KATARZYNA JAKOWSKA-SUWALSKA

ON DEPENDENCE OF LIPSCHITZIAN SOLUTION OF NON-LINEAR FUNCTIONAL EQUATION ON AN ARBITRARY FUNCTION

Abstract. We shall deal with the existence and dependence on an arbitraty function of solutions of the functional equation

$$\varphi(f(x)) = g(x, \varphi(x))$$

in the class of functions fulfilling a Lipschitz condition.

Let f, g be given real valued functions of real variables defined (resp.) in an interval I, and a region $I \times R$, and let $\varphi: I \to R$ be an unknown function. The functions f, g are subjected to the following conditions:

- (i) f is continuous and strictly increasing in the interval I = [0, a], $0 < a < \infty$. Moreover 0 < f(x) < x in (0, a].
- (ii) g is defined in a region $I \times R$. Hypothesis (i) implies that f(0) = 0, $f(I_1) \subset I_1$ for every interval $I_1 \subset I$, such that $0 \in I_1$ and $\lim_{n \to \infty} f^n(x) = 0$ for every $x \in I$ (cf. [1], p. 20). Here f^n denotes the n-th iteration of the function f. The symbol Lip(I) denotes the set of all functions of real variable fulfilling a Lipschitz condition in the interval I. We adopt the following convention

$$\sum_{i=k}^{k-1} a_i = 0, \ k = 0, 1, \dots$$

Let $I_i = (f^{i+1}(a), f^i(a)]$ for i > 0, $I_0 = [f(a), a]$; then $\bigcup_{i=0}^{\infty} I_i = (0, a]$.

LEMMA. Let $\varphi_i: I_i \to R$ be given functions such that

$$|\varphi_i(x)-\varphi_i(\bar{x})| \leq v_i|x-\bar{x}| \text{ for } x, \bar{x} \in I_i, i=0,1,...$$

Received May 13, 1980.

AMS (MOS) subject classification (1980). Primary 39B20.

Suppose that $v_i \leq v < \infty$, i = 0, 1, ..., and the function $F: (0, a] \rightarrow R$ given by the formula $F(x) = \varphi_i(x)$, $x \in I_i$, i = 0, 1, ... is correctly defined and continuous. Then

$$|F(x)-F(\bar{x})| \leq v|x-\bar{x}|$$
 for $x, \bar{x} \in (0, a]$.

Moreover, if we put $F(0) := \lim_{x \to 0^+} F(x)$ then the latter condition holds for all $x, \bar{x} \in [0, a]$.

THEOREM. If hypotheses (i), (ii) are fulfilled and there exist positive numbers l, k, s such that

(2)
$$|g(x, y) - g(\bar{x}, \bar{y})| \le k|x - \bar{x}| + l|y - \bar{y}|, x, \bar{x} \in I, y, \bar{y} \in R,$$

(3)
$$|f^{-1}(x)-f^{-1}(\bar{x})| \leq s|x-\bar{x}|, \ x, \ \bar{x} \in [0, f(a)],$$

and

$$(4) ls < 1,$$

then for arbitrary function $\varphi_0: I_0 \to R$ fulfilling the conditions

(5)
$$\varphi_0(f(a)) = g(a, \varphi_0(a)), \ \varphi_0 \in Lip(I_0)$$

there exists exactly one function φ belonging to the class Lip(I) satisfying equation (1) and fulfilling the condition $\varphi(x) = \varphi_0$ for $x \in I_0$. Every Lipschizian solution φ of equation (1) satisfies the condition $\varphi(0) = \eta$ where η is the only solution of the equation $\eta = g(0, \eta)$.

