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ON ANALYTIC SOLUTIONS OF 
THE NON-LINEAR FUNCTIONAL EQUATION

A b s t r a c t ,  in  the  p resen t p ap e r w e consider th e  prob lem  of the existence 
an d  uniqueness of local analy tic  solutions of th e  equation  rp(fix)) =  V(qc>(x))+U(x). 
This paper is a continuation  of [1], [2] and [3].

1. In papers [1] and [2] we considered the problem of the existence 
and uniqueness of local analytic solutions of equation

0 )  V>(f(x)) =  g{x, cp(x)),

where cp is an unknown function, and analytic functions f, g fulfil the 
following assumptions:

A complex function j  is defined and analytic in a neighbourhood of 
the point zero belonging to the field C of complex numbers and f  has 
2 ero of an order r  at the origin i.e.

(2) /(x) ~  xr F(x), |x| <  q,

where g denotes a certain real number; F is analytic in the disc { z e C :
I.Ti <  g} and such that

(3) F(0) ^  0

whereas r is a positive integer fulfilling the condition

■(4) 2.

A complex function g is defined and analytic in a neighbourhood of 
the point (0, 0) e  C X C and such that y(0, 0) =  0. Thus g has a unique 
representation of the form

g(x, y) = I7(x) +  V(y)+x-y  G(x, y), |x| <  gu |y| <
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where Qi, q2 denote certain positive real numbers; TJ, V are analytic func
tions in  the discs Kj =  {a: e  C : |cc| <  gi) and K2 =  {x e  C : |x| <  f>2}, res
pectively, whereas G is an analytic function in  the bidisc K t X K2 and

G(0 ,0)=£0.

In the paper [3] we assumed tha t

G (0,0) =  0, and G(x, y) #  0.

In the present paper we shall assume that

G(x, y) =  0.

The function g is now of the form

g(x, y) =  TJ(x)+V(y), 

and equation (1) is of the form

(5) <p(№) =  U(x) +  V(<p(x)).

In the paper [4] Kuczma considered equation (5) in the case where 
U(x) »  0. We shall deal w ith equation (5) under such assumptions on the 
given functions which do not allow to reduce i t  directly to equation

(E) <p(x) =  h(x, <p(Hx))).

This equation was solved in  [5]. A basic resu lt in  tha t direction is the 
following:

THEOREM (W. Smajdor [5]). Let h be an analytic function in 
a neighbourhood of the point ( 0 , i j ) e C X C  and such that h(0, rj) — rj. 
Moreover, let f  be an analytic function in a neighbourhood of the point 
0 e  C and such that f(0) =  0 and | f  (0)] <  1. If

oo

(6) x{x) =  t j +  y  cnx n
n = 1

is a formal solution of equation (E), then it represents an analytic func
tion in a neighbourhood of the point O eC.  Moreover, if

| f  (0)" (0, n) | ^  1, n e N *

then the solution q> of the form  (6) does exist and it is unique.
By a formal solution we mean a formal power series which satisfies 

a given equation formally.
We shall assume (2), (3), (4), (5) and the following form of functions

V, V :

* In  th e  w hole pap e r N  denotes th e  se t of a ll positive integers.



(7 )
U(x) = x p u(x), p e  N, p >  2, u(0) ¥= 0, 
V(x) =  x<i v(x), q e  N, q >  2, t>(0) ^  0,

where u and v are analytic functions in the discs K x and K2, respective
ly. (If q =  1, then equation (5) can be w ritten  in the form (E). p =  1 
leads to  contraction.) For brevity, we adopt the convention tha t the zero 
function (and only this) is of order °o a t zero. We shall look for locally 
analytic solutions cp of equation (5) of the form

(8) <p(x) =  xn <P(x), a e  N,

where 0  is an analytic function in  the neighbourhood of 0 e  C and

(9) #(0) =

Putting (7) into (5) we get

(10) <p(j(x)) = x p u(x)+<p(x)« v{<p(x)).

If p =  oo in (10) we obtain the equation

<ftf(X)) =  tp(x)i v{<p(x)),

(see [4]). Applying the substitution (8) to equation (10) and taking (2) 
into account we get

(ID Xr“ F(x)a 0{f(x)) =  Xp «(Xj +  X^ 0(x)q v(x° 0(x)).

REMARK 1. If a function <p fulfilling conditions (8) and (9) is a so
lution of equation (10), then the corresponding function 0  (cf. (8), (9)) 
satisfies equation (11). If a function 0  fulfilling condition (9) is a solu
tion of equation (11), then the function cp given by  (8) satisfies equa
tion (10).

