —a)| = 8 for some aeO(l, 1). Let
{—I,a b} be an P2basis for 0(1,1) and (1,a)« c00(1,1). Then g =
= 0(1,1) X {1, c}. Since 0(1,1) » 0O(1,a)=£0(1, -a) (ifD(l,a) = D(l, -a)
then D(l,a)CD(l,a) nD (I,—)CD(l,lI), a contradiction), we have
(1, —a) ffcb,c and (1, —a) « be (by 0(1, —) = ¢/2), so 0(1, —a) = {£ 1,
ta, xbc, xabc). If 0(1,x)= {1, £x} for any xe{xb,tab}, then
(1;c)3B —1, £ b, hence 0(1,c)= {1,c, —o, —ac}. From (1, —a)«zxbc
and (c,c) « be we getae 0(1, be)Cl0(1, c,c) = U O(u>c)=(l,c) "

to€d (i, o
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WD(, c) » D(—a, c) » D(—ac, c¢), hence (1,1) acor (1, —a) ac, a con-
Iradiction. Thus at least one form (1,0, xe{£b, tob) represents 8
elements and we may assume that |D(1, b)] = 8. Because (1, b) tfc +a, *ab
we have (I,b)?« xc or (l,b)« zac. Let D(l,b) = {£1, +b, +c, xbc}
{in other case we obtain the equivalent scheme). Then (1, —ab) * c and D(l,
—ab) = {£ 1, +ab, £c, tabc}. Now abceD(l, —ab) D(l, —)C D(l,
-b), hence D(l, —b) = {1, +b, *xabe, tac}. Similarly, aceD(l, —b) *
~D(l,a)C D(l,ab) and so |D(l,ab)|] = 8. We get that all the binary
iorms (l,a:), x e D(I, 1), x » —1 represent 8 elements. A direct calcula-
tion shows that the remaining binary forms represent 8 elements. Thus
we have proved that all the schemes with |D(l,a)] = |D(1, —a)[ =8 for
some ae D(l, 1) are equivalent.

Now we assume that |D{1, a)| = 4 or |D(1, —a)| —4 for any ae D(l, 1),
«” £ 1 We shall prove that all these schemes arc equivalent too. Choose
cgD(1,1) such that (1, c)«aeD (I, 1), a9™l. Write D(l, 1)={=%1,
+a, tb, tab}. Then D(l, —a) = {1, *a, *c, txac} and D(l,0) = {#1,
+a}. As previously, we shall show that |D(1,®)| = 8 for some ie { %
+b, tab}. Otherwise, D(I,x) = {£1, £x} and (1, be) does not repre-
sent —1, +a, tb, *ab, —be, tabc, te, tae, so |D(l,bc)| = 2, a condra-
dietion according to Lemma 5. Thus we may assume that |D{l, b)| = 8.
Since (1,a)gb —b we get (1, b)  *a, xob, hence (1,b)« zc or (1, b)

tac. Let D(l, b) = {1, £b, £c, xbc} (in other case we obtain the
equivalent scheme). Then D(l, ab) = {1, xab, £c, xtabc) (because
ceD(I, —a) D(l,b)CzD(l,ab)), hence the forms (1, —b) and (1, —<cb)
~represent 4 elements. Further, (1, £c)«a, —b thus these forms repre-
sent 8 elements. Since (1, + be) za —b, (1, + abc) sa —ab, (1, £ac) a and
(1, £bc), (1, xabc) do not represent —1, xa and (1, * ac) —1, +b, hen-
ce these forms represent 4 elements.

Thus we proved that there exist at most 2 non-equivalent schemes
with trivial radical, s = 2 and g2= 8 which are not power schemes. This
implies that if ID(l,a)] = |D(, —a)| = 8 for some aeD (I,1) and
S css S419 otherwise.

2. iD(, )| = 4. Write D(l,1) = {1 xa>. Then (l,a)«zxl,ta

and (1, —a)« =1, *a.

First we assume that |D(l,a)] = |D(1, —a)| = 4. if x&= %1, +a, then
the forms (1, x) do not represent —1, *a, thus they represent 4 elements.
Let us consider a subgroup hd g of index 2 containing D(l, 1). There
exist bg h, and ceh, c=fc\ such that (1, b)« c. Obviously c=£ -1, %3,
thus {—,a, b,c} is fybasis of g. Since (1, —¢ ) « —b and (c,c)« —c¢
we have (1,¢c,c) —b. Then there exists y e D(l, c¢) such that (y, ¢) « —b,
so (1, be)™ -by. Since (1, b)*c and (1, b)"-lw e get(l,b) & -c, hence
(1, ¢)& —1, —¢, —b, —bc,xazac. Similarly (1, —c)7frb, hence (1, be) b
Moreover (1, b)~ —c, —be implies (1, be) —b, —c and so (1, be) —1,
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—be, b, ¢, —¢, —b, £ a, £ abc. Thus we have y = abc or y = —abc. Ify —
= abc, ie. (l,c)«xabc and (l,bc)pa —ac then D(l, —abc) = {1, —abc,
—c,ab}. From c€D(l, —b) D(l,c)C D(l, —be) and (—abc, —abc) «
N —be we get ceD(l, —be) CID(l, —abc, —abc) = U D(u?,

_abe)=D(l, —abc) A D(—abc, —abc) A D(—c, —abc) A 'D(ab. —abc), hen-
ce (1,1) <2 —ab or (1, —) « abc, a contradiction since (1, —) « be and
(1, —c¢) o&a. This implies that y = —abc and (1,c)® —abc,—ab and
(I,bc)~ac, hence D(l, —ac) = {1, —ac, —be, ab) and D(l,ab) = {l,ab,
—c,—abc}. From (1, —e ) « —b, be and (—ac, —ac) —c we obtain
bceD(lI, —)C!D(l, —ac, —ac) = U D(w, —ac) = D(l, —ac) »
w GD (1,—ac

v D(—ac, —ac) » D(—be, —ac) D(ab, (—ac))and so (1,1) « —ab or (1,
—ac)« be, a contradiction.

We conclude that at least one form (l,a) or (1, —a) represents 8 ele-
ments. Let D(l, —a) = {+ 1 +a} and |D(1, a) —8 Then there exists
a cgD(l,a) such that (l,c)«b6D(l,a), b===+1, ta. We have: {—1,
a, b) is F2-basis for D(l, a), {—b, —a, —c} is F2basis for D(l, —b), hen-
ce D(l, abc) = {1, abc, b, ac} by (1,abc) 7*—1, ta. Now (1,—b )« —,
hence (1, —b)Efcc and so (1, —c)?fcb. Similarly (1, —b)”*bc follows that
(1,b) be, e, thus (1, —c)tfr —b. This implies that (1, —c) does not re-
present —1, ¢, —abc,ab,b, —be, —b,bc, +a, xac and so D(l, —) = {1,
—e, —ab, abc}. From (—¢, —) —ac and (1, —b)”"ac we have beD (I,
—ac)CD(1, —, —¢) = |J D(w, —¢) —D(1, —¢) w D(—e, —C) w

wed (, -c)
D(—ab, —c) w D(abc, —c), hence (1, 1) —be or (1, abc)m —a or (1,
—ab)« ac, a contradiction in view of (1, —b)«ac and (1, —a)"b ac.

