ANDRZEJ KAMINSKI

ON AXIOMS OF CONVERGENCE IN LINEAR SPACES

Abstract. By a (general) convergence in a given linear space X we mean
a mapping G: XN—=2X where N denotes the set of all positive integers, and by
a zero-convergence in X we mean a convergence Go in X for which Go(x) ¥=0 im-
plies 06 Go(x) for each x 6 XN. In the paper, the two operations are defined: 1°
operation C, which to each zero-convergence Go in X assigns some general con-
vergence G in X, and 2° operation Co, which to each general convergence G in X
assigns a zero-convergence Goin X. Various systems of axioms for general conver-
gences and zero-convergences are considered and their connections with the ope-
rations C and Co are studied. Also mutual independence of axioms is studied.

Very often convergences are defined by topology. However there
exist important convergences which cannot be defined in this way, e.g.,
type | and type Il convergences in the Mikusinski operational calculus
(see [9], [2]. [3D.

These and other examples show the need of development of a gene-
ral theory, in which convergence in a given space is defined immediately
by indicating convergent sequences and their limits and some general
conditions (axioms) are supposed (see e.g. [10]).

Of course, such a convergence can be treated as a function, which
to every sequence assigns a set of limits (the empty set if a sequence is
divergent; a one-element set if a convergent sequence has a unit limit).

In particular, topological convergence (i.e. convergence defined by
some topology) can be characterized in terms of conditions mentioned
above. For Hausdorff convergences it is done in [7] and [s] and for mul-
tivalued convergences (i.e. without the assumption of uniqueness) in the
paper [4] (see also [5] and [s]).

One can consider convergences in spaces equipped with some alge-
braic structure, e.g., in groups or in linear spaces (see e.g. [11])- In linear
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spaces only the sequences convergent to o are usually defined (zero-con-
vergence). All the convergent sequences (general convergence) can be
then defined by linearity.

In this note we present a general scheme how to pass in linear spa-
ces from the definition of sequences convergent to o to the definition of
sequences convergent to arbitrary elements and conversely.

More precisely, we first introduce axiomatically two kinds of con-
vergence in a given linear space: zero-convergence and general conver-
gence. Next we define an operation C assigning to every zero-conver-
gence a general convergence and an operation CO, which makes corre-
spond to every general convergence a zero-convergence (section 1). We
study what axioms are preserved when operations C and Co are perfor-
med (section 2).

In turn, we discuss relations between operations C and Co (section
3). In particular, we find conditions, under which the identities CC0G = G
and CoCGo = Go hold for any general convergence G and zero-conver-
gence GO.

Finally, we discuss independence of axioms (section 4).

1. We shal denote: by N — the set of all positive integers, by R —

the set of all real numbers, by X — an arbitrary fixed set, by E —
a fixed linear space over the field R, by Greek letters £, 1j, ... — elements
of X or E, by Latin letters x,y,.. — elements of XN or EN, i.e. sequen-

ces {fn}j {vn}, mof elements of X or E respectively.

If y is a subsequence of a sequence x, then we shall write y -g X;
the constant sequence I, £ £, ..., where £€ X (or £6 E), will be denoted
by £ and the set {£,,:neN) for x — {En} — by (x) (cf. notation in [1]).

If A, Bd E and leR, then we sihall use the standard notation:
A+B —{xJy :xe A,y eB}, )A= {Ax:xe A} and the convention: A+
40 —0 +A —0, A0 —0.

By a general convergence (shortly: convergence) on a given set X,
we mean a mapping from x ~n into 2X(cf. [1]).

Let G and G' be two convergences on X. We writeGCG if G(x) ClI
C G'(x) for every xe XN. If GCG"' and G'C G, then we write G = G".

