
MAŁGORZATA ROZMUS-CHMURA

REGULAR SOLUTIONS OF SOME FUNCTIONAL EQUATIONS 
IN THE INDETERMINATE CASE

A b s t r a c t .  The paper deals w ith the existence and uniqueness of regular 
solutions of the equation q>(x) =  h(x, gn(f(x))). Also in the indeterminate case the 
existence of solutions of <p(f(x)) =  g(x, <p(x)) is studied.

In the present paper we shall consider the following functional equa­
tions

where <p :I  — [0, a) R, 0 <  a ^  oo is an unknown function.
The phrase regular solution used in the title Will have the following 

meaning: "a solution which is continuous in the whole interval I and 
possesses a right-side derivative a t the point zero”.

The problem of regular solutions of linear functional equations is 
contained in  [1] and [2]. The theory of continuous solutions of equations
(1) and (2) has been developed in [4], [5], [6 ], [7], [8 ].

§ 1 . Let I toe an interval [0 , a), 0  <  a ^  oo and let Q be a neighbour­
hood of (0 , 0 ) e  R 2. Assume that the given functions f, g and h fulfil the 
following conditions.

(i) The function f : I->  R is continuous, strictly increasing, there 
exists f  ( 0  +  ) =7*— 0  and 0  < f(x ) <  x  in  I \{ 0 }.

(ii) The function h : £3-*- R is continuous, there exist c >  0, d >  0  

and a continuous fuction y : [0, c) d  I -> R such tha t

(3) \h(x, y j - h i x ,  y2)| <  y{x) \y1- y 2\ in U ^  Q,

where 17 : 0 x  < c , |y| <C d. Moreover, there exist A  and B such that
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(2)

<p{x) = h(x, <p[f{x)\), 

<pl№\ =  g[x, cp(x)},
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(4) h(x, y) =  A x + B y +R{x, y), 

where

(5) R(x, y) = o ( |/o ;2 +  3/2 j ( (X, y) -> (0, 0).

For every x  e  I we denote

( 6 )  Qx : =  { y : ( x , y ) e Q }  

and
Ax : =  : y e / 2*}.

(iii) For every i e l ,  is an open interval and A jm  — Qx.
(iv) The function 9 : S3-*- R is continuous for every x €  I. For every 

fixed x e l  the function gr as a function of y  is invertible. There ex is t• 
c >  0 , d >  0  and a continuous function y : [0 , c) C I  ->  R such that

(7) |flr(x, yi)~sr(x, y 2)| <  y(x) |y i - y 2| in  U

where U : 0 ^  x  <  c, |y| <  d and y has a positive bound in [0, c). Moreo­
ver, there exist A  and B =£ 0 such that

(8 ) g(x, y) =  A x+ B y + R (x , y), 

where
R(x, y) =  o ( j / x 2 + y 2 j j (0( 0 ).

For every x e l  we denote

V*: =

where Qx is given by (6 ).
(v) For every x e  I, S2X is an open interval and V x =  Qj(Xy 
The indeterm inate case

(9) f  (0) y(0) =  1 

for equation (1 ) and

for equation (2 ) will be considered in this paper.
§ 2. Let us consider equation (1) and let <p(x) = x  y.>(x). Then equa­

tion (1 ) is of the form

(11) V(x) =  H(x, <p [f(x)]), 

where

(12) H(x, z) : =
h(x, f(x) z) , for x  4= 0  

A + B  f ( 0) z for x =  0
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is defined in  the set
G1 =  {(x, z ) : {x , f(x) z) e O ) .

For an arb itrary  x e l  we denote

Qlx : =  {z  : (x, z)e£ 3 1}
and

A%: =  { H ( x ,z ) : z e G lx }.

LEMMA 1. Assume hypotheses (i), (ii), (iii) and condition (9). Then 
the function H given by the formula  (12) fulfils the follounng condition»:

(a) H is continuous in a neighbourhood of the point (0, rj), where ij 
is airbitrary constant.