Thus we have proved that both the forms (1,a) and (1, —a) repre-
sent 8 elements. Let D(l,a) —{%1, *a, xb, *ab}. But (1, -a)”b, by
(1, 1) b, and it follows that there exists ¢ g D(1, a) such that (1, —a) «
« ¢. Hence {—l,a,b,c} is Fzibasis of g and D(l, —a)~ {%1, *a, ~c,
+ac}. Now, for x — b, tab we have {l,x, —a, —ax} CD(l,x). If the
equality is satisfied for any x, then, according to (I,b)«=;—a and (1,
—a)«c, we have (l,b)«—ab and (b,—ab)”be, hence bceD(b,
—ab) C D(l, b, b) = U D(l,2)=D(l,b)uD(I,-b)uD(l,ab)~D (I,

zed 5 b>
—ab), a contradiction. Thus we may assume that (l,b) represents

8 elements (for remaining x we obtain the equivalent schemes).
Then (1,b)«c or (I,b)?«—c, by (4, b) —L Let (I,b)«c (in other
case we get the equivalent scheme). We have D(l,b) = {1, b, —a, —ab, e,
be, —ac, —abc} and, by (1, —a)« c, D(l, ab) = {1, ab, —a, —b, ¢, abc,
—ac,—be} hence X1, ac) = {1, ac, a, ¢, —ab, —be, —b, —abc} and D(l,
—) — (1, —, a, —ac, —ab, abc, —b, be}. We shall show that the remain-
ing forms represent 4 elements. The forms (1, £bc) and (1, zabc) do
not represent —1, +a, hence they represent 4 elements. In particular,
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D(l, abc) — {1, abc, —b, —ac} and D(l, —abc) = {1, —abc, ¢, —ab}. This
implies that the forms (1,c), (1, —b), <1, —ab) and (1, —ac) do not re-
present —1, tabc and so they represent 4 elements too. We conclude that
there exists at most on (up to equivalence) scheme with trivial radical,
s = 2, 2= 4 which is not a power scheme. Hence S = S423

PROPOSITION 11. If q(S) — 16 and s(S) — 4 then |R(S)]® 1 or S is
a power scheme.

Proof. If 4 X (1) = —1 then there exist a,be D(l, 1) such that (a,
b)«-1 (cf. [9], Th.l.6). Hence (1,1)« 1,a,b,ab, (1,a)«x -b, -ab,
1, b) —a, —ab, (1, ab)« —a, —b and <L, x)« %1, +x for any areD(l,
1).

) We suppose that the proposition is .not true so that S is not a po-
wer scheme and |R(<S)| = 1. We consider two cases.

1 ID(1,1)] = 8. Write H = {1, a, b, ab}. First observe that |D(1, x)j =
= 4<=>|D(1, —x)| = 4 for any x efl. For example, for x = a we have
(l,ay?9fc! —1, —a, b, ab (by (1,1)" —a) and (1, —a)?& *b, tab (otherwi-
se beD(l, -a) D(l,1)C D(l,a). If [0<l,a =4 and (1, -a)m z, z "

+1, *a, b, xab, then (1, —a)« *z. But (1,1) Tfr —1, hence (1, 1)«
«2 or —z and so zeD (1, —a) o D(l, 1) CID(l, a) or —ze D(l, a), a con-
tradiction. Similarly, if |D(1, —)| = 4 and (1,a)«2w, w *+\, %a, b,
+ab, then (1, 1)*w or —w. If (1,1)««? then weD(l, —) and, if
(1,1) ~ —w, then —bioeD(l,lI) AD(l,a)CD(l, —a). In both cases we
get a contradiction. Thus we obtain |D(1, a)| = 4 4= |D(1, —a)| = 4. For
x — b,ab the proof is the same.

Now we suppose that all the forms (1,a), (1,b) and (l,ab) repre-
sent 4 elements. Then also (1, —a), (1, —b) and (1, —ab) represent 4 ele-
ments and for de (1,1)\H we have (l,d)gb —1, b, +a, *xab, tad, *bd,
tabd, hence |D(1, d)] = 2, a contradiction.

Thus we can assume that |D(l,a)| = 8 and choose deD(l,a), d 1,
a, —b, —ab suchthat de£>(l, 1) (if dgD(1,1), then —deD (1,1), —bdeD {1,
1) and —hdeD(l, a)). We have D(l, a)= {l, a, —b, —ab,d,ad, —bd,—abd}r
D{1, -a) = {z1, a, +d, zad} (by deD (I, 1) o D(l,a)CD(l, -a)) D(a,
—d) = {+1, £d, +a, +ad} and {—1, a, b, d} is F2basis of g.

If |D(l,b)|=,4 then |D(1, —b)] = 4 and so (l,d)«xab (otherwise
(1, d) « a implies (1,d)« +b, hence (1, b) «<s —d or (1, —b) ss —d, a con-
tradiction). We obtain (1,d)(fr —1, —d, £b, xbd, *ab, +abd, hence
D, d\ = 4, ie. D(l,d) = {1,d, a,ad}. We have -aeD (Il,b)C U

D(,x) — U D@,x) =D(l,d,d)— U D(x,d) = D(,d) » D(a,d)'v

x e D (d, d) x e D(1,d)

A D(d,d) » D(ad, d) = D(l,d) » D(a,d) w D(1, 1) wD(l,a), a contradic-
tion. Similarly, if |D(1, ab)| = 4, we obtain a contradiction too.

Thus we have proved that the forms (1,a), (1, b) and (1, ab) repre-

sent 8 elements, so the forms (1, —), (1, —b) and (1, —ab) repre-
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sent 8 elements too. In particular, (1, b) d or (4,b)« —d (by (1,1)"

1). In the first case we have (1, —d ) —1, —b,a, —d and |D(q,
—d)| = 16, a contradiction. In the second case (1, b)« —d, ad, hence
41, —ad)« —1, —h, —ad, a and so |D(1, —ad)| = 16, a contradiction too.

2. ID(1,1)] = 4. Since D(l, 1) = {1,4a, b, ab}, (8, b)« —1 and (a, ab) «
~ —1 we see that for any x e D(l, 1), x I, there exists an ye D(l, 1)
such that (x,y)« 1 Write H —{1, —1} X D(l, 1). Let cgH and suppose
that (1,c)« a for some aeD(l,l). Choose be D(l, 1) such that (a, b«
rs —1. We have D(l, —) = {£1, *a, xc, tac) and D(l,a) = {l,a, —b,
—ab) from (1,a) —1, xc (if (l,a)s» £c then (1, 1)?« £c). Similarly
the forms (1, be) and (1, —abe) do not represent —1, +a and so they re-
present 4 elements.

From ceD(l, —a) D(l,c)CD(l, ac) we have —bcecD(l,a) =

= D(c, ac) CD(1, ac, ac) =, U D(l,cx)= U D{1, cx) = D{1,
x e D (a,a) x e D (1,1)
c) v D(l,ac) » D(l, be) » D(l, abc) and so (1, be)« —e or —ac or —abe,

by (1, be) gb —be. We shall show that none of these cases can occur.

If (I,bc)« —c then D(l, be) = {1, be,—c, —b}. It follows that
-beD (l,a) N D(1,bc)CD (I, —abc) and D(I, —abc) =. {1, —abc, -*b,ac}
As previously we have aeD (1, ¢)CZD(1 c,c)=D(l, be, bc)= @
be) = D(l, be) ™ D(bc, be) w D(—c, be) » D(—b, be). From (1X, e—da()I be)—be
and (I,1)3tJabe we get (—c, be)x a or (—b,bc)«a, hence (—a, be)«
«cor bandso (1, —abc)« —ac or —ab, a contradiction.

If (I,bc)« —ac we obtain D(l, be) = {1, be, —ac, —ab} and D(l,
—abc) = {1, —abc, —ab,c} (by —abel>(l, be) D(l,a) so aeD(l,bc,
be) = U D(x, be) —D(1, be) » D(bc, be) » D(—ac, be) D(—ab, be),
This irlnSI(ieaé ?C—ab,be)«a or (—ac, be)x a, hence (—a, be)« ab or ac

and so (1, —abc)« —b or —<, a contradiction.

