MALGORZATA ROZMUS-CHMURA

REGULAR SOLUTIONS OF SOME FUNCTIONAL EQUATIONS
IN THE INDETERMINATE CASE

Abstract. The paper deals with the existence and uniqueness of regular
solutions of the equation g>(x) = h(x, gn(f(x))). Also in the indeterminate case the
existence of solutions of <p(f(x)) = g(x, <p(x)) is studied.

In the present paper we shall consider the following functional equa-
tions

(1) P = h(x, <p[f{x)V),
) <pINe\ = g[x, cp(x)},
where :1 —[0,a) R, 0< a” oo is an unknown function.

The phrase regular solution used in the title Will have the following
meaning: "a solution which is continuous in the whole interval | and
possesses a right-side derivative at the point zero”.

The problem of regular solutions of linear functional equations is
contained in [1] and [2]. The theory of continuous solutions of equations
(1) and (2) has been developed in [4], [5], [s], [7]. [s]

8 1. Let | toe an interval [o,a), o < a”™ o0 and let Q be a neighbour-
hood of (0,0)e R2 Assume that the given functions f, g and h fulfil the
following conditions.

(i) The function f:I1-> R is continuous, strictly increasing, there
exists f (o + )= and o <f(x) < x in N\{o}.

(i) The function h: £3-*-R is continuous, there exist ¢> 0, d> o
and a continuous fuction y: [0,c)d 1->R such that

®3) \h(x, yj-hix, y9[< y{x) yl-y Ain U~ Q,
where 17:0 x <c, |y|<Cd. Moreover, there exist A and B such that
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(4) h(x,y) = Ax+By+R{x,y),
where
() R(X,y) = o([/o2+d2]( (X y)-> (0, 0).

For every x e | we denote

(6) Qx:= {y:(x,y)eQ}
and
Ax @ = (yel2*}
(iii) For every iel, is an open interval and Ajm —Qx.

(iv) The function 9:S3-*-R is continuous for every x € I. For every
fixed x el the function g as a function of y is invertible. There existe
c> o,d> o and a continuous function y: [o,c)C I-> R such that

(7) [fir(x, yi)~sr(x, y9| < y(x) lyi-y2 in U

where U :0" x< ¢, |y|< d and y has a positive bound in [0, c). Moreo-
ver, there exist A and B =£ 0 such that

) 9(x, y) = AX+By+R(x,y),
where
R(x,y) = o(j/x2ty2jj (0Co).
For every x el we denote
V*: =

where Qx is given by (s).
(v) For every xe I, &Xis an open interval and Vx = Qj(¥
The indeterminate case

©) f (0)y(0) = 1
for equation (1) and

for equation (2) will be considered in this paper.
8§ 2. Letus consider equation (1) and let <p(X) = x y.>X). Then equa-
tion (1) is of the form

(11) V(x) = H(x, p[f()]),
where

h(x, f(x) z) , for x 4=o
A+B f(0)z forx=0

(12) H(x, z): =
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is defined in the set
Gl= {(x,z2):{,f(x) 2) e0O).

For an arbitrary x e | we denote
Qk := {z :(X,2)e£31}

and
A% = {H(x,z):zeG k}.

LEMMA 1. Assume hypotheses (i), (ii), (iii) and condition (9). Then
the function H given by the formula (12) fulfils the follounng condition»:
@) H is continuous in a neighbourhood of the point (0, rj), where ij

is airbitrary constant.
(to) For every 1j, there exist a de (0, c] and a di > O stick that
(13) [H(x, Z1)-H(x, Z,)| < ¥,(X) |z}—z9 for x e [0, d), |z-ij| < dIt
where
(0]
(14) Vi) = l\)l(- y(x), for xe (0,9
1, for x —o

is a continuous function.
(c) For every xel, Q\ is an open interval and A*(Xd Qx.
Proof. Ad (a). It suffices to show, that the function H is conti-

nuous at the point (0, rj). We have
lim H(x,z) wmlim — h[x,f(x)z] = lim IA+bM z+-~-R(xJ(x)z)L
**o+ X x a0 L

Z-+'8 z-+1} 7-*-y

From (5) we obtain _ R(x, f(x) 2)

i ;_5])+|/x2+ [f(X) z12

whereas (i) implies

R(x, f(x) 2) R(x, f(x) 2)
Hx2+[f(X) 72 X |+ 2z
Therefore,
Idm H(x, z) = A+B '(0) j =, H(O, rj),
'z

which finishes our proof in case (a).
Ad (b). The function f is continuous and /(0) =0; thus there exist

a de (o,c] and a di> o such that for every xe {o,d) and [z—j\ < dI the
inequality [f(X) z| <L d holds. Therefore, the inequality
|[H(x,Zj)-H(x,za)| =. [h{x, f(xX) zD-h (x, /(x) z2)]

y(x)\Z!—z2A for x + 0
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holds and
[H(O, 2i)-H {0,22| = \B\f\0) |21-z 2.