We omit a simple proof of this remark.
LEMMA 1. If there exists a formal solution of equation (11) of the 

form  (9) then one of the following conditions holds:

1° ar — p  =  aq, 3° aq =  p <  ar,
2° ar = aq <  p, 4° ar = p <  aq,

Pand a — ~  in the cases 1°, 3°, and a is an arbitrary positive integer be

longing to the interval j^l, ^fie case 2°, a =  in the case 4°.

P r o o f .  Suppose tha t for a positive integer a equation (11) has 
a formal solution 0  fulfilling condition (9), and suppose tha t e.g. ar <C p 
^  aq holds. We get from (11)

F(x)a0(f(x)) =  xP~rau(x) +  x<i'‘- ra 0(x)q v(xa 0(x)),

and for x  =  0 we obtain F(0)° rj =  0 which contradicts (3) and (9). The 
second part of our assertion results from the form of conditions 1°—4°.
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2. r ~ q .  P .
THEOREM 1. (i) For an arbitrary integer « e l l ,  — la n d  for every 

t] e  C \{0) satisfying the equation *-

vq- i u(0) =  F(0)a

equation (10) has locally exactly one analytic solution <p of the form

<p(x) =, x a &{x),

where <P is an analytic function in a neighbourhood of zero and such 
that #(0) =  rj.

(ii) Moreover, if  — e N  then for every rj e  C\{0} satisfying the equa
tion ^

P.
tjQ v (0)— F(Q )q »? +  u(0) =  0 

equation (10) has locally exactly one analytic solution cp of the form
p

(p(x) =  x<J <P{x),

where is an analytic function in a neighbourhood of zero and such 
that 3>(0) =  r).

(iii) The equation (10) has no other solutions.

P r o o f .  If — e  N and a : =  — then ar — aq =  p, and we get case 

1° of Lemma 1. Equation (11) is now of the form

(12) F(x)q $(f(x)) =  U(X) +  <P(X)<I v(xq&(x)), 

and for x  =  0 we obtain
£

(13) F(0)p rj — u(0) + i f1 v(0).

Let
p  p

H (x ,y ,z )  : — u(x)—F(x)<i z + yv v(x a y).

Then equation (12) is of the form H(x, <Z>(/(x)), <P(x)) — 0. By (3), (9), (12) 
and the condition /(0) =  0 we obtain the equality

-P
H(0,7], rj) — u(0) —F(0)<J »;+ t]Q u(0) — 0,

as a necessary condition of the existence of a solution of equation (12).
rj

dy~  ?/’ ^  =  ^  ®

according to conditions (7) and (9), by means of the implicit function 
theorem, there exists a neighbourhood of the points (0, rjj),..., (0, rjq) where
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*]i..... riq are the roots of equation (13) in which equation (12) m ay equi
valently be w ritten in  the form &i(x) =  K t(x, &i(f(x))), where JQ denote 
certain analytic functions in this neighbourhood and fulfilling the con
ditions Kj(0, r/i) =  T]i, for i =  1, 2..... q. Now, part (ii) of our assertion re 

sults from W. Smajdor’s Theorem. If a <  then aq =  ar <  p, and we 

get the case 2° of Lemma 1. Let a e | V ^ - j b e  an arbitrary  integer. Equa

tion (11) is now of the form

(14) F(x)“ $(f(x))) — x p- “r u(x) +  0 (x)y v(xa 0(x)), 

and from the fact ar <  p we have for x  =  0
F(0)ay =  t]qv(0).

From (9) we obtain
(15) j f " 1 u(0) =  F(0)“.

Let
H(x, y , z ) : — x p~ar u(x) + yq v(xay )—F(x)a z.

If t )6C\{0} is a solution of equation (15) then H(0,t],rj) =  0 and, in 
view of (7) and (9),

■ |y  (0, V, V) =  <vf~l m  ^  0.

The implicit function theorem m ay be applied to equation (14) and it 
suffices, as previously, to apply W. Smajdor’s Theorem. Consequently,

the proof of point (i) of our assertion is finished. If a >  ^ then p <C aq =.

— ar. Lemma 1 implies that in  this case equation (11) has no formal so
lutions, and this completes the proof.

3. r >  q.

THEOREM 2. I | - - e N  then equation (11) has locally exactly q ana

lytic solutions. More precisely, for every »?eC\{0} satisfying the equa
tion

vq u(0) +  u(0) =  0
there exists locally one analytic solution (p of equation (10). This solu
tion is of the form

v_
Cp(x) — XQ 0(x),

where <P is an analytic function in a neighbourhood of zero and such 
that 0(0) = r].