Lastly, if (l,be)« —abc then D(l, be) = {l,bc, —abc, —a} and we
have aeD(I, be, be) = D(1, be) » D(bc, be) » D(—abc, be) » D(—a, be).
Thus (be, —abc)« a or (—a, be) « a, hence (1, —a) « abc or (1,1) « abc,
a contradiction.

We conclude that D(I,z) n D(l, 1) = {1} for any zeH. But \H\ = ¢/2
and so there exists a cgfl such that (1, c)« weH, w ~Il. Thus we
can choose aeD (I,1) such that (l,e)« —a and next choose be D(l, 1)
such that (a, b)« —1 We have —aeD(l,c) ~ DI, b) n D(l, —a), hence
—aeD (I, —abc)CzZD(l, —abc, —abc) = D(1, —c, —¢). Thus there exists
an x e D(1, —e) such that (x, —) « —a, hence (1, —¢) « x and (1, —ac)«
« —ax. From —c, —ac g H we obtain (1, —¢) —1,¢, a, b, ab, —ac, —be,
—abc and (1, —ac) —1,ac, a, b, ¢, —c¢, —abc, —be and so x = 1 or —a.
In both cases we get (1, —c)« —a, hence (1,a) « ¢ But (1,a)« —c and
(1,1)~—1, a condradiotion.
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Thus we have proved that there does not exist a scheme with s =.4
and trivial radical which is not a power scheme and the proof of Propo-
sition 11 is finished. Thais we get

THEOREM 12. If S is any non-real quadratic form scheme with
g = 16 then S is equivalent to one of the schemes S41— in the ta-
ble 3. All these schemes are realized by fields.

Now we consider the formally real case.

LEMMA 13. Let S be a formally real scheme, q(S) = 2n, g2S) =
= 2n_1 and ms(l>a)| = 2 for any aeDs(l,l), a=5"1. Then SS?S(ft)n
n~Jc), where k is the power series field F5{ti))... ((tn_2)).

Proof. Write S(R) r\ S(k) = S'. It is clear that g{S') = 2n. Since
s(k) = 1we get q2(S') = g2R) g2(k) = 2n_1. If aeDs.(I, 1), a = (X, y), whe-
re XGDSRV(IR,iR) = {iR} and j/leDsw(lk)U) = g(k). For a# 1 we ha-
ve and Ds,(1,a) = DSX) (1H x) X DSK) (Ik,y) = {IH> X {lk,y} =

{"i®} and Ds,(I, a) Ds(R)(lr> X Dgk)(lkt~~y) KR X {lk, y}*
—{£ 1, +0}. We shall show that Ds(1, —a) — {£ 1, £ta} forany aeD "I,
1), 0 1. Suppose (1, —a)rs b 5*+ 1. Then (1, —a) p» —b, hence (1, b)« a
and (1, —b)swa. From |DS(1,1)] = g/2 we have <L,1)»b or (1,1)« —h.
li (1,1)asb then D(1,b),= {1,b} and so o= b. If (1,1)« —b then D(3,
—b) = {1, —b} and a= —b. Thais D(l, —a) = {x1, xa}. This implies
that any group isomorphism f :g(S)-> g(S") such that f(—1) = —1' and
f(Ds(l, 1)) <=Ds,(1', 1" is an equivalence map and so S

PROPOSITION 14. If S is a formally real scheme with q(S) =, 16,
<S) —s& and R(S) = {1} then S& Sm or SSi Sm.

Proof. If |D(1,0) =m2 for any ae D(l, 1), a® 1, then Saasd4ll) by
Lemma 13. Thus we can assume that there exists aeD(1,1), a ™ 1 such
that (l,o)wb, b ~1,a. We observe that, if |D(1,1)] = g/2, then there
exists exactly one ordering P = D(l,1) on S and D(Iti)C P for any
ae P. Thus beD(l, 1) and write H= {1,a,b,ab) and D(1,1) = HX
X {l,c>. We have D(l, -b)=D(l, -0)=D (I, -ob)={%1, ta, b, tob>
and (I,x)?£c for any xeH, x| (if (I,x)«c then ceDfl.s) nnD(l,
1)CD (1, —x), a contradiction). From D (1,i)CP = D(l, 1) we get D(l,
x) = H for any xeH, 1=71. Moreover, (1, —¢x) a, b, ab, hence D(l,
—cx) = {£ 1, tex). Further, (1,cx) o,b,ab,acx, bcx, abcx and D(l,
cx) C P thus D(l, cx) = {1, cx}.

We conclude that there exists at most one scheme with g2= 8, |R| = 1
and |I>(1, a)| =. 4 for some ae D(I, 1), a~ 1|, Hence S* Si30.

PROPOSITION 15. If S is a formally real non-power scheme with
q(S) = 16, |R(S)| = 1 and g2(S) —4 then S is equivalent to Si3x%, Sa6 or
MM37-

Proof. Write H= {1, —1} X D(l, 1). Suppose that D(l, —x) .5,
= {1 £x) forany xe D(l, 1), x» 1. We choose c g H such that (1, ¢)«
~ vy for some y eH, y 7" 1. Hence because (1, —y) » —c we have y g D(l,
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1), thus ye —D(1,1). Let y — —a and D(l, 1) = {l,a,b, ab}. We denote
be o(S) the intersection of all orderings of S. From ae D(l, 1) and (1, a) «
» -¢c we get -ceo(S) and a(S) =D{1,1) X {1, -c>. We shall show
that 0(1, b) = {1, b}. Since bel>(l, 1) we have D(1,b)d ofS). If (1, b)«
cor —ac then, by (1,a) « —c, —ac, we get <l, —ab)« -c o r —ac,
a contradiction (by abeD (1,1)). Moreover, (1, —a) gb —b, hence (1,b) a,
ab. We have (1, b) fjb a, b, ab, —c, —be, —ac, —abc and so D(l, b) = {1, b}.
Now ~ceD(l,0)CD(l,b,b) = U %,b) =D(l,b)uD(b,b) = D(l,
yed(,b
1), a contradiction.

Thus we have proved that [LX1, —a)| = 8 for some aeD(l, 1), a™ 1.
Write D(1, 1) = {1, a, b, ab}.

First we assume that D(l, —a) —H = {1, —1} X D(l, 1). Then (1,
—a)« =xb, tab, hence D(l, —) =.D(1, —b) = D(l, —ab) = H and ¢ {a,
b, ab} dD(l,a) o D(l, b) i\ D(l,ab). Now there exists a cgH such that
(l,c)«i/eH, yi-1j hence (1, —y)« —c. But D(l, —y) = H for any
yeD(1,1) and -cgH hence we may assume that y= -ae~D(I,I)
and (l,c)«—a. We obtain beD(l, —a) n D(l, 1) d Dt(l, a), hence D{1,
a) = {l, a, b, —¢, ab, —ac, —be, —abc} d a(S), by aeD(l, 1), hence a(S) =
= D(l,a). From (1, —ab) —c and (1, —b) —c we get (1, b)» —¢ and
(1, ab) "8 —c. Thus I>(1, b) = D(l, ab) = {1, a, b, ab} according to D(l, b) »
A D(l,ab)d <(S). Also D(l, -ex)d u(S) for any xeD(l,lI) and (1,
—eX) gb a, b, ab, —acx, —bcx, —abcx and we have D(I, —ex) = {1, —cx}.
Similarly (1, cx) Qba, b, ab, hence |D(1, cx)| <C8 and so D(l, cx) = {l,cx,
—a, —acx}, xeD (I, 1). Thus we conclude that there exists at most one
scheme with g2.= 4 such that D(I,—) = H.

Now we assume that |D(1, —a)| = 8 and (1, —a) « dg H, We have
D(1, —) = {11, ta, =d, t ad}.