(to) For every rj, there exist a d e  (0, c] and a di >  0 stick that

(13) |H(x, Zi)- H(x, z,)| <  y,(x) |zj—z2| for x  e  [0, d), |z-ij| <  dlt

where

(14) Yi(x) =
№

x y(x) , for x e  (0 , <5)

1 , for x  — 0

is a continuous function.
(c) For every x e l ,  Q\. is an open interval and A^(X) d Qxx .
P r o o f .  Ad (a). It suffices to show, that the function H is conti­

nuous at the point (0, rj). We have

lim H(x, z)
*-*0+
Z -+T)

■■ lim —  h[x, f(x) z] 
X

Z -+1}

From (5) we obtain

whereas (i) implies

Therefore,

=  lim I 
X -*■ 0+ L
z-* -y

R(x, f(x) z)

A + b M z + - ^ - R ( x J ( x ) z)1.

lim ,----------------
i  -* o+ l / x 2+[f(x) z] 2
Z -*■ r]

R(x, f(x) z) R(x, f(x) z)
}/x2 +[f(X)  Z]2 X |/ l  +  z2

ldm H(x, z) = A + B  f'(0) rj =, H(0, rj),
x  -* 0+Z-+t}

which finishes our proof in case (a).
Ad (b). The function f  is continuous and /(0) == 0; thus there exist 

a d e  (0 , c] and a di >  0  such tha t for every x e  {0 , d) and |z — rj\ <  dl the 
inequality |f(x) z| <1 d holds. Therefore, the inequality

|H (x ,Z j)-H (x ,za)| =. [h{x, f(x) z1) - h ( x ,  /(x) z2)]

y(x)\Z! — z2\ for x +  0
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holds and
|H(0, 2 i) -H { 0 , z2)| =  \B\ f \ 0) |2 l - z 2|.

From (3) we have
|B| =  |hy(0, 0)|<y{0).

Consequently,
|B |f (0 )< y (0 )f (0 )  =  l.

Condition (13) is fulfilled w ith the function yx given by formula (14). We 
have also

lim M  Y{x) = f (0)y(0)
xx  -» 0

This implies that yx is continuous in  [0, c).
Ad (c). We may assume that O is of the form

q  I 0  ^ x  <  a
' \ Cl(x) <  y  <  a2(x),

where aj(x) <  0 and a2(x) > 0  for x  e  [0, o). It is easily seen that

0  jC x  < a

Qi for x * 0/(x) / ( x )

z is arb itrary  for x  =  0 .

In  particular, we have =  (—oo, +oo) whence A*(0) d  Q*. For x  +  0 
we have

A)w  =  { v  : v  =  H [f(x), z], z e  &}w } =

- { » ; ” ■ =  f k h , m  n x ) z h  z s ( i w 1' “ m 1 ) } =
=, {v : f(x) v  -  h[f(x), y], y  e  (<*i[/(x)], a2[/(x)]) =  Qfm ).

From (iii) we obtain

A fm  ~  { h [ f  (x), y] : y  e  Qnx)} d  Qx
-whence

<*i(x) < „ <  a2(x)
/(x) /(x) *

Therefore
/aj(x^
\  / ( X )  ’ f(x )J

The proof of Lemma 1 is complete.
From Lemma 1 and condition (11) we obtain.
LEMMA 2. We assume (i), (ii), (iii)). If y  is a continuous solution of 

equation  (1 1 ) in I, then gn(x) = xip(x) is a regular solution of equation (1 )



in I  and such that <p(0) = 0. I f <p is a regular solution of equation (1) in  
I and such that ip(0 ) =  0  and <p\0 ) =  rj, then the function

9*r) for x  =4= 0\p(x) =  xx
9?'(0 ) for x  =  0

yields a continuous solution of equation (1 1 ) in I such that y>(0) — rj.
The uniqueness of regular solutions depends essentially on the be­

haviour of the sequence

where y\ is defined by (14).
THEOREM 1. We assume (i), (ii) (iii) and (9). Let rj be an arbitrary 

constant. I f there exist an M > 0  and a d  j e  (0, 5] (where d is the con­
stant from  Lemma 1) such that

then equation (1 ) has at most one regular solution in I fulfilling condi­
tions <p(0) =  0, ^'(O) =  rj.