From (3) we have

IB| = |hy(0, 0)|<y{0).
Consequently,

IB|f(0)<y(0)f(0) = I
Condition (13) is fulfilled with the function yx given by formula (14). We
have also

lim M Y{x) = f (0)y(0)
X -» 0 X
This implies that yxis continuous in [0, c).
Ad (c). We may assume that O is of the form
qg loMx < a
"\ CI(x) < y < az(x),

where aj(x) < 0 and a2(x) >0 for x e [0, 0). It is easily seen that

0jCx <a
Qi /(%) 1) for x ~ o
z is arbitrary for x = o.
In particular, we have = (—o0, +00) whence A*Qd Q*. For x+ 0
we have

Aw = {v:v = HIf(X),z], ze &w} =

-{»;”®mfkh,m nx)zh zs(iw 1'“m 1)}=
= {v:f(x)v - h[f(x), y], y e (<*[/(X)], a=[/(x)]) = Qfm).

From (iii) we obtain

Afm ~ {h[f(xX),y] :ye Qnx)} d Qx

-whence
<X <, < az(x)
1(x) I(x) *
Therefore
laj(x”

vxy T f(x)d

The proof of Lemma 1 is complete.

From Lemma 1 and condition (11) we obtain.

LEMMA 2. We assume (i), (ii), (iii)). If y is a continuous solution of
equation (11) in I, then gn(x) = xip(x) is a regular solution of equation (1)



in I and such that <p(0) = 0. If 9is a regular solution of equation (1) in
I and such that iplo) = o and <pv) = 1j, then the function

9*r)
WX = X for x =o
9?0) for x = o

yields a continuous solution of equation (11) in | such that y>0) — 1.
The uniqueness of regular solutions depends essentially on the be-
haviour of the sequence

(15)

where y\ is defined by (14).

THEOREM 1. We assume (i), (ii) (iii) and (9). Let j be an arbitrary
constant. If there exist an M >0 and adje (0,5 (where d is the con-
stant from Lemma 1) such that

rn(x)*M, n=o,1,.. for x e [o,dj),

then equation (1) has at most one regular solution in | fulfilling condi-
tions 0 = 0, M(O) = .

Proof. From our hypotheses and from Lemma 1 it follows that
the assumptions of Theorem 1 from [4] are fulfilled. Thus equation (11)
has at most one continuous solution in | fulfilling the condition y(o) = A
Now, our assertion results from Lemma 2.

REMARK 1. If equation (11) has a continuous solution, then

(16) H(, n) - 1.
The definition of function H implies that equation (16) assumes the form

A+B/(0)f = 1
Let
0 — A
(17) K(X): = \H(orj)-W=  x DX T m—o forx# o
ol for x —o.

THEOREM 2. We assume (i), (ii), (iii) and condition (9). If (for a fi-
xed f fulfilling equation (16)) there exists a S2> o such that
@
(18)

is uniformly convergent in [o, €) then equation (1) has a regular solution
in | fulfilling conditions s(0) = o, P@) = 1.

Proof. From the hypotheses of our theorem and from Lemma 1
it follows that the assumptions of Theorem 3 from [4] concerning equa-
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tion (11) are satisfied. Consequently, equation (11) possesses a conti-
nuous solution in I fulfilling the condition y>0) —17. Now, our assertion
results from Lemma 2.

§ 3. If we put <p{X) —x rp{x) in equation (2), then we come to

(19) y /()] = K[x, y<x)],
where the function

rr- g(x,xz) for x z*o
(o) Kix,2) '@

m +m ziOTX =0
is defined in the region

Q2= {(x,2):(x,xz)e £3).
For any fixed x € | we put

Q*= {y: (x,y) e Q%}
and
V|= {K(x,2):zen%}.

LEMMA 3. Suppose that assumptions (i), (iv), (v) and condition (10)
are satisfied. Then the function K(x, z) fulfils the following conditions:

(@) K(x, z) is continuous in a neighbourhood of each point (o, M}whe-
re rflis an arbitrary constant.

(b) For every real rj there exist constants 8e (0,c] and dt> 0 such
that
(21) \K{x, Zi)~K(x, z2\< yi(x) \zx~zji for 0< x < d,\z-v\< du
where
X x) for x e (o, d
(22) yieo = 1 Y ©.9

1 for x = o

is a continuous function.

(c) For every x el the set Q2 is an open interval and VWb — Qj(xy

(d) For any fixed x e | the function K(x, z) is invertible with respect
to Z.