Suppose that |D(1, —b)| = |D(1, —ab)| = 4. Then
(A) (1, bd) riét—1, —bd, a, b, ab, abd, d, ad and (1, —abd, Tfr —1, abd, a, b, ab

—bd, —ab, —d.

Since (1, )« ab and (1, ad) « a we get ae D(l, bd, bd). Thus there exists
an xeD (I, bd) and (x, bd) « a, so (1, —abd) « ax. (A) implies that x= —d
or —ab. If (I,bd)«—ab then (l,ab)«—bd. Using b,abeo(S) we get
—dea(S) and —abdea(S). But (1,—abd) «ax, hence x= —abe o(S),
a contradiction. Thus x — —d, i.e. (1, —abd)« —ad,b. This implies (1,
—b)« abd, thus D(l, —b) = {tl, tb, iabd, tad}, a contradiction be-
cause |D(1, —b)| —4.

Thus we conclude that either D(I, —b) or D(l, —ab) represents 8 ele-
ments and we can assume that [D(l, —b)| =,8. If (1, —b)«d then (L,
—ab)«d (by (1, —a)«d) and we have deD (1, —) rn D(l, -b)dD (I,
—ab). If (1, —b) ffcd then (1, —b)gb £d, i bd. Since (1, —b) a and |D(Z,
—b)I= 8 we get (1,—b)« tad. Now (1, —a) « ad implies (1, —ab) « ad,
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hence ade D(l, —b)r\ D(1, —a)d D(l, —ab). Using the group isomorphism!
—I —i;a ab->b,d ad we get an equivalent scheme. This im-
plies that we can assume that (1, —b)«d and we have (1, —ab) d,
D{1, —x) = {1, £x, %d, £dx} for any xe {a, b,ab}, D(1 xd) = {1*
a,b,ab}X {l, £d} and (I,dx)*d and a,—d x)"*—d, xeD(I,I).

Now we consider two cases: either all the forms (1,x), x e D(l, i)r
x 971 represent 2 elements or |D(1, x)| » 4 for some xeD (1,1), x 21
In the first case we have (1, zad)ffb—1,—b, b, (1, £xbd)ghb —1,a —a
and (1, £abd) b —1,a, —a hence these forms do not represent s ele-
ments and so, for ieD (I,1), x~ 1, we Obtain D(Il, dx) = {1, dx, d,x}
and D(l, —dx) — {1, —d x,—id,®}.

In the second case we can assume that the form (1, a) represents at
least 4 elements. Since (l,a) —1, —a, b,ab, £d,tad,—b,—ab, by
a, b,abeo(S), we get D(l, a) — {1, a bd, abd} or D(l, a) — {1, a, —bd,
—abd}. It suffices to consider the first case, because using the group
isomorfism — ——1, a—a, b-+b, d —d we get an equivalent sche-
me. If (1,a) bd then de o(S): Moreover the forms (1, —bd) and (1, —abd)
represent —a, —d, hence they represent s elements. In particular
ad e -D(I, —bd) r\ D(1, —abd) and so (1, —ad) represents bd,abd. Further,.
abd e D(1,—ad)  D(l, abd) d D(l, b), bd GD(l,—ad) r\ D(l, bd)CD(l, ab),,
the forms (1, b), (1, ab) do not represent d and D(l,b) » D(l, ab) d a(S),
hence |D(1, b)| = [D(l, ab)| = 4. Similarly, D(1,ad) D(l, bd) » D(31, abd) d
d a(S) and (1, ad) gbb, (1, bd) a and (1, abd) gb a, thus these forms re-
present 4 elements.

We have proved that there exist at most 3 non-equivalent formally
real schemes with g2= 4, R — {1} which are not power schemes. Hence
SN S43, Sazs Oor S437.

PROPOSITION 16. If S is a formally real non-power scheme with
q(S) — 16, |R| = 1 and 2= 2 then S is equivalent to Sii2, Sas or S4

Proof. Write D(l, a) = {1,a}. Then we observe that
(A) (1, —) « £1, xa, D(l,a) N D, —a) — {1,-1} and, for any x e g,

D(1,x) sD(1, —x)d {1, a}.

We consider some cases depending on the values of D(I, —a) and D(l, a).

First we assume that D(l, —a) = {£1, za} and we shall show that
10(1,a)] = s.

Suppose, that
B) D(l, a) — {l,a}. Then, for x* %1, £a (l,a:)"b—1, xa, hence

[D(I,x)|<4.

Consider a subroup H of g such that D(I, —a)d H. Let bgH and

(1,b)»ceH, c7=Il. Clearly, cgD(l, —) so H—{+ 1 *a, £c, tac}
and g —H X {1, b}. Now ceD (I, b) and b eD(ab, ab), hence ce (1, ab, ab)
and so there exists x eD (I, ab) such that (x, ab)* c, hence (1,ab) x
and (1, —abc)?»c£. But D(l, b) = {1, b, c, be}, D(1, —) = {1, —, —b,
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be} and 0(1,-be) = {1, -be, -b,c) (by (B), thus (1, -abc)t&-T,
abc, a, £ be, —b, ac,c, —ab and (1,ab) —1, —ab, ta, * b, c, abc, be, ac.
a contradiction. Thus |D(1,a)|> 4 and suppose that |0(l,a)| = 4. Write
H= {1,-1} X 0(1,a). Then there exists a bgfl such that (1, b)« c,
c# %1 and c6i>(l.o) or —ceO(l, a). We shall show that this is im-
possible. We have —beD (1 —b) 0(1, —)CD(l, —be). Moreover
(—abc, —abc) « —be, hence —b eO(l, —abc, —abc) and so there exists
xeO(l, -abc) such that (x, —abc)« —b, hence (1, —ac)« —bx. If
C6D(l,a), then 0(1,a) = {1,a,c,ac}, D(l, b) = {1, b, c, be}, hence 0(1,
—ab) = {1, —ab, ¢, —abc} and 0(1, abc) — {1, abc, ab, c} (by (I,b), (1,
—ab), (l.abc) do not represent —1, £a) and so D(1, —) = {1, —c, —a,
ac, —b, be, ab, —abc}. This implies that (1, —abc);# —1, abc, ta, *bc,
ab, —c, ¢, —ab, —b, ac, hence D(l, —abc)d {1, —abc, b, —ac}. But (1,
—abc)« x 90 —bxe {—b, ac, —1, abc}. Using (1, -ac)« -bx we get
(1, b)« ac or <1,1) «sac, a contradiction. If —ceD{l, a) then 0(1, a) =
= {1,a, ~c, —ac}, 0(L b) = {1, Db,c, be}, 0(1, —¢) = {1, —, —b, be} and
D(l, —be) = {1, —be, —b, c} (since these forms do not represent —1, *a).
We have (I, —abc)?# —1, abc, ta, tbc, —b,ac,c, —ab and (1, —abc)« x
implies that xe{l, —abc, b, —ac, —c, ab}. Moreover (1, —ac)?# —1, ac,
—b,abc, be, —a and (1, —ac)« —bx, a contradiction.