P r o o f .  From our hypotheses and from Lemma 1 it follows that 
the assumptions of Theorem 1 from [4] are fulfilled. Thus equation (11) 
has a t most one continuous solution in I  fulfilling the condition y(0 ) =  r\. 
Now, our assertion results from Lemma 2.

REMARK 1. If equation (11) has a continuous solution, then

The definition of function H implies that equation (16) assumes the form

THEOREM 2. We assume (i), (ii), (iii) and condition (9). If (for a fi­
xed rj fulfilling equation (16)) there exists a S2 > 0  such that

is uniform ly convergent in  [0 , <52) then equation (1 ) has a regular solution 
in I fulfilling conditions 99(0 ) =  0 , <p'(0 ) =  rj.

P r o o f .  From the hypotheses of our theorem and from Lemma 1 
it follows tha t the assumptions of Theorem 3 from [4] concerning equa­

(15)

r n( x ) ^ M ,  n =  0 , 1 ,... for x e  [0 , dj),

(16) H(0, n) -  rj.

A + B  /'(0) t] =  rj.
Let

(17) K (x): = \H (x ,r j)-V\ =  x
0

h[x, f(x) rj ]  — r) for x  ^  0  

l for x  — 0 .

OO
(18)
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tion (1 1 ) are satisfied. Consequently, equation (1 1 ) possesses a c o n t i ­
nuous solution in I fulfilling the condition y>(0) — 17. Now, our assertion 
results from Lemma 2.

§ 3. If we pu t <p{x) — x  rp{x) in equation (2 ), then we come to

(1 9 ) y  [/(*)] =  K[x, y<x)],

where the function

(2 0 ) K(x, z)

is defined in the region

rr-  g(x, x z )  for x  =5̂  0
/(a?)

m  +  m z i O T X  =  0

Q2 =  {(x, z ) : (x, xz) e  £3).

For any fixed x  €  I we put

Q *= { y :  (x, y) e  Q2}
and

V |=  { K (x ,z ) : z e n % } .

LEMMA 3. Suppose that assumptions (i), (iv), (v) and condition (10) 
are satisfied. Then the function K(x, z) fulfils the following conditions:

(a) K(x, z) is continuous in a neighbourhood of each point (0 , rf)} whe­
re r] is an arbitrary constant.

(b) For every real rj there exist constants 8 e  (0, c] and dt >  0 such
that

(21) \K{x, Z i)~K (x, z2)\ <  yi(x) \zx~zji for 0 <  x  <  d, \ z - v \ <  du 

where

(2 2 ) yt(x) = X y(x) for x  e  (0 , d)
H*)
1 for x  =  0

is a continuous function.
(c) For every x e l  the set Q2 is an open interval and V% — Qj(xy
(d) For any fixed x e l  the function K(x, z) is invertible w ith respect

to  z.
P r o o f .  Ad (a). In order to prove that K (x ,z) is continuous it suffi­

ces to show its continuity at a point (0 , tj);



Hypothesis (8 ) implies

lim - K f c S U o ,
► o+ x  V 1 +  z2

whence
x  - 
z  -

lim R(x, xz ) -  lim R(*>a^  • =  0 .
* ^ 0+ «*) *-+o+ *  «*)
Z -+-1J Z ->  ?;

Consequently

^hm K(x, 2 ) =  v = K(0, v),
Z ->  rj

which finishes the proof of (a).
Ad (b). Evidently, for every real t] one can find a d e  (0, c] and 

a positive d 1 such that the inequality |xz| <  d  is satisfied whenever 
x  e  (0,8) and \z — rj\<- d t . Applying condition (7) we get

\K {x ,Z i)-K (x ,z2\ =  

For x  =  0 we have

^  [gr(x, xzi) sr(x, xz2)] <  y(x) \zt - z 2\ for x + 0 .

|K(0, Zt ) - K ( 0 ,  z2)| =  \zx- z x |.

Condition <7) implies also that

|B| =  |gfy(0 , 0 ) |< y ( 0 ).

Since 0  <  /(x) <  x, we have /'(0) =  hm  — - >  0 , because / '(0 ) +  0  by
x  -> o ®

assumption. Consequently, on account of (10) we have

|B| ^y (O ) 
f ( 0 ) f  (0 ) x-

This proves that condition (21) is satisfied with yi(x) defined by (22). 
Since

t  x  < \ — y(°) _  1 

№  y(x) f  (0 )

the function yi(x) is continuous in [0 , d) which completes the proof of 
condition (b).