The following axioms concerning a convergence G on X were consi-
dered in [7], [s], [1], [9], [4]—TIs1:

F. If y -g x, then G(x) C G(y);

. If | £ G(x), then there exists y -g x such that £g G(z) for every

. £e G(E) for every £e X.
is convenient to consider the following axiom, complementary

with respect to axioms S and H:
S'. If fle G(]), then £ —1j.

u

y; _

H. For every x e XN the set G(x) contains at most one element;
S

It
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In E, it is natural to consider for general convergences besides F, U,
H, S, S' also the following axioms of linearity (cf. i[10]):

A. GX)+G(y)CG(x+y), (x,yeEN)

M. AG(X) CZG(Xx), (xe EN, XeR)
or the following weaker versions of linearity:

T. If £€ G(x), then 0€ (x—I), (xe EN);

T If OeG(x—]), then | ¢G (x), x € EN).

A (general) convergence G on a linear space E will be called a zero-
-convergence if

G«(X) # 0 implies 0e Go(x), (x€ EN).

For zero-convergences, we consider the above axioms, too. However
it seems to be more natural for those convergences to replace axioms S
and S' by the weaker ones:

S0. 0e Go(0) or, equivalently, Go(0) 9" 0.

S0. If Go(f)=£ 0 (i-e. OeGo(l)) for £eX, then f = o.

Relations between the above axioms will be studied later.

Now, we are going to introduce the following operations: 1° opera-
tion C assigning a general convergence G on E to every zero-convergen-
ce Go on E; 2° operation Co assigning a zero-convergence Go on E to
every general convergence G on E.

Namely, for a given zero-convergence Go on E we define the general
convergence CGo = G as follows:

£e G(X) &=>0e Go(x-i), (xe EN).

For a given general convergence G on E we construct the zero-con-
vergence COG — GOon E in the following way:

Go(x) = G(x) if 0e G(x) and G(x) = 0 otherwise.

Note that the above definition of the operation C is based on linea-
rity, but the definition of Co is not. Therefore it seems to be reasonable,
for a given general convergence G, to treat a sequence X as convergent
to o in the sense of a zero-convergence whenever for some e R we have
e G(x+rj). Accordingly, we define the second version of operation of
type 2 ° in the following way:

(1.1) CoG(X) = Go(x) = U {G(x+jj)—2?, (x e EN)

for the given general convergence G, where the union is taken over such
Ve X that e G(x+rj); if for some xe EN such rj does not exist, then we
adopt Go(x) = o .

It is obvious that Go is a zero-convergence on E.

PROPOSITION 1.1. For every general convergence G, we have

{12) C0G C CoG.
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If G satisfies axioms S and A, then
(1.3) C0G = C(G.

Proof. Let x be arbitrary. If £€ C0G(x), then £ 0e CoG(X) = G(X)
and, by (1.1),
£€ G(x+0)—0C CoG(x),
i.e., (1.2) holds.
Now, let £€ GO0G(x). Then there exists rjeX such that n),£+
+fle G(x+t)). Hence, by S and A, we have

0= y~r]eG(x+f))+G (—fi)CZG(x)
and
£ = £+r1nj—fle G(x+ rf)+G(—tj) Cl G(x).
But this means that £€ G(x) — CoG(x) and thus the second inclusion of
(1.3) is true under S and A.

EXAMPLE 1.1 Let E=R. We define G(x) = 0 if the sequence
x = {|n} is not convergent in the usual sense and G(x) = {—1} if
lim £n —£ in the usual sense.

.
Note that G fulfils A (and U, which will be needed later), but does
not fulfil S.
If fn“*I 0, we have CoG(x) = 0. On the other hand, it is easy
to see that

COG(x) = g (x- )+ |-= {0},
i.e., (1.3) does not hold.
EXAMPLE 1.2. Let E= R and x = {£,}. «
£,\ £> o,i.e., £n £and £n™ £ for almost all n,
or if
En/ £< o, ie. £n->£ and £n™ £ for almost all n,

then we adopt G(x) = {£}. Moreover G(x) = {0} if x = {En} and £n —ft
for almost all n. In the remaining cases, we put G(x) = 0.

Note that G satisfies S (and U, which will be needed later) but
does not satisfy A.