Proof. Ad (a). In order to prove that K(x,z) is continuous it suffi-
ces to show its continuity at a point (o, tj);



Hypothesis (s) implies

lim -K fcSU o,
x -t xXV1+z2

z

whence
lim R(x, xz) - lim R(*>a" -« = o.
A «*) *_+0+ * «*)
Z +1) Z->7
Consequently
"hm K(x, 2) = v = K(0, v),
Z->7j

which finishes the proof of (a).

Ad (b). Evidently, for every real f] one can find a de (0,c] and
a positive di1 such that the inequality |xz|] < d is satisfied whenever
x e (0,8) and \z—rj\<- dt. Applying condition (7) we get

\K{x,Zi)-K(x,z2= " [or(x xzi) sr(x,xz2] < y(x) \zt-z A for x + o.

For x = 0 we have
|K(O, zt)-K (0, 22| = \zx-z x|

Condition <7) implies also that
Bl = Idgfy(o,0)[<y (o).

Since o< /(x) < x, we have /'(0) = hm —-> o, because /'(0)+ o by
X ->0 ®
assumption. Consequently, on account of (10) we have

1Bl *y(O)

f(o) f) x
This proves that condition (21) is satisfied with yi(x) defined by (22).
Since

t X <\—y(®) _1

Ne y(x) f()
the function yi(x) is continuous in [o,d) which completes the proof of
condition (b).

Ad (c). We may assume that the domain Q has the form

(0"MX < a
lai(x) < y < ax),
where <*i(x)< 0 and aj(x) > 0. It is easy to check that, in such a case,
the region Q2is of the form

Q
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0 M X < a

/32: ai)EX) < z<Jﬁ‘)“(£<l) for.x + Q

z is arbitrary for x = o.
Since f(0) = 0 we have Qfi0) = °®). On the other hand
K, 2)=j~ + z, whence V*= (-00, 00)

i.e. V¥= .0f0. For x 40 we have
\v:v= g(x, xz),ze =

= {u/x)v =g{x,y), y e Qx}.
Assumption (v) implies

{0 v if(x) v =g(x y), yeQx} = W/(x)], az[/(x)])
WhenCe v,=(jIM aLf(X)] \ =
A I fx) * /(x) "o

which proves our assertion (c).
A
Ad (d). Since K(0,2) = f%o\]z an<* B 40 by assumption,

function K(0, z) is invertible. For x 4=0 the function K(x, z) is a one-to-
-one mapping with respect to z 'because g(x, y) is invertible as a function
of the second variable (with an arbitrarily fixed xel). This proves (d).

The following lemma is a simple consequence of equation (19) and
Lemma 3.

LEMMA 4. Assume (i), (iv) and (v). If ip is a continuous solution of
equation (19) then the function <p(¥) = xip(x) is a regular solution of
equation (2) fulfilling the condition <p(0) = 0. If tp is a regular solution
of equation (2) in I such that (p(0) = o and ~'(0) = 1j, then the function

. for x 4o
Yi(x) X
) for x = o

is a continuous solution of (19) fulfilling the condition yj0) = rj.

Let rri(x) be defined by formula (13) where Yi(x) is given by (22).

THEOREM 3. Assume (i), (iv), (v) and condition (10). Moreover, sup-
pose that there exists an interval Jd | such that P,(x) tends to zero
uniformly on J. Then a regular solution of equation (2) fulfilling the con-
ditions @) = o and <p{0) — rj, depends on an arbitrary function.

Proof. On account of our assumptions and by means of Lemma 3
we infer that the assumptions of Theorem s from [4] concerning equa-
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tion (19) axe satisfied. Thus a continuous solution y of (19) fulfilling the
condition () = 1j (if such a solution exists) depends on an arbitrary
function. Now, Lemma 4 completes our proof.

Condition

<23) K(0, 1) = V

is necessary for equation (19) to have a continuous solution with yK0) =

n-
REMARK 2. The definition of K(x, z) implies that equation (23) has
the form

A L.
fw m n
Put
<24) X(X) - = |K(X, t])-V\: /(X) g{x, Xjf) 1] for x4=0
for x = o,
where rj is a solution of (23) and
(25) HJpe): = rwx),n = 23,..

THEOREM 4. Assume (i), (iv), (v) and condition (10). If, for a fixed
t], there exists a point x0e A{0) such that both Tn(x) and Hn{x) tend
to zero uniformly on [/(Xo), x0], then equation (2) has a regular solution
< in | fulfilling the conditions <pf0) —0 and <p'(0) = rj, depending on an
arbitrary function.

Proof. The assumptions of our theorem and Lemma 3 imply that
the hypotheses of Theorem 7 from [4] concerning equation (19) are sa-
tisfied. Consequently, equation (19) has a continuous solution y>in | ful-
filling the condition y(o) = rj and depending on an arbitrary function.
Now our assertion results from Lemma 4.
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