ON DEPENDENCE OF LIPSCHITZIAN SOLUTION OF NON-LINEAR FUNCTIONAL EQUATION ON AN ARBITRARY FUNCTION

Abstract. We shall deal with the existence and dependence on an arbitrary function of solutions of the functional equation

$$
\begin{equation*}
\varphi(f(x))=g(x, \varphi(x)) \tag{1}
\end{equation*}
$$

in the class of functions fulfilling a Lipschitz condition.

Let f, g be given real valued functions of real variables defined (resp.) in an interval I, and a region $I \times R$, and let $\varphi: I \rightarrow R$ be an unknown function. The functions f, g are subjected to the following conditions:
(i) f is continuous and strictly increasing in the interval $I=[0, a]$, $0<a<\infty$. Moreover $0<f(x)<x$ in $(0, a]$.
(ii) g is defined in a region $I \times R$.

Hypothesis (i) implies that $f(0)=0, f\left(I_{1}\right) \subset I_{1}$ for every interval $I_{1} \subset I$, such that $0 \in I_{1}$ and $\lim _{n \rightarrow \infty} f^{n}(x)=0$ for every $x \in I$ (cf. [1], p. 20). Here f^{n} denotes the n-th iteration of the function f. The symbol $\operatorname{Lip}(I)$ denotes the set of all functions of real variable fulfilling a Lipschitz condition in the interval I. We adopt the following convention

$$
\sum_{i=k}^{k-1} a_{i}=0, k=0,1, \ldots
$$

Let $I_{i}=\left(f^{i+1}(a), f^{i}(a)\right]$ for $i>0, I_{0}=[f(a), a]$; then $\bigcup_{i=0}^{\infty} I_{i}=(0, a]$.
LEMMA. Let $\varphi_{i}: I_{i} \rightarrow R$ be given functions such that

$$
\left|\varphi_{i}(x)-\varphi_{i}(\bar{x})\right| \leqslant v_{i}|x-\bar{x}| \text { for } x, \bar{x} \in I_{i}, i=0,1, \ldots
$$

Received May 13, 1980.
AMS (MOS) subject classification (1980). Primary 39B20.

Suppose that $v_{i} \leqslant v<\infty, i=0,1, \ldots$, and the function $F:(0, a] \rightarrow R$ given by the formula $F(x)=\varphi_{i}(x), x \in I_{i}, i=0,1, \ldots$ is correctly defined and continuous. Then

$$
|F(x)-F(\bar{x})| \leqslant v|x-\bar{x}| \text { for } x, \bar{x} \in(0, a] .
$$

Moreover, if we put $F(0):=\lim F(x)$ then the latter condition holds: for all $x, \bar{x} \in[0, a]$.

THEOREM. If hypotheses (i), (ii) are fulfilled and there exist positive numbers l, k, s such that

$$
\begin{gather*}
|g(x, y)-g(\bar{x}, \bar{y})| \leqslant k|x-\bar{x}|+l|y-\bar{y}|, x, \bar{x} \in I, y, \bar{y} \in R, \tag{2}\\
\left|f^{-1}(x)-f^{-1}(\bar{x})\right| \leqslant s|x-\bar{x}|, x, \bar{x} \in[0, f(a)], \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
l_{s}<1 \tag{4}
\end{equation*}
$$

then for arbitrary function $\varphi_{0}: I_{0} \rightarrow R$ fulfilling the conditions

$$
\begin{equation*}
\varphi_{0}(f(a))=g\left(a, \varphi_{0}(a)\right), \varphi_{0} \in \operatorname{Lip}\left(I_{0}\right) \tag{5}
\end{equation*}
$$

there exists exactly one function φ belonging to the class Lip(I) satisfying equation (1) and fulfilling the condition $\varphi(x)=\varphi_{0}$ for $x \in I_{0}$. Every Lipschizian solution φ of equation (1) satisfies the condition $\varphi(0)=\eta$ where η is the only solution of the equation $\eta=g(0, \eta)$.