We have proved that |D(1, —a)| = 4 implies |[D(l,a)| = s, henoe o (1,
a) = o(S), by aeD (1,1)C a(S). We shall show that, for any xeO (l,a),
x™l.a, |D(@,x)|,= 2 Ifnot, let be 0(1,a), b=5*1,aand |0(1, b)] ™ 4. From
D(l,b)do(S) and (1, b)«a we have (1,b)«c, cGa(S) and D{l,a) =
—o(S) = {l,a, b,ab, c, ac, be, abc}. This implies ceD (I, a) \ D(l, b)d
CD (1P—ab) and ceO (I, —be), hence (1, —ab)?# —c, (1, —be)?# —c(since
(1, N?#ab,bc) and so (1, c)*# ab, be, abc, b. From 0(1, —) = {*1, ta)
and jD(1,c)C<t{S) we get 0(1,c) = {1, c}. Now (l,a)«xab and (1, —ab)«
« cimply (1,ac)« ab and so abe o (1,ac)d o (1,c,¢) = U o((x0)=

xed (i, c
= 0(1,c) ~ D(e, ¢) = {l,c, ac}, a contradiction. Thus weehai/éC 0(1,x) =
= {1, x} for any xeO (1,a), x ™ 1,a. It follows that 0(1, —x) — {1, —x,
—a, ax} because these forms do not represent 8 elements ((1, —b)i#b,
—¢, —be and, if x ™ b, (1,—x) ?# —1, £b). We conclude that there exists
at most one scheme with |D(1, —a)| —4.

Next we assume that |[D(1, —a)| = 8 and 0(1, a) = {l,a}. We choose
e00(1, —a) such that (I,c)«xb, b=£1 and beO(l, —a). From (l.c);#
% —1, ta we get 0(1, —) = (%1, xa, b, +ab} and g = 0(1, —a) X
X {l, c}. Since the forms (1, ¢) and (1, —be) do not represent —1, +a, we
have o (1,¢) = {l,c, b, be} and o (1, —be) = {1, —be, —c¢, b}, hence o (1,
—b) = {1, —b, a, —ab, —<, be, —ac, abc}. Similarly, the forms (1, ac) and
(1, —abc) do not represent —1, +a, hence o (1, —abc) — {1, —abc, b, —ac}
and 0(1, ac) = (1, ac, b, abc). From (1, —a)w * b, £ ab we have (1, b)«a
and (l,ab)«a, b and so (1,b), (l,ab)s# —ab, —c, abc implies o (1,b) =
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= D(l, ab) = {1,a, b, ab}. Further, (1, —ab)” a and (1, —ab) b, —c. We
shall show that (1, —ab)  —be. If not, then (1, be) ab, hence (b, c)« a.
From (1,c) b we getae D(l,c,c) = D(l,c) wD(l, ac) and so (1, —a)«
« —C or —ac, a contradiction. Thus (1, —ab) gb b, —c, —be, hence D(l,
—ab) = {1, —ab, a, —b). Now, for x = be, abc, —c, —ac we have (l,x)qgb

—1, —X, *a, xb, fax, xbx, xabx, hence D(I,x) = {l,x}. We con-
clude that there exists at most one scheme with |D(1, —)| = s and
10(1, a)| = 2.

Lastly we consider D(1, —a) — {1, *a, b, xab} and |D(1, a)| » 4.
By (A) we get (1,a)gb —1, £b and so D(l, a) = {1, a, ¢, ac}, cfiSD<1, —a).
From (l,b)”a, ba and (ab,b)*bc we have bceD(l, b,b) = D(l, b) »
w D(l, ab) hence (l,b)«sbc or (1, ab)« be. It is sufficient to consider
the first case, because using the group isomorphism a-*-a, b -*mab, c-> c,
—1—»—1 we get the equivalent scheme. Then we obtain D(l, b) = {1,
b, a, ab, ¢, be, ac, abc), ce D(1,b) D(l,a)d D{l, —ab), thus D(I, —ab) =
= {1, —ab, a, —b,c, —abc,ac, —be), D(I, —) = {1, —, —b, be, —a,ac, ab,
—abc} and D(l, —ac) = {1, —ac, —b, abc, —a, ¢, ab, —be}. Further, abe
€ D(I, be) » D(l.abc), —beD(l, —be) r\ D(I, —abe) and the forms ({1,
+bc) and (i, +abc) do not represent —i, xa and so these forms repre-
sent 4 elements. Similarly, aeD (I, —b) /~D(l, ab) and (1, —b), (l,ab) do
not represent —1, + be, hence they represent 4 elements. This implies that
ID(l,c)] = |ID(l,ac)| = 2.

We have proved that there exist at most 3 non-equivalent schemes
with g2—2, |i?l = 1 which are not power schemes. Hence S Sa2 or
Sa43 O Saaa,

LEMMA 17. If S = {g, —1,d) is a formally real scheme, g2(S) = 1
and [g:Ds(l,a)] = 2 for some aeg, a 1, then |DS(1, —a)| = 2 and the-
re exists a scheme S' such that S~ S' n S{R).

Proof. Write g —{1,-1} XD(l,a). IfxeD(l,a ™ D(l, -a) C
CD(1,1), then x = 1. If ie —D(l,a) N D(l, —a) then -ieD (l,a) ~

D(1, —a) and x = —L1. Thais we have D(l, —a) = {1, —a). Let beD(l,
a). Then D(l, b)C D{1,1,0)=. U D(x, a) = D(l, a). We shall show
fliat led(,i)

(A) D(I, —ab) —D(1,b) X {1, —a) for any beD(l, a).
From (1,a)”b, ab and D(l,b)CID(l,a) we have D(l, b)CID(l, b) »
rnD(l,a) C. D(I, —ab). Moreover, (1, —ab) « —a, hence —a*D(l,b)(Z
CD (1, —ab) and so {1, —a) X D(1,b) C D(l, —ab). For the other inclusion
suppose that ieD (I, —ab). If xeD(l,a) then xeD(l,a) r\D(1, —ab)d
CD(l,b), If —xeD(I, a) then —abxeD(l, a) D(l, —ab)d D(l, b), hen-
ce—axeD(l,b) so xe —aD(l, b) and (A) is proved.

Now denote g —D(l,a), —' = a and d'(b) = Dg(l, b) for any beg".
If b,c,de Ds(l,a), then Ds(b,c,d)d Ds(l,a,l,a,l,a)d D(1,a). More-
over, by (A) we have (1,b)x ¢ (1,—ab)« —a ¢ (L ac)« ab->*>(1,

37



—I'c) « —'b. Thisimplies that S'—{g'—Y d") is a quadratic form scheme.
We shall show that S(R). Obviously, g~ g'X {1R —1R}. We
observe that the mapping /:g' X {1R —Ir} -> g, f(b, IR) = b and f(b,
—1ry = —ab, beg"' is a group isomorphism and f{—1', —ir) = —1. Mo-
reover, for beg', we have f(Ds,ns(R) ((1,1r), (b, 1R)) = f(DS',(I, b)X
X DSR) (ar,1r)) = b) X (1R>) = Ds(4, b) and f(Ds,ns (R ((1, 1r), (b,
~1«))) = /(Ds,(l, b) X Ds(r) (1b, -1 r)) = f(Ds,(l, b) X {1R -1 R>) = Ds(J,
b) X {1, —a} = Ds(1, —ab). This proves that / is an equivalence map
and so 5 &2 S'ri S(R).

PROPOSITION 18.1f S is a non-power scheme with q(S) = 16,
$2(S) —1 then S = Sas Or Saa.

Pr oof. We choose a,beg such that (l,a)«b, a=£ 1, b —1,
—a. Let H= {%1, +a, £h, tab}. There exist cgH, xeH, xt”Il such
that (I, x) * c. If xe {a, —b, —ab), then |D(l, x)| =8, by —aeD (I, —b) n\
A D(l, —ab). Let x = —a (similarly for x =. b, ab). Then (1, —a)« ¢, —ac,
hence (1, ac) « a, c. We have (—<, be) (1, be, —c)« ¢ *>there exist?
y e 2>(1, be) such that (y,—<)« ¢ ye D(l, be) » D(c, c) = D(I, be) X
X {c} =@, be)« c=(1,c)>»—be, b={—cC,ab) is Fabasis of D(l
-c)-*ID(l, -c)| = 8.