Proof. Let $\varphi_0 \in Lip(I_0)$ be a function fulfilling the condition (5). Hence there is a constant M > 0 such that

(6)
$$|\varphi_0(x) - \varphi_0(\bar{x})| \leqslant M|x - \bar{x}| for x, \bar{x} \in I_0.$$

We define a sequence of functions $\{\varphi_i\}$, $i \in \mathbb{N}$, where

(7)
$$\varphi_i(x) = g(f^{-1}(x), \varphi_{i-1}(f^{-1}(x))) \text{ for } x \in I_i, i \ge 1.$$

Let $\overline{\varphi}(x) := \varphi_i(x)$ for $x \in I_i$, $i \ge 0$. The function $\overline{\varphi}$ is a solution of equation (1) in (0, a] because

$$\bigwedge_{x \in (0, a]} \bigvee_{k \geqslant 1} \varphi(f(x)) = \varphi_k(f(x)) = g(x, \varphi_{k-1}(x)) = g(x, \overline{\varphi}(x)).$$

Now we shall prove that $\overline{\varphi}$ is continuous in (0, a]. The function $\overline{\varphi}$ is continuous in every interval $(f^{i+1}(a), f^{i}(a))$ and we show that

For i = 1 we have

$$\lim_{x \to f(a)^+} \overline{\varphi}(x) = \lim_{x \to f(a)^+} \varphi_0(x) = \varphi_0(f(a)) = g(a, \varphi_0(a)) = \overline{\varphi}(f(a)),$$

$$\lim_{x \to f(a)^+} \overline{\varphi}(x) = \lim_{x \to f(a)^+} \varphi_1(x) = \lim_{x \to f(a)^+} g(f^{-1}(x), \varphi_0(f^{-1}(x))) = \lim_{x \to f(a)^+} \overline{\varphi}(x) = \lim_{x \to f(a)^+} \varphi_1(x) = \lim_{x \to f(a)^+} g(f^{-1}(x), \varphi_0(f^{-1}(x))) = \lim_{x \to f(a)^+} \overline{\varphi}(x) = \lim_{x \to f(a)^+} \varphi_1(x) = \lim_{x \to f(a)^+} g(f(a)) = \lim_{x \to f(a)^+} \varphi_1(x) = \lim_{x \to f(a$$

$$\lim_{x \to f(a)^{-}} \bar{\varphi}(x) = \lim_{x \to f(a)^{-}} \varphi_{1}(x) = \lim_{x \to f(a)^{-}} g(f^{-1}(x), \varphi_{0}(f^{-1}(x))) =$$

$$= g(a, \varphi_0(a)) = \overline{\varphi}(f(a)).$$

Thus (8) holds for i = 1. Supposing that (8) is valid for i = n we have by the continuity of f^{-1} , g that $\overline{\varphi}$ is continuous at the point $f^{n+1}(a)$. Induction completes the proof of (8).

Induction leads to the following inequality

(9)
$$|\overline{\varphi}(x) - \overline{\varphi}(\overline{x})| \leq \left(ks \sum_{p=0}^{i-1} (ls)^p + (ls)^i M\right) |x - \overline{x}| \text{ for } x, \overline{x} \in I_i, i \geq 0.$$

Indeed, for i = 0 and $x, \bar{x} \in I_0$ we have by (6)

$$|\overline{\varphi}(x) - \overline{\varphi}(\overline{x})| = |\varphi_0(x) - \varphi_0(\overline{x})| \leq M |x - \overline{x}|.$$

Thus (9) holds for i = 0. Suppose that (9) is valid for i = n. Hence, by (2), (3) and (7), we obtain for $x, \bar{x} \in I_{n+1}$

$$\begin{aligned} |\overline{\varphi}(x) - \overline{\varphi}(\bar{x})| &= |\varphi_{n+1}(x) - \varphi_{n+1}(\bar{x})| = \\ &= |g(f^{-1}(x), \varphi_n(f^{-1}(x))) - g(f^{-1}(\bar{x}), \varphi_n(f^{-1}(\bar{x})))| \leqslant \\ &\leqslant ks|x - \overline{x}| + l|\varphi_n(f^{-1}(x) - \varphi_n(f^{-1}(\bar{x})))| \leqslant \\ &\leqslant \left(ks + ls\left(ks\sum_{p=0}^{n-1} (ls)^p + (ls)^n M\right)\right)|x - \overline{x}| = \left(ks\sum_{p=0}^{n} (ls)^p + (ls)^{n+1} M\right)|x - \overline{x}|, \end{aligned}$$

and induction completes the proof of (9).