The proof of this theorem is the same as that of Theorem 1 and so, 
we omit it.
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4. r  <  q.
If equation (10) has a formal solution, then Lemma 1 implies that

P Par =  p <  aq. If — e N , then a — —  . Equation (11) is then of the form 
t r

£  £  (q—r)
(16) F(x)r — u(x) +  x r $ (x )q v (x r <5(x)).

Let

— =  : a, and s : = a -(q -r ) .
T

The condition F(0) =5̂  0 implies tha t there exists a o >  0 such that F(x) =£ 
0 whenever jx| <  g. Equation (16) m ay be w ritten in  the form 

<17> * « * » ) -

We may take q s o  small th a t q <  g i. The function

(18) h<x >: = ^  

is analytic for |x| <  g and satisfies

a » )

Setting (18) into equation (17) we obtain
-o -

u(xa(«&(x))
(20) $ ( f(x ) ) -h (x )  =  Xs <35 (x)5 F(x)a

For |x| <  g equation (20) is equivalent to (16). Observe that s ^  1. If <P 
is a solution of equation (20) then <5(0)—h(0) =  0.

From conditions (9), (19) and (2), (4) we get 
REMARK 2. If r <  q then

u(0)
<21> =  -f W

yields a necessary condition of the existence of a solution of equation 
(20).

Suppose that
oo oo

(22) h(x) =  »?+ JT1 Cn®", /(x) =  x*-1 JT1 bnx n for |x) <  g
n  =  1 n  =  1

and
oo

(23) #(x) =  j?+ JT  r)nx n,
fl ** 1
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where rj is given by (21). The function $ (f(x ))—h(x) may be w ritten in 
the form

4>(f(x))-h(x) =

=  2  ( 2  2  V 'c K '"  -K -C n + r- l)x n + r- l-  £ CnX,  
n  -  1 \fe  -  1 li+ ...+ lk  -  n  I n  -  1

Equation (20) m ay be w ritten  in the form
OO / n

(24)
2 ( 2  2  i *k • - ' b‘* ^ n+r- 1- 2 CnXn =

n =° 1 \k =» 1 ll + *=n ' n *= 1

= x * $ (x y  v(xa^ )) 
[ )  F(x)a •

Put

(25) <&(x) =  rj + x^yj(x),

where /? € N, >t fulfils (21); y> is an analytic function in a neighbourhood 
of zero and

(26) v(0) =  V ^  0.

Putting (25) and (26) into (20) we get

(27) x rP F (x f  y>(f(x))-h(x)+t] =  x^rj+ x'’ y { x ) f +

Let
CO

(28) x  : — (t] + xP t/>(x))>xa, u(x) : =  V  v nx n
n  =* 0

and for x  — x  we have
oo

v(x) = y  vnx na (rj+xP y,{x))n.
n  =  0

Equation (27) is now of the form

(29) x r? F(x)p y>{f(x)) — h(x) +  rj = x s (rj + x'5 y>(x))q v(x).

Let us consider the following possibilities regarding the exponents s and

(i) s <  r; (ii) s >  r; (iii) s — r.
Suppose that case (i) is satisfied. From (24) and (i) we obtain.

REMARK 3. Conditions (21) and

<30) c. =  °, c1 =  c2 =  ... =  ci_1 =  °

are necessary for the existence of a solution of equation (20) in the case 
s <  r.
The proof of this Remark results easily from (24) and (i).



oo oo
x t T (x ) : =  F(x)a ^  cnx n~s—csF(0)a+ JT  vnrjn+q x n+a + [F(0)a cs+ t f  u(0)]

n = s n  =  1

where T(0) 0. Equation (27) is now of the form

x T@~s F(x)P+a rp(f(x)) —

Let

(31) ~  xt + wix ) ( j ) lq~i x il~v w(x )l~
Li = 1

CO n
+  £  ^ V n(l)71n~h+q x ^ ^ i p { x ) k.

u(x) +

n  — 1 k = l

We have the following
THEOREM 3. Let us suppose that conditions (21) and (30) are fu l

filled and s <C r. Equation (10) has only the following solutions:
(I) if s — r —1, t  =  1, r ^  2 and

F(0)i+a^z qvo - i v (0),
then

<p(x) =  x a (t]+xyj(x)) 

where xp is an analytic function in a neighbourhood of zero and 

yj{0) = 7j =  T(0) (F(0)1+a_qj?9-1 «<0))-»;

(II) if s =  r —1, t >  1 and r >  2 and

F(0)t+a = qr/Q~1 r(0),

then for every ^ e C \{ 0 }

?>-(*) =  x*(t]+xy>-{x)),

where ip- is an analytic function in a neighbourhood of zero and y-(0) =  
??eC\{0} is an arbitrary constant;

(III) if r  ̂  2, t  >  S— thenr —1

rp(x) = x a (rj + x l yj(x)), 

where ip is an analytic function in a neighbourhood of zero and

V'(O) — V —T(0) (qv* -iv (0 ))- \

In the remaining cases equation (10) has no formal solutions.
P r o o f .  We observe that for every n , f c e N we have (i <Lk(S+na. 