We have proved that there exists xeg such that |D(1, x)] = s and
using Lemma 17 we conclude that SAS'\~\S(R) for some S', hence
S = Siisor S = SU9. Thus we get

THEOREM 19. If S is any formally real quadratic form scheme with
q = 16 then S is equivalent to one of schemes Sm —Si5l in the table 3.
All these schemes are realized by fields.

Now we shall give the classification of all schemes with [g:ft] = 16,
JRv~ 1 As previously we denote by X: and X2 the sets of all schemes
with q —16, |R| = 1 ans s = 1 and s = 2, respectively. Then the set of
all schemes with [p:R] = 16 and |R| Nlis X X"~ X', where
x; = {sn s(iSeXJ, X"- {snst-.sexj, x2= {sn sf:SeX?2}
and Sfi,i = 1,2, denote the radical schemes of cardinality /2 We have

THEOREM 20. The table 4 contains all the schemes with \g :R] = 16
and |R| = /3~1. All these schemes are realized by fields.

Lastly we describe the Grothendieck and Witt groups for any field
k with [g:R]” 16, by giving a decomposition of G(fc) and W(k) into
a direct sum of cyclic groups. For Q2 QQV ~ 1) and Q2(]/—2) this can
be found in [s] and we use Theorem 21 and 22 for the remaing fields

THEOREM 21. If k is any field of characteristic 922 and K — k((t))
is the power series field, then

W{K) = W(k) © W(k) and G(K) = G(k) ® W(k).
For the proof of Theorem 21 see [10].
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THEOREM 22. If k, K, L are any fields of characteristic # 2, s(L) "

A s(K) and S(k) A S(K) |+ S(L), then

GKk) = Z® G,(K)© GOL) and W(k) = W(K) ® GOL)
where GQO(K) and GOQ(L) denote the subgroups of O-dimensional elements
of G(K) and G(L).

Proof. Let S(K) = (fif(K), —1K dK) and S{L) = (g(L), —1L,dL) be
the schemes of the fields K and L and S = S(K) [] S(L) be represented
by the field k (i.e. SSiS(Jc) = {g(k), —Ik,dk)). Let /: g(K) X g(L)-+g(k)
be an equivalence map and we denote aKbL = f{a, b), ae g(K), be g(L).
In particular Ik = /(1K 1L) = 1KlLand - lh= f(~1K -1 L)={-1K) (~1L).

We define two subgroups of the group GOKk) in the following way:

Gi“ {(aK-IL,a% -1, - (b?. 1. -1, eGQk)-ahbi€g(K), TieN>,
G2- {(i*.(*f Ir~)-{IK-d»,... Vv~rd"'; eGOk):cj,djeg(L), neN}.
From Theorem 3.9 [9] we conclude that the mappings /1:GXK)-* Glt
fi((au .., an)—(bj,..,bj) = (aK'lL, ..., a«-1L) - (b«.IL ..., b7A-1">
and f2:G0O(L) =Gz,
f« C i cn)- (dl t dn)) = (Ik-cJ-, .., IK-cN) - <1* . d f, | K*dE}

are group isomorphisms. Clearly G1 G2 —0. We shall show that Gj ©
©G2= GQOKk). From Theorem 39 we have also IKILe f(DK(a 1) X
X DI (1l, b)) = Dk(aKIL, IKbL) for any aeg(K), beg(L), hence (I1*!I;
aKIL, IKbL)" IK\Ly aKbL) and so (IKIL<—(aKbL) =((1K1L}—
—(aKIL,)+ ((IKIL}—(IKbL)) e Gt @ G2. Since the group GOK) is ge-
nerated by elements {l1KiL)—(aKbL), aeg(K), beg{L), we have
GoQ)C G ,© Gg so G,(fc) = G, © G2= /,(G«(K)) © f2(GO(L)) aa G«(K) ©
© GOL) and the first part of the theorem is proved.

In the sequel we write C(X) for the cyclic subgroup generated by an
element X. From Theorem 11 [10] we have that there exist subgroups
GOK and Ggql of the groups GQK) and GQ(L) such that GO(K) = C((1K}—
—(—I1k)) © GOK and GOQL) = C((1L)—{—1")) © GOL and we get

GOK) = C<1*1*}- (-1 KIL) © UGOK) © C«1KIL)- <IK(-1D>©
© f2(GoL)y
We shall prove that
C((IKIL)—\—1KlL» © C«1KIL)—(1K(—1D}) =
= C((1K2L) —((—1K) (“ 1)) © C((1KI1L)—<1K(—1L)>).

Since {IKIL)-((-1K) (-11I">= {IKIL)-{IK(-1LD)+ {IKIL>-< (-1K)IL)
it is sufficient to show that C((IKIL)—{(—1K) (—1L))) r\ C((1K1L)—
—{1K(—1L);) = 0. Suppose that —ip= m X ((1KIL)—((—1IK) (—I1¥)) =
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=n X ({IKIr)-{IK(-1D)) for some forms o and y> over k. Using also
Theorem 3.9 [9] we get m X (1K™ m X (—Ik). If s{K) —oo then m _ 0
and p—yj = 0. If s(K) <Coo then s(K) divides m. But s(k) —s(K) by Theo-
rem 3.9 [9] hence s(k) divides m and ¢ = 0 too. Thus we have

<*&) =
C((1K11) —{(—1K) (—11D))@C({1KIiL) ~ (1K(—1i")))@/i(Gok)@/G0i,) —
C((Ne >-<(-1*) (-11)))©/i(Gok)0/2(G,,(L)).

Using Theorem 4.1 [10] we conclude that
W(fc) N Z © ft(GOK)© fz(GO(L)) SiZ© GOK® G*(L) RW(K) © Go(L)
if s(Jc) = a{K) = 00 and

W{K) fig Z/2 s(k) Z © U(Gok) © /2(Go(L)) fig Z/2 s{K) Z© GOK© G«(L) fig
&2W(K)OGo(L)

if s(fc) = s(K) < oo.

REMARK. In [I,Th.7.1] Cordes proved that, if |W| = 32, then q
and the Witt group determine only one non-real field up to equivalence
with respect to quadratic forms. For fields with |W| =. 64 the invariants
W and q do not suffice for characterizing the scheme. For example, if
S[K)~Sils and L = Q~]/ —2), then q(K) = g(L) and W(K) = W(L) and
the fields K and L are not equivalent.

APPENDICES

We enclose four tables containing all non-equivalent schemes with
[ogr:R]  16. The following notation is used in the tables:

g =, |sf — the cardinality of the group g,

at = |D(1,2)1,

IR| — the cardinality of the radical of the scheme S,

m — the number of the equivalence classes of 2-fold Pfister forms,

s — the stufe of the scheme S,

r — the number of orderings of the scheme S,

u — the maximal dimension of anisotropic torsion form over S.
For any schemes S, we denote by W and G the Witt group and the Gro-
thendieck group of a corresponding field. Moreover, in the tables 2 and
4 we use

gx = [D(1,1): R],

Sf, i = 1,2 — the radical schemes of cardinality /? and stufe i,

h — an elementary 2-group of cardinality /.
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TABLE 1
Schemes with g~ 8