— —1 we have
n\

CoG(x) = CoG(x) = 0

For x = {n—fland X —{

and

C»G(x) = {0 >,
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c,g<*'= uJag({.,-A-})-.1 = {o>

i.e., (1.3) does not hold.

2. In this section we study if individual axioms are preserved under
the operations C, Co and CO.

PROPOSITION 2.1. If a zero-convergence Go satisfies F, then the
general convergence G = C Go satisfies F. If a general convergence G
satisfies F, then the zero-convergences. Go = Co G and GO— CO0G sa-
tisfy F.

Proof. Suppose that Go satisfies F and lety x and f € G(x). By
the definition of G, we have o e Go(x—¥). Since Go fulfils F, we have
o € Go(y—]) and hence £e G(y). Thus we have proved that G(x)(ZG(y),
i.e., G satisfies F.

Suppose now that G fulfils F and lety  x. If 0 g G(y), then 0g G(X),
by F. Hence Go(x) = 0 CZGo(y) = 0. If 0OeG(y), then Go(y) = G(y)Z)

G(x) ID Go(x), because F holds for G. Thus we have proved that Go
fulfils F.

Since F is assumed for G, we have

(2.1) G(x+n)CIG(y+"
and
(2.2) Gx+ ) (HG(y?)) —i

for each 3£ E. In view of the definition of GO, inclusions (2.1) and (2.2)
yield Go(x) CZGo(y), i.e., Go fulfils F and the proof is finished.

PROPOSITION 2.2. If a zero-convergence Go satisfies U, then the
general convergence G = CGo satisfies U. If a general convergence G
satisfies U, then the zero-convergence Go = COG satisfies U. If a general
convergence G satisfies U, S and A, then the zero-convergence Go =C0G
satisfies U.

Proof. Suppose U for Go and let £0 G(x), i.e.,, 0g Go(x-£). Then

there exists y x such that OgGo(z—) for each z~”"y. This means,
1g G(z) for each z =2y, i.e., G fulfils U.

Suppose now that G fulfils U and let for each subsequence y of a gi-
ven sequence X exist z-gy such that £e G0(z). But then Go(z) = G(2)
and 0,£e G(z). Hence, by U, we have 0,£e G(x) = Go(x). This proves
the second part of the proposition.

The last part follows from the second one, by Proposition 1.1.

The assumption in the third part of Proposition 2.2 that G satisfies
axioms S and A cannot be omitted.

In fact, the convergence G from Example 1.1 fulfils U and A, but
does not fulfil S. We have in this case Go(X) = CoG(x) = {0}, provided
there is a i'eR such that £,-> £ and Go(x) = 0 otherwise. The zero-
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-convergence Go does not fulfil U, because o g Go(x) for x = (1, —,1,
- 1,...), but for each subsequence y of x there exists subsequence z of vy,
which is of the form z = (¢, 1,...) Or 2 = (—1, —1,...), I.8., 0 € Cr*z).

On the other hand, the convergence G from Example_1.2 satisfies
U and S, but does not fulfil A. The zero-convergence Go = CO0G does not

but for each subsequence y of x there exists a sulbsequence z of y, which

or of the se-

Now, note that axiom H is not preserved in general when the ope-
ration C is applied, as examples below will show. However we have the
following statement.

PROPOSITION 23. If a zero-convergence Go satisfies axioms A, M
and Sj, then the general convergence G — CGq satisfies H. If a general
convergence satisfies H, then the zero-convergences Go = C0G and Go =
= COG satisfy H.

Proof. Suppose that a zero-convergence Go fulfils A, M and S'
and let f,De G(x). By the definition of G, we have 0e Go(x—) and
0 eG o(x—). Hence, by M and A, we get

o€ Go(x-$)+ G (rt-x) dG (r]-£)

whence i = 1j results, by virtue of S'. The first part of the proposition
is shown.

Assume now that a general convergence G fulfils H. If £e Go(x),
then 0,]eG(x) = GQx) and, since G satisfies H, we get £= 0, i.e., the
zero-convergence Go satisfies H. If fe G o(x), then by the definition of
Go there exists T]eE such that rj, tj+r] eG{x+f]) and hence ] = £+?/, i.e.,
t —o. Thus the zero-convergence Go satisfies H too and the proof is com-
pleted.