As a result of equating the orders of zeros a t the origin of the functions
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on both sides of equation (31) (after eliminating those of the inequali
ties obtained which have no solution in the set of positive integers, and 
which lead to a contradiction) we get:
1° r p - s = . t = f i ,  2° t = p < r p - s ,  3° r £ - s  =  / ? < t .
In the case 1° we have s =  r —1, /? =  1, t  =  1; in the case 2° we have

s
P — I , s — r —1, t >  1; in the case 3° we have P — t, t  >  " f  •

Let us suppose that s = r — 1, t =  1. Equation (31) is of the form

F(x)1+a ys(f(x)) = T(x) + yj(x)

(32) ^  n 
+  JT1 y  Vn(k) rjn~k + q x k + na~1 rp(x)k.

n  =  1 k  ** 1

Putting x  =  0 into (32) we have

v (0) [F(0)1+a —qj/9-1’ u(0)] =  T(0).

If F(0)1+a q^<<,-1> u(0) then

(33) V(0) = 7j = T(0) lF(0)1+a-qr)<9- 1> v(0)]~l 

Let

H(x, y ,z ) :  = F(x)1+a y —T(x)—z 2 (?)i), ' 1a:(i- 1)2 | - 1 v ( x ) -
.1 = 1 J

J ?  ^  U„(£) T]n~k + (i x k+na~1 zk
n  =  1 k  =  1

Then equation (32) is of the form H(x, ys{f{x)), ip(x)) = 0, and by (33) 

we obtain -g — (0, rj, rj) = qrjq~l v(0) 7^ 0. There exists a neighbourhood of

the point (0, r j )  in which equation (32) may equivalently be w ritten in the 
form ip(x) = K(x, yj(f(x))) where K  denotes a certain analytic function in 
that neighbourhood fulfilling the condition K(0, r j )  ~  rj. Now, our asser
tion results from W. Smajdor’s Theorem. The proof of the parts (II) 
and (III) is the same.

Now, consider cases (ii) and (iii) i.e. s ^  r. The following remarks 
result from (24):

REMARK 4. I f the function <I> given by  (23) is a formal solution of 
equation (20) then the following conditions holds:
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_  (0)n 
v F(0)°

Ci • Cj ... Cr—1 0,
There exist numbers rji t ..., j?s+i_r then /o r every i e { l,  2,..., s — r)

(H) ,
£  2  -•*>**= C*+r-l.

k =* 1 ti+...+lk = i

k  =  1 li+ ...+ lk  =  8 ~ r  +  1

Conditions (H) are necessary for the existence of an analytic solution of 
equation (20) in the case (ii) (s >  r).

REMARK 5. I f  the function given by  (23) is a formal solution of 
equation (20) then the following conditions holds:

Conditions (H') are necessary for the existence of an analytic solution of 
equation (20) in the case (iii) (s =  r).

Let us suppose that i t ] i , J?s_r+i fulfil conditions (H) or (H'). Then 
the function 0  m ay be w ritten in the  form

y> is an analytic function in a neighbourhood of zero and xp(0) — £ 9^ 0, 
and 5 e N  u  {0}. Let

_  «(0)
V F(0)°

(H') » TUr>~* such that

(35) <P(x) =  Jt(x) +  xs-r+2+l5 y>(x),

where
s —r+ 1

i— 0

(36) A : — s + 2 —r+5 .