Schemes ag2\R\m s r u G W
S, = S(C) 1 11 1 1 0 1 z z/22
Su = S(F,,) 2 2 2 11 0 2 z+2/22 (2/22)2
Sit = s(F.) 2 2 2 1 2 0 2 z+2/22 /47
St, = s(R) 2 1 1 2 0 1 0 zZ+2Z z
@9l ~ *Min Swii 4 4 4 1 1 0 2 Z +(2/22)2 (2/22)3
N23 ~ M2~ 4 4 4 1 2 0 2 Z+(2/22)2 Z/42+2/2Z
&23 = Sijj 4 4 1 2 1 0 4 Z+(2/22)3 (2/22)«
Su = s{2 4 2 1 2 2 0 a4 Z+2/4z2+2/22 (z/42)2
$25 = Snn SI3 4 2 2 2 00 1 2 z2+72/22 z+2/22
Sm=Sun s13 4 1 1 4 00 2 O z3 z2
S31= Sn n Sjj 8 8 8 1 1 0 2 Z+(2/22)3 (2/22)4
Sgf = su f~I sj2 8 8 8 1 2 0 2 Z+(2/22)3 Z/4Z+(Z2/22P
£33 = Siln SI3 8822104 z+(2/22)4 (2/22)*
A<= s12n s B 8 8 22 20 4 Z+(Z/22)« z/42+(2/22)3
S36 —'gj 8 8 1 4 1 0 1 Z+(Z2/22)5 (z/22)*
S3 = sjj 8 8 1.8 1 0 s Z+(2/22)T (2/22)»
S¥=Snn SA& 8 4 22 2 0 4 Z+ Z/4Z+ (2/22)2 (Z142)2+2 /22
S3, = S(Qs) 8 4 1 2 4 o 4 Z+Z14Z+ (212Z2)2 Z18Z+(Z12Z2)2
18 = s~ 8 4 1 4 2 o 4 Z+ ZI4Z+ (Z2/122)3 (214Z)2+(z/"Z)>
Silt = sja 8 2 1 8 2 o 8 Z+ (2/142)3+ 2122 (Z/42)4
San = Sgn Su 8 4 4 2 00 1 2 Z2+(Z2122)2 Z+(Z12Z)«
$312= s13n s 8 4 1 400 1 4 ZS+(Z/22)S Z+(Z212Z)3
S*u = Sin Su 8 2 1 4 0 1 4 Z2+7/4Z2+2/22 Z+Z14Z+Z212Z
S34= Snn Sx 8 2 2 400 2 2 23+72/22 Z*+Z7/27
16 = s'5 8 2 1 7 00 2 4 23+(2122)2 Z2+(Z212Z)2
S36 = Sj, N Sje 8 1 1800 3 0 2« 7?
Sa7 = sjj 8 1 112 00 4 o Z5 z*
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TABLE 2
Schemes with radical of cardinality ¥*1 and [g:R]”™ 8

Schemes [g:R]g2m s r u G w
_Son s{cxs? 1 1110 2 Z+h Z[2Z+h
g =Sonsi~St 1 112 0 2 Z+h Z/4Z+h' where
[h:h]=2

sp=Sunsf 2 1 200 1 2 Z3h Z+h

g =sBn sf 4 4 2 1 0 1 Z+(ZI2Z)3+h (Z/2Z)*+h
Sjraez sBn sf 4 4 2 2 0 4 Z+(ZI2Z)3+h ZI4Z+ (212Z)2+ h
S24=S3#n SN 4 2 2 2 0 4 Z+Z/AZ+Z[2Z+h (2/4Z)2+h
*46: Sxn Sj 4 1 400 2 2 Z3+h Z2+h
*35 ~ SHI s| 8 8 4 1 0o 4 Z+(Z/12Z)5+h (Z12Z)6+ h
*35 = s»N sf 8 8 4 2 0 4 Z+(Z/2Z)s+h Z/4Z + (Z12Z)a+ h
*36 = S21 ISj 8 8 8 1 0 8 Z+(Z/2Z)1+h (2/12Zys8+ h
x5 = S% 1 8 8 8 2 0 8 Z+(Z/22)7+h Z/4Z + (2/2Z)6+ )i
*38 = S38/N 1G] 8 4 2 4 0 4 Z+Z|AZ+ (Z12Z)2+h Z[8Z+ (Z/2Z)2+h
— s3Pn s* 8 4 4 2 0 4 Z+2Z/AZ+(2122)3+h  (Z/4Z2)2+ (Z2/2Z)2+ h
%310 = S30" Sj 8 2 8 2 0 3 Z+ (ZMZD=+Z/2Z+h (Z/4Z)4'h
@®BI2 =S 312MisSj 8 4 4 00 1 4 Z'+(Z/2Z)3+h Z+ (Z2122)3+ h
*313 = S3i3n sf 8 2 4 00 1 4 Z2Z/4Z+Z[2Z+h Z+ZI4Z+ Z[2Z+h
v335 ==S35n S| 8 2 7 00 2 4 ;Z3+(Z/2Z)2+h Z2+ (Z/2Z)2+ h
*316 « S 3l6n Sj 8 1 800 3 2 Z*+h Z3+h

%317 =Sa7 N §j 8 112 &4 2 Z=+h Z4+h



Schemes with q = 16

TABLE 3

Schemes g, IRlm s r u G W
Sa4 Suns,, 16 16 1 1 o 2 Z+(Z/2Z2)< (z/2Z)S
S = Spn S 16 16 1 2 0 2 Z+(Z2/122)a ZIAZ + (Z12Z)3
SB= Sain Sz 16 4 2 1 0o 4 Z+(Z/2Z)s (Z122)6
Sa = S»0 S» 16 4 2 2 o 4 Z+(ZI2Z)s ZIAZ+(Z122)4
S S11D Sz 16 2 4 1 o 4 Z+(Z/2Z)s (Z122Z)y7
sk = SrHSx 6 2 4 2 o 4 Z+(Z222)6 ZIAZ + (Z/2Z)s
S# SnfliSxm 16 2 8 1 0 8 Z+(ZI22)8 (2122)8
Stam Sun Ss6 16 2 8 2 o g Z+(Z/2Z)s Z14Z+(Z12Z)y7
So S(Q2MrT) 16 1 2 1 o 4 Z+(ZI2Z)5 (212Z)6
S40 Szn S& 16 1 4 1 0 4 Z+(Z/2Z)s (Z212Z)y7
sa QY 16 1 8 1 0 4 Z+ (21227 (2122)8
S42 A3z 16 115 1 0 g Z+(Z2/22)8 (Z/2Z)10
sas= % 6 12 1 0 8 Z+(Z/2Z)U 2122y
Sau = fg 16 13 1 016 Zt(Z22)b (212Z)B
Sus  SaA *Y 8 4 2 o, 0 4 Z+Z/4Z+(Z2/2Z)3 (Z2142)2+ (2/22)2
Sa1; :SnH 53 8 2 2 4 0 4 Z+Z/IAZ+(Z12Z)3 Z/18Z+ (2/2Z)3
S47 SnHIS® 8 2 4 2 0 4 Z+ZIAZ+(Z2Z) (Z14AZ)y2+ (Z2122Z)3
S48 = StQittVA)) 8 1 2 0 4 Z+ZIAZ+ (Z/12Z)3 (214Z)2+ (Z2/22)2
Sa49 = S% 11S4 8 1 4 2 o 4 Z+ZIAZ+(Z/2Z)s (Z214Z)2+ (Z122Z)3
S4p= egz 8 1 8 2 o 4 ZtZIAZ+ (Z22)"> (ZI4Zy2+ (21224
Sal = °%, 8 115 2 o 8§ Z+ZIAZ+ (212Z)7 (Z214Z)y2+ (Z/2Z)«
Saz - SuH Sao 4 2 8 2 o 8 Z+ (ZIAZy3+ (2:22)2 (Z2142)a+212Z
Sam = Sar1Sx 4 1 4 2 o 4 Z+ (ZIADy2+ (Z122)2 (214Z)3+212Z
Sem= ¢l 4 115 2 o 8 Z+(Z/42)3+(2/22)3 (2142)4+ (212Z)2
Sas = ¢ 4 116 4 o 8 Z+ZI8Z+ZIAZ+ (ZI2Z)4 (Z/8Z)2+ (2/2Z)4
Saw = %4 4 12 2 o 8 Z+ (Z/42)3+ (Z/2Z)5 (2142)4+ (2122)4
San = &, 2 13 2 o 16 Z+(Z2lA)1+Z2]2Z (2/142)8
S48 = S1n S3 8 8 2 00 1 2 Z2+(Z/2Z)3 Z+(Z12Z)3
M2 = Snn Sae 8 2 4 00 1 4 Z2+(Z12Z)4 Z+(Z122)4
S = S13H Sz 8 1 8 00 1 4 Z2+(Z/2Z)5 Z+ (Z/22)5
Sal = SBn S 8 116 oo 1 8 Z2+(Z22)7 Z+ (Z12Z)7
Sa2 = Sain S 4 4 4 00 2 2 Z3+(Z/2Z)2 Z2+(Z2122)2
S4x = Sn Pl S3i3 4 2 4 o0 1 4 Z24Z|AZ+(Z]2Z)2 Z+Z/4Z+ (Z2/22)1
S44= Snn S35 4 2 7 00 2 4 Z3+(Z/2ZP 22+(Z2122)3
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Schemes