EXAMPLE 2.1. Let E= R and let G«(x) = {0} if x =\ for £eR
and G,(x) = 0 otherwise. Of course, the zero-convergence G fulfils H,
A, M, and axiom So is not fulfilled. The general convergence G = CGfl

does not satisfy H, because G(E) = R for every | € R.

EXAMPLE 2.2. Let E = R. Define the zero-convergence Go as fol-
lows: Gnpo)= {o}, Go({f+an}) —{o} for any |eR and ara->0 with
nn 0 (ne N); in remain cases let Go(x) = 0.

Evidently, the zero-convergence Go fulfils axioms H, M, S,,. Axiom
A is not satisfied, because
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and

Go(l+v)= 0
for any £,rjeR such that £+tj 0. Note that g |||+ — = R, i.e., axiom
H does not hold for G = CGO. ko U
EXAMPLE 23. Let E = R. We adopt Go(x) = {0} if x =0 or if
x =, {£,,}, Where otherwise let Go(x) —O0.

It is clear that the zero-convergence Go satisfies axioms H, A and
So and does not fulfil axiom M. Let us note that G(x) —CGo(X) = R,
i.e. the general convergence G has not property H.

PROPOSITION 2.4. If a zero-convergence GO satisfies So, then the
general convergence G = CGO satisfies S. If a general convergence G sa-
tisfies S, then the zero-convergences Go —C0G and G0= CO0G satisfy SO.

Proof. The first part follows from the fact that the condition
£GG(E) is equivalent, by the definition of G, to the condition 0€ Go{0).

If G satisfies S, then we have in particular Oe G(0) = Go(0), that
means Go satisfies SO. On the other hand, we have then re G(*) and
O0e G{T])—f] for every t)e E, i.e., 0€ <?0(0).

PROPOSITION 25. If a zero-convergence Go satisfies SO, then the
general convergence G — CGo satisfies S'. If a general convergence G
satisfies S', then the zero-convergence Go = CO0G and GO— COG satisfy
> Proof. Assume that Go fulfils S' and let Ae G(|) = CGo(i). This
means 0eG e(|—rj) and thus £ —rj, by S', which shows the first part of
our assertion.

Now, let G fulfil S" and let 0 e GOE) = CoG(i). This means Oe G(£) =
= Go(i) and £= 0, by S".

In turn, if Oe O(f(f) = CoG{i), then by the definition of Go there
exists rjeE such that Ae G(E+Tj). Hence, by virtue of S', we get £+1i] =
,= f], which yields the desired assertion.

PROPOSITION 2.6. If a zero-convergence Go satisfies A, then the
general convergence G = CGo satisfies A. If a general convergence G sa-
tisfies A, then the zero-convergences GO— C0G and Go = CoG satisfy A.

Proof. Assume that a zero-convergence Go fulfils A and that
£eG(x) +G(y), i.e. C= £+r] with £e G(x) and rjGG(y). By the definition
of G, we have 0eG«(x—£) and OeGo(y—ft. Since A holds for GO, we
obtain

Go(x—) + Go(y—ft C G(x+y—(i +1j)),
i.e.,
£E+r/eG(x+y),

which completes the proof of the first part.

136



Suppose now that a general convergence G fulfils A. If 0g G(x) or
0jgG(y), then Go(x) = 0 or Go(y) = 0 respectively and, consequently,

Go(x)+ Go(y) = 0 CI Go(x+y).

If 0e G(x) and 0e G(y), then
0e G(X)+ G(y) ClI G(x+ V),
since A holds for G, and thus
Go(X) + Go(y) = G(x)+ G(y) C G(x+y) = Go(x+y).
To prove the last assertion suppose that

(2.3) Ji€G(x + Ni) and rReG (x + Te).
Of course we have

Vit =2e Gx+2)+G(y+TR)C G(x+y+ + %)
and
[G(x+ )=+ [Gy+ %)— C G(x+y+ +%)—i+ 2

because A is satisfied by G. From this results the inclusion
Go(x) + Go(y) Cl Go(x+y)

in the case, when there exist rji, i2e E satisfying (2.3).