Putting x“ (R(x) + x x rp(x)) instead of x  in (28) we get

u(xa(R (x)+x;- y>(x)) =

(37) oo n oo

u0+  (£)R(x)n~k x k,+an y>(x)k +  ^  v n R(x)n x an.
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Setting (35), (36) and (37) to equation (20) we get

x tX F(x)a+; yj(j(x)) =

=  a:* |  (g) R(x)q~k x kx y;(x)kj  *t> (x° (R(x)+x* y>(x)))+

oo
+  Xs R(x)q J ?  vn R(x)n xan+a:s'i;o, R(x)<! — (F(x)a R(xT F(x))—u(x)).

n 00 I
Note tha t (H) and (H') imply the existence of an  m e  N and an analytic 
function M such that

oo

x m M(x) : = R(x)q J T  vn R(x)n x an+ x z Z(x),
7» “ 1

where

xs+2Z(x): =  — F(x)a R(xr f(x))+u(x)+x**u0*R(x)‘I, 

and z e  N, M(0) ^  0, Z(0) 0. Equation (38) is of the form

Q

Lk =  1
oo n

J P  (g) R(x)q~k x kx yj(x)k u(x“ (R(x)+x^ y>(x)))-f-x T'~* F(x)a+'- yj(f(x)) —

(39)
+ R(x)q vn J T  (") R(x)n- k x kl+an \p{x)kJr x m M(x).

n = 1 k = 1
For every k, n e  N we have kA+an >  X as well as for every AeN, r e  [2, 
s] ^  N one has Xr—s ^ X .

REMARK 6. X — m in {kX+an, X, 2 X , q X ,  Xr—s : k , n e N, r e [2,s]}. 
According to Remark 6, we get the following possible equalities regar
ding the exponents X, Xr—s, to, 2 X , q X ,  kX+an:
(a) X =  Xr—s = m, (b) X — Xr—s, (c) X — m.
The remaining possibilities regarding these exponents lead to a contra-

sdiction. In case (a) we have m =  X =  — —; d = m —s —2 + r. In that caser — 1
equation (39) is of the form 

jT(x )« + m yj(f(x)) -- V  (9) R(x)q~k x (k~v m y>{xy: | v(xa (R (x)+xTO v>(x))) +
k  =  l

n
+ R(x)q £  v n (”)R(x)n- k x lk- 1,m+an yj(x)k+M(x),

n  =  1 k  =  1

hence, for x =  0, we obtain

F(0)a+m |  =  qj/J-1 u(0)|+M (0),
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and if

H(x, y, z)

DOoo nn
+ R(x)<J 2 Vn 2  (ic)^x )n-k x (’£"'1>,n+cm z'c+M(a;),

n = 1 fc = 1
then

| y ( 0 ,

We have the following
THEOREM 4. Let us suppose that s >  r  and conditions (H) are fu l

filled. Equation (10) has only the following solutions:

(I) if — e  N, ——  =  m  and ifr —1 r —1

F(0)a+m 9^ q ^ " 1 u(0),

then there exists locally exactly one analytic solution of equation (10). 
This solution is of the form

<p(x) — x a(R (x)+ xm yj(x)),

where y> is an analytic function in a neighbourhood of zero and such that

y<0) =  M(0) (F(0)a+m — q ^ " 1 u(O))-1;

s s
(II) i f -----— G N and if -----— <  m andr — 1 J r ~ i

then for every r) G C\{0} there exists locally exactly one analytic solution 
of equation (10). This solution is of the form

where y>- is an analytic function in a neighbourhood of zero and such 
that yj-(0) = r)¥z 0;

lytic solution of equation (10). This solution is of the form

cp{x) — x a (R(x) +  x m ys(x)), 

where y> is an analytic function in a neighbourhood of zero and such that

yj(0) =  —M(0) ( q ^ - i  w (O ))-1.

In the remaining cases equation (10) has no formal solution.

F(0)°+ =  q ^ - i  u(0),

s s(III) i f ---- - e  N a n d ---- - >  m, then there exists locally exactly one ana-r —1 r —1

114



THEOREM 5. Let us suppose that s =  r and conditions (H') a re  
fulfilled. Equation (10) has only the following solutions:
(I) if s = r = m  =  2 and if  F(0)a+2 ¥=■ q»?q_1 u(0), then there exists locally 
exactly one analytic solution of equation (10). This solution is of th e  
form

<p(x) =  x a (tj-h t]Xx + x 2 y(x)),
where

y>(0) =  M(0) (F(0)a+2—qrj<l~1 u(0))"i;

(II) if s — r =  2 <  m, and if F(0)a+1 =  q j^ -1 v(0), then for every rj eC \{0}  
there exists locally exactly one analytic solution of equation (10). This  
solution is of the form

(p. (x) =  xa ( i j + ^ x + x 2 y>-(x))

where y-(0) = ij 0;
(III) if r — s, m >  1, then there exists locally exactly one analytic solu
tion of equation (10). This solution is of the form

<p(x) =  Xa + x + x m yi(x)),

where tp(0) =  — M(0) (qni-1 u(0))-1.
In the remaining cases equation (10) has no formal solution.

We omit proofs of Theorems 4 and 5.
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