Ad (c). We may assume that the domain Q has the form

Q ( 0  ^ x  <  a 
|ai(x) <  y  <  a2(x),

where <*i(x) <  0 and aj(x) >  0. It is easy to check that, in  such a case, 
the region Q2 is of the form

126



/32:

0  ^ x  <  a 
a i(x ) ~ a^ x )< z < Jf*± L  fo r.x  +  O,

X x
z is arb itrary  for x  =  0 .

Since f(0) =  0 we have Q2f(0) = °°). On the other hand

K(°, z) = j ~  +  z, whence V* =  (-o o , oo) 

i.e. V* =  .O|{0). For x  4= 0 we have

\ v : v =  g(x, xz), z  e  =

=  {u : /(x) v = g{x, y), y  e  Qx}.

Assumption (v) implies

{/(x) v :f(x) v = g(x, y), y e Q x } = W /(x )], a2[/(x)])

WhenCe v ,  =  ( j l M  a^Lf(x)] \ =
^  I f(x) ’ /(x) " « « •

which proves our assertion (c).
A B

Ad (d). Since K(0, z) = f  (oJ 2 an<* B 4= 0 by assumption,

function K(0, z) is invertible. For x  4= 0 the function K(x, z) is a one-to- 
-one mapping w ith respect to z 'because g(x, y) is invertible as a function 
of the second variable (with an arbitrarily  fixed x e l ) .  This proves (d).

The following lemma is a simple consequence of equation (19) and 
Lemma 3.

LEMMA 4. Assume (i), (iv) and (v). I f ip is a continuous solution of 
equation (19) then the function <p(x) = xip(x) is a regular solution of 
equation (2) fulfilling the condition <p(0) =  0. If tp is a regular solution 
of equation (2 ) in I such that (p(0) =  0  and ^ '(0 ) =  rj, then the function

yj(x)
for x 4= 0

X
<p (0 ) for x  =  0

is a continuous solution of (19) fulfilling the condition yj(0) =  rj.
Let r ri(x) be defined by formula (13) where Yi(x ) is given by (22).
THEOREM 3. Assume (i), (iv), (v) and condition (10). Moreover, sup­

pose that there exists an interval J  d  I such that P„(x) tends to zero 
uniform ly on J. Then a regular solution of equation (2) fulfilling the con­
ditions <p{0 ) =  0  and <p'{0) — rj, depends on an arbitrary function.

P r o o f .  On account of our assumptions and by means of Lemma 3 
we infer tha t the assumptions of Theorem 6  from [4] concerning equa-
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tion (19) axe satisfied. Thus a continuous solution y  of (19) fulfilling the 
condition >̂(0 ) =  rj (if such a solution exists) depends on an arbitrary 
function. Now, Lemma 4 completes our proof.

Condition

<23) K(0, t)) =  V

is necessary for equation (19) to  have a continuous solution with yK0) =
n-

REMARK 2. The definition of K(x, z) implies that equation (23) has 
the form

A  , J L _  _
f w  m n n '

Put

<24) X(x) : =  |K(x, t ] ) - v\ =

where rj is a solution of (23) and

/(x)
g{x, Xjf) rj for x4=0 

for x  =  0 ,

(25) HJpe): = r w(x), n =  2, 3,...

THEOREM 4. Assume (i), (iv), (v) and condition (10). If, for a fixed  
t], there exists a point x 0e  A{0) such that both 1Tn(x) and Hn{x) tend 
to zero uniform ly on [/(Xo), x0], then equation (2) has a regular solution 
<P in I fulfilling the conditions <p{0) — 0 and <p'(0) =  rj, depending on an 
arbitrary function.

P r o o f .  The assumptions of our theorem and Lemma 3 imply that 
the hypotheses of Theorem 7 from [4] concerning equation (19) are sa­
tisfied. Consequently, equation (19) has a continuous solution y> in I ful­
filling the condition y(0 ) =  rj and depending on an arbitrary  function. 
Now our assertion results from Lemma 4.
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