In the opposite case we have

GOx)+Go(y) = 0 C Go(x+y).

Thus the proof is complete.

PROPOSITION 2.7. If a zero-convergence Go satisfies M, then the
general convergence G = CGo satisfies M. If a general convergence sa-
tisfies M, then the zero-convergences Go = C0G and Go = COG satisfy M.

Proof. Assume that Go fulfils M and that fe XG(x) for G = CGQ,
/¢ R and xe -BN. That means, we have f =XE with £e G(x). Hence

0e Go(x—£) and
0eXG(x-£)=0C G ~x ).

This yields, by the definition of G, the relation C= Xte G(Ax), which fi-
nishes the proof of the first part of the proposition.

In turn, assume that a general convergence G fulfils axiom M. If
06 G(x), then AG(x) = 0 C Go(AX)

for every XeR and Go = CoG.
If 0e G(x), then 0e AG(X) C G(Ax) and we get

AG(X) = XG(x) ClI G(>IX) = Go(>Ix),
owing to M holding for G.
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It remains to prove that Go —C0G fulfils M. If
(2.4) ) e G{x+ ),
then we have, by virtue of M,

H = h7€ AG(x+ rj) Cl G(Ax+ ju)
and I[Cr{x-\-rj))—j] G G(Ax+M) —lu
for any Ae R. This yields

AGR(X) C Go(AX), (Ae R)

in the case, when there exists rjsg such that (2.4) holds.
In the converse case, we have

Go(x) = 0 C Go(AX), (Ae R)
and the proof is over.
PROPOSITION 2.8. The general convergence G=CGO0satisfies axioms
T and T' for every zero-convergence GO. If a general convergence G sa-
tisfies T, then the zero-convergences Go = COG and GO= C(OG satisfy T.
Proof. The first assertion follows from the following equivalences:

£e G(X) <= Go(x—) <=0e G (x—i),

which are consequences of the definition of G.

To prove the second one suppose that G satisfies T. First let
I € GAX) = CoG(a:)). Then £ 0e GQx) = G(x) and, by T, we obtain
OeG(x—), i.e.,

0eG, (x-£) = G(x-f).

Finally note that the usual convergence G in R satisfies axiom T'
(and all others) and the zero-convergences Go = C0G and Go—C0G
(which coincide with the usual convergence to 0 in R) do not fulfil it.

3. Now we are going to study connections between the operations
c, Co and CO.

PROPOSITION 3.1. If G, G' are general convergences on E and
G C G ’then COG C CoG' and COG C CoG.

Proof. First let a £e Ca5(x). By the definition of Co this means that
I e G(x) and 06 G(x). Hence, by the assumption, £ 0e G'(x) and, conse-
quently, £e CoG'(X) = G'(x).

Now let £e CoG(;r). This means that there exists an t]€ E such that
3 £+rj e G(x+rj). By the assumption we have y, £+ e G'(x+?;) and thus
£ —£+1—rs CoG'(X). The proof is complete.

PROPOSITION 3.2. If GOG'O are zero-convergences and GoCIG?,
then CGoCCG;.

Proof. If £e CGo(x), then OeG~*x—£) and, by the assumption,

OeG'o (x—{). But this means that feCG'(x), which completes the proof.
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PROPOSITION 3.3. If a general convergence G on E satisfies S and
A, then

(3.1) CCG —G

(3.2) CCG = G.

Proof. In view of Proposition 1.1, it suffices to prove (3.1). Let
i e G(x). By S, we have
0= £-feG (x)+G(-£).

Hence, by A, we get 0eG (x—£), i.e.,
0eCO0G (x—f),

which means that £6 CCoG(X).
Now let £e CCOG(x). This implies in the sequel OeCoG(x—) and

33) 0eG (x-i).
Since | e G(i), in view of S, we obtain from (3.3) the relation
£- 0+£eG(x—£)+G(E)CIG(X),

by virtue of A. Thus identity (3.1) is proved.

Note that identity (3.2) requires assuming axioms S and A for G, but
the inclusion

(3.4) GC CC0G

holds generally.
PROPOSITION 3.4. Relation (3.4) holds for every general conver-

gence.

Proof. Let £e G(x). Of course,

0= £-£eG(x-£+£)-£
and, by the definition of CoG, we have
0eCoG (x-i),

i.e., ; € CCoG(x). The proof is finished.

Now we shall show that identity (3.1) and the inclusion

CCGC G

are false, if one axioms S, A is not satisfied by G.

EXAMPLE 3.1. Let G be as in Example 1.1. As wo have noticed, G
satisfies A, but not S. We have CoG(x) — {0} if x = {|n}, and
CoG(x) — 0 for other sequences x. Further, CCOG(x) = {£} if x = {f«},
in  ?and CCoG(x) = 0 otherwise. Therefore



{_l} = G(X) £ CC,,G(X) = {E}’
{£} = CCG(x) QG (i) —{—}

for x = {£n}> £n Noo.

Now, it is easy to see that C0G(x) = {0} if fn"~ £ for some | e K and
CoG(x) = 0 otherwise. Hence CCoG(x) = R if £n-> £ (EeR), i.e., for such
a sequence x = {£,} we have

CCoG(x) Q. G(x).

EXAMPLE 3.2. Let G be as in Example 12. As we have seen, G
satisfies S and not A. We have

Er r&[l(x_) Jg erW|se£ for almost all n

and thus
{£> = G(X) QCCOG(x) =

if En= 1+ e for instance.

EXAMPLE 3.3. Let E = R. We define a general convergence G as
follows: if £n“>0, then we adopt G(x) = {0}; if £n = £ for almost all n,
then G(x) = {£}; in the remaining cases G(x) = 0. Obviously, G satis-
fies S and does not satisfy A.

Let x —{£,}, where £, = £+?with £eR, neN. Then we have
CC,G(x) = {£} = CCoG(x), that is,
CCoG(x) £ G<x)

CC,.G(x) Q. G(x).

PROPOSITION 3.5. If a zero-convergence GO on E satisfies axiom.
T, the

(3.5) Go G COCGo
(3.6) Go C C oCGO.
Proof. To prove (3.5), suppose that £eGo(x). This means that
3.7 OeGo(x)
and, by T, that
(3.8) 0eG ax-£).

By the definition of C, we get from (3.7) and (3.8)
£,0e CGOX).



Hence

<39) | € COCGO(X) = CGOX)
and
(3.10) N g+ne CGOx+T)

for every e E.
From (3.10), we obtain
(3.11) | € CoCGo(X).

Relations (3.9) and (3.11) prove our assertion.
Since for zero-convergences

(3.12) H implies T,

we have immediately

COROLLARY 3.1. If a zero-convergence GO on E satisfies axiom H,
then relations (3.5) and (3.6) hold.

Now, we shall show that relations (3.5) and (3.6) are not true gene-
rally (if G' does not satisfy H or T).

EXAMPLE 3.4. Let E be an arbitrary linear space and let Go(X) = E

if |, = 0 for almost all n. For remaining sequences x, we put Go(x) = 0.
Note that H does not hold.
We have
_ bif |[n = | for almost all n
ceax) = otherwise
and thus
CoCGo(x) = COCGOx) = {0}
if = £ for almost all n. This means that (3.5) and (3.6) are false in this
case.
PROPOSITION 3.6. If a zero-convergence GO satisfies T', then
(3.13) CoCGoC G o
and
(3.14) CoCGo C GO
Proof. If| e CoCGo(g), then in turn
| e CG(x)
and

OeGo(x-i).

The last relation, by T', implies that 1 e Go(x) and (3.13) holds.
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If f€ CoCGo(X), then