£435= S13n SN
MPH= $13P S0
M37 = S\2 *1¥312
M38 = N 31X
M39 =

M40 = Sun 5316
M4l = SIHP I3
sas2 = £13 ] 1213
&443 —513P 135
- S12 |~1 310

Sns=s‘4
S«s = S*‘13
S«7 = Sj15

SM8 = S13P iS3ie
M0 = SM3F | 1317
S50 = SjW
S5l = 517

P Rk P = NN NN NN NN DM DS A BN BN

13
24

12

14
16
21
24

P R R R R R NN R R R Rl e

33

124
134
144

o o o 9 o
S 8 8 8 8 8 =

00
00

00
00

00

00

00

o
o

00
00

00

-

© o O A~ B PO D W N A W NN N R e

[

© o © o ® o &M o A B N o0 O N D NN

G

Z2+ Z]4Z+ (2122)2
Z*+Z]4Z+(Z212Z)3
Z3+ (Z122)3
Z3+(Z12Z)«
Z3+(Z12Z)8
Z2*+Z7/[2Z
Z5+2/2Z
Z3+Z14Z2+2]2Z
Z4+(Z212Z)J

22+ (Z/4Z)3+ Z2/2Z
Z5+(Z122)*

23+ (Z/4Z)2+ (2/22)2

Z5+(Z2122)4
®

TABLE 3 (continued)

w

Z+Z[4Z+(Z/12Z)!
Z+ZI1AZ+(Z12Z)j
Z2+(Z2/22)3
Z)+(Z212Z)«
Z2+(Z212Z)6
Z3+72/2Z
Z«+2/2Z

22+ 2142+ Z]2Z
Z3+(Z12Z2)*

Z+ (Z14Zp+212Z
Z«+(Z2/22)*

22+ Z14Z2+ (Z/2Z)
Z4+(Z122)4

z4

Z5

7«

7«



Schemes with radical of cardinality y?

Schemes

S4911Sj
4
@19 £ S4on 5

= Sdial-1s»
oo = sion 9
s«i = Shin Sj
*4r111 = Shin

®ﬂ2: S,un sf

@412 = Sinn §j
$413 = S s f
= Sulp. £
««d = Smn 57
S«4 = SiutlS*
ag1x = Sualilsf
4 = SiuHSI
= Smn &
421 S4Jin
a3 = Sadflsj
424 = s«4n s f
sti5= s,sn&f
SH = SiBP S|
$427 = S«7n sf
@zs = SIMN s (
@431 — Sisin sf
®435 = S43sn s?
@436 ~ S46N Sj
S$437 = S437Nn Sj
ngg = S4an sf
®439 = Saon sf
Aap — Saan S{
saz = Suan sj
@aaa = Slaan sf
= Sasn sj
naag — Sasen sf
5447 SMn sf

aj
16

16

16
16
16
16

16

16

©

©

A o B B~ b

15
26
26
36

36

15

15

16

26

36

16

13
24

14
16
21
24
33

00
00

00

00

00
00
00

00

00

N

B~ SN 7 B N

u

16

®© N BN B p ©

~ o0 A

G

Z+(Z212Z2)5+ ft
Z+(Z12Z)9+h
Z+(Z12Z) +h
Z+(Z12Z)«+h
Z+(Z12Z)7+h
Z+(Z212Z)7+h
Z+(Z/2Z) +h
Z+(z122)'+h
Z+(Z12Z)*+h
Z+(Z212Z)»+fc
Z+(Z12Z)«+fi
Z+(Z12Z)«+h
zZ+2Z/4z+ (2/2Zya+h
Z+Z14Z+(Z12Z)3+h
Z+7214Z2+(Z212Z2)5+fc
Z+Z214Z+(Z212Z)7+fc
Z+ (z14Z)*+(z/2Z)3+ h
Z+ (Z14Z)*+ (Z12Z)3+ h.

Z+27218Z2+2Z14Z+
+<Z/2Z)«+k

Z+(Z14Z)»+(Z12Z)® +h
Z+(ZI4Z)1+Z12Z+]i
Z»+(Z/2Z)5+h
Z22+(Z212Z2)7+3t
Z2+Z14Z+ (Z/2Z)2+ fi
Z2+Z4Z+(Z12Z)3+fi
Z3+(Z/2Z)3+h
Z29+(Z12Z)4+h
Z3+(Z12Z)e+(i
Z3+Z14Z+2Z12Z +h
Z4+(Z12Z)2+h

Z2+ (Z/4Z)3+Z/2Z + fi
Z5+(Z12Z)2+h

23+ (Z/4Zy2+ (Z2/2Z)2+ h
Z5+(Z/22)4

TABLE 4
land [g:R] = 16

W

(z/12Z)'+h
Z/4Z2+ (2/2Z2)4+ h
(z12Z)7+ h

Z14Z2+ (Z122)5+ fe
(2/12Z)»+h

ziaz+ (zr2z)*+h
(z/2Z)10+ h
Z14Z+(212Z)«+h
(z122)* +h
Z14Z+(Z12Z)w+h
(Z12Z)1*+h

Z14Z+ (Z212Z)14a+ h
<ZIAZ)+(Z12Z)*+fi
(Z14Zy1+ (Z/22)*+h
(Z14Z)2+(Z12Z )4+ fi
(Z142)*+(Z12Z)»+h
(Z14Zy3+ Z2/2Z+ h

(Z14Z)a+(Z12Z)3+h.

(Z18Z)*+(Z12Z)4+ h
(Z14Z)a+ (Z12Z)4+ h
(Z14Z)*+h
Z+(2/2Z)5+h
Z+(Z12Z)T+h
Z+Z]4Z+(Z/2Z)2+h
Z+ZI4Z+ (Z/2Z)3+ h
Z2+(Z12Z)»+h
Z2+(Z12Z)4+h
Z2+(Z/2Z)s+h

Z2+ Z/4Z+ Z]2Z+ h
Z3+(Z12Z)2+h.

Z+ (ZIAZ)3+ Z12Z+ 1n
Z4+(Z122Z)2+7i

Z2+ (Z14Z)2+ (Z/2Z)2+ Ji
Z4+(Z12Z2)4+b
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(1]
[2
13]
(4]
(]

(6]
[1]

8l
[

[10]

[11]

TABLE 4 (continued)

Schemes @m s r u G

= SugP 116 00 4 2 Z*+h Z*+h

—SlI-.,! ISt 124 o0 5 2 Z*+h Z5+h

— S40P 13 0 6 2 Z"+h Z6+h

—Sa4s1n Si 144 o0 8 2 Zs+h Z«+h
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