Put

$$v_i = ks \sum_{p=0}^{t-1} (ls)^p + (ls)^i M$$
, for $i \ge 0$

and

$$v = \frac{ks}{1 - ls} + M.$$

It follows from (4) that $v_i \leq v$, $i \geq 0$, and from our lemma

$$|\overline{\varphi}(x) - \dot{\varphi}(\overline{x})| \leq v|x - \overline{x}| \text{ for } x, \overline{x} \in (0, a].$$

Setting in (2) $x = \bar{x} = 0$ we see that

$$\bigwedge_{y,\,\overline{y}\in R}|g(0,\,y)-g(0,\,\overline{y})|\leqslant l|y-\overline{y}|.$$

By (i) we have s > 1 and l < 1. Applying Banach's principle we obtain the existence of exactly one point $\eta \in R$ such that

$$\eta = g(0, \eta).$$

Define $\eta_{\varphi}=\lim_{x\to 0^+} \bar{\varphi}(x)$. For $x\in (0,a]$ we have $\bar{\varphi}(x)=g(f^{-1}(x),\bar{\varphi}(f^{-1}(x)))$ and

$$\eta_{\varphi} = \lim_{x \to 0^{+}} \overline{\varphi}(x) = \lim_{x \to 0^{+}} g(f^{-1}(x), \overline{\varphi}(f^{-1}(x))) = g(0, \eta_{\varphi}).$$

Therefore $\eta_{\varphi} = \eta$.

Now we shall prove that φ defined by the formula

(10)
$$\varphi(x) = \begin{cases} \overline{\varphi}(x), & \text{if } x \in (0, a] \\ \eta, & \text{if } x = 0 \end{cases}$$

for given φ_0 is the unique solution of equation (1). Suppose that ψ_1 , ψ_2 are solutions of (1) such that

(11)
$$\psi_{l}(x) = \begin{cases} \varphi_{0}(x), & \text{if } x \in [f(a), a] \\ \overline{\psi}_{l}(x), & \text{if } x \in (0, f(a)] \\ \eta, & \text{if } x = 0, \end{cases}$$

 $\overline{\psi}_1 \not\equiv \overline{\psi}_2$ and

(12)
$$\overline{\psi}_i(x) := g(f^{-1}(x), \overline{\psi}_i(f^{-1}(x))), i = 1, 2, x \in (0, f(a)].$$

Let $x \in I_j$, j = 1, 2, ... We have $f^{-j}(x) \in I_0$ and

$$\begin{aligned} |\psi_{1}(x) - \psi_{2}(x)| &= |g(f^{-1}(x), \, \psi_{1}(f^{-1}(x))) - g(f^{-1}(x), \, \psi_{2}(f^{-1}(x)))| \leqslant \\ &\leqslant l|\psi_{1}(f^{-1}(x)) - \psi_{2}(f^{-1}(x))| \leqslant ... \leqslant l^{j}|\psi_{1}(f^{-j}(x)) - \psi_{2}(f^{-j}(x))| = \\ &= l^{j}|\varphi_{0}(f^{-j}(x)) - \varphi_{0}(f^{-j}(x))| = 0. \end{aligned}$$

It follows that $\psi_1(x) = \psi_2(x)$ for $x \in I$, and this completes the proof.

REFERENCES

- [1] M. KUCZMA, Functional equations in a single variable, Monografie Mat. 46, PWN, Warszawa 1968.
- [2] J. MATKOWSKI, On Lipschitzian solution of a functional equation, Ann. Polon. Math. 28 (1973), 135—139.