Proof. Let $\varphi_{0} \in \operatorname{Lip}\left(I_{0}\right)$ be a function fulfilling the condition (5), Hence there is a constant $M>0$ such that

$$
\begin{equation*}
\left|\varphi_{0}(x)-\varphi_{0}(\bar{x})\right| \leqslant M|x-\bar{x}| \text { for } x, \bar{x} \in I_{0} . \tag{6}
\end{equation*}
$$

We define a sequence of functions $\left\{\varphi_{i}\right\}, i \in \mathbf{N}$, where

$$
\begin{equation*}
\varphi_{i}(x)=g\left(f^{-1}(x), \varphi_{i-1}\left(f^{-1}(x)\right)\right) \text { for } x \in I_{i}, i \geqslant 1 . \tag{7}
\end{equation*}
$$

Let $\bar{\varphi}(x):=\varphi_{i}(x)$ for $x \in I_{i}, i \geqslant 0$. The function $\bar{\varphi}$ is a solution of equation (1) in ($0, a]$ because

$$
\wedge_{x \in(0, a l} \bigvee_{k \geqslant 1} \ddot{p}(f(x))=\varphi_{k}(f(x))=g\left(x, \varphi_{k-1}(x)\right)=g(x, \bar{\varphi}(x)) .
$$

Now we shall prove that $\bar{\varphi}$ is continuous in $(0, a]$. The function $\bar{\varphi}$ is continuous in every interval ($f^{i+1}(a), f^{2}(a)$) and we show that

$$
\begin{equation*}
\bigwedge_{i \geqslant 1} \lim _{x \rightarrow f^{\prime}(a)} \dot{\varphi}(x)=\bar{\varphi}\left(f^{\prime}(a)\right) . \tag{8}
\end{equation*}
$$

For $i=1$ we have

$$
\begin{gathered}
\lim _{x \rightarrow f(a)^{+}} \bar{\varphi}(x)=\lim _{x \rightarrow f(a)^{+}} \varphi_{0}(x)=\varphi_{0}(f(a))=g\left(a, \varphi_{0}(a)\right)=\bar{\varphi}(f(a)) \\
\lim _{x \rightarrow f(a)^{-}} \bar{\varphi}(x)=\lim _{x \rightarrow f(a)^{-}} \varphi_{1}(x)=\lim _{x \rightarrow f(a)^{-}} g\left(f^{-1}(x), \varphi_{0}\left(f^{-1}(x)\right)\right)= \\
=g\left(a, \varphi_{0}(a)\right)=\bar{\varphi}(f(a))
\end{gathered}
$$

Thus (8) holds for $i=1$. Suppasing that (8) is valid for $i=n$ we have Wy the continuity of f^{-1}, g that $\bar{\varphi}$ is continuous at the point $f^{n+1}(a)$. Induction completes the proof of (8).

Induction leads to the following inequality

$$
\begin{equation*}
|\bar{\varphi}(x)-\bar{\varphi}(\bar{x})| \leqslant\left(k s \sum_{p=0}^{i-1}(l s)^{p}+(l s)^{i} M\right)|x-\bar{x}| \text { for } x, \bar{x} \in I_{l}, i \geqslant 0 . \tag{9}
\end{equation*}
$$

Indeed, for $i=0$ and $x, \bar{x} \in I_{0}$ we have by (6)

$$
|\bar{\varphi}(x)-\tilde{\varphi}(\bar{x})|=\left|\varphi_{0}(x)-\varphi_{0}(\bar{x})\right| \leqslant M|x-\bar{x}| .
$$

Thus (9) holds for $i=0$. Suppose that (9) is valid for $i=n$. Hence, by (2), (3) and (7), we obtain for $x, \bar{x} \in I_{n+1}$

$$
\begin{gathered}
|\bar{p}(x)-\bar{\varphi}(\bar{x})|=\left|\varphi_{n+1}(x)-\varphi_{n+1}(\bar{x})\right|= \\
=\left|g\left(f^{-1}(x), \varphi_{n}\left(f^{-1}(x)\right)\right)-g\left(f^{-1}(\bar{x}), \varphi_{n}\left(f^{-1}(\bar{x})\right)\right)\right| \leqslant \\
\leqslant k s|x-\bar{x}|+l \mid \varphi_{n}\left(f^{-1}(x)-\varphi_{n}\left(f^{-1}(\bar{x})\right) \mid \leqslant\right. \\
\leqslant\left(k s+l s\left(k s \sum_{p=0}^{n-1}(l s)^{p}+(l s)^{n} M\right)\right)|x-\bar{x}|=\left(k s \sum_{p=0}^{n}(l s)^{\left.p+(l s)^{n+1} M\right)|x-\bar{x}|,}\right.
\end{gathered}
$$

and induction completes the proof of (9).
Put

$$
v_{i}=k s \sum_{p=0}^{i-1}(l s)^{p}+(l s)^{t} M, \text { for } i \geqslant 0
$$

and

$$
v=\frac{k s}{1-l s}+M
$$

It follows from (4) that $v_{i} \leqslant v, i \geqslant 0$, and from our lemma

$$
|\bar{\varphi}(x)-\dot{\varphi}(\bar{x})| \leqslant v|x-\bar{x}| \text { for } x, \bar{x} \in(0, a] .
$$

Setting in (2) $x=\bar{x}=0$ we see that

$$
\bigwedge_{y, \bar{y} \in R}|g(0, y)-g(0, \bar{y})| \leqslant l|y-\bar{y}| .
$$

By (i) we have $s>1$ and $l<1$. Applying Banach's principle we obtain the existence of exactly one point $\eta \in R$ such that

$$
\eta=g(0, \eta) .
$$

Define $\eta_{\varphi}=\lim _{x \rightarrow 0^{+}} \ddot{\varphi}(x)$. For $x \in(0, a]$ we have $\bar{\varphi}(x)=g\left(f^{-1}(x)\right.$, $\bar{p}\left(j^{-1}(x)\right)$ and $\quad x \rightarrow 0^{+}$

$$
\eta_{\bar{\varphi}}=\lim _{x \rightarrow 0^{+}} \bar{\varphi}(x)=\lim _{x \rightarrow 0^{+}} g\left(f^{-1}(x), \bar{\varphi}\left(f^{-1}(x)\right)\right)=g\left(0, \eta_{\tau}\right) .
$$

Therefore $\eta_{\varphi}=\eta$.

Now we shall prove that φ defined by the formula

$$
\varphi(x)= \begin{cases}\bar{\varphi}(x), & \text { if } x \in(0, a] \tag{10}\\ \eta, & \text { if } x=0\end{cases}
$$

for given φ_{0} is the unique solution of equation (1). Suppose that ψ_{1}, ψ_{2} are solutions of (1) such that

$$
\psi_{l}(x)= \begin{cases}\varphi_{0}(x), & \text { if } x \in[f(a), a] \tag{11}\\ \bar{\psi}_{i}(x), & \text { if } x \in(0, f(a)] \\ \eta, & \text { if } x=0,\end{cases}
$$

$\bar{\psi}_{1} \neq \bar{\psi}_{2}$ and

$$
\begin{equation*}
\bar{\psi}_{i}(x):=g\left(f^{-1}(x), \bar{\psi}_{i}\left(f^{-1}(x)\right)\right), i=1,2, x \in(0, f(a)] \tag{12}
\end{equation*}
$$

Let $x \in I_{j}, j=1,2, \ldots$ We have $f^{-j}(x) \in I_{0}$ and

$$
\begin{aligned}
\left|\psi_{1}(x)-\psi_{2}(x)\right| & =\left|g\left(f^{-1}(x), \psi_{1}\left(f^{-1}(x)\right)\right)-g\left(f^{-1}(x), \psi_{2}\left(f^{-1}(x)\right)\right)\right| \leqslant \\
& \leqslant l\left|\psi_{1}\left(f^{-1}(x)\right)-\psi_{2}\left(f^{-1}(x)\right)\right| \leqslant \ldots \leqslant l^{j}\left|\psi_{1}\left(f^{-j}(x)\right)-\psi_{2}\left(f^{-j}(x)\right)\right|= \\
& =l\left|\varphi_{0}\left(f^{-j}(x)\right)-\varphi_{0}\left(f^{-j}(x)\right)\right|=0 .
\end{aligned}
$$

It follows that $\psi_{1}(x)=\psi_{2}(x)$ for $x \in I$, and this completes the proof.

REFERENCES

[1] M. KUCZMA, Functional equations in a single variable, Monografie Mat. 46, PWN, Warszawa 1968.
[2] J. MATKOWSKI, On Lipschitzian solution of a functional equation, Ann. Polon. Math. 28 (1973), 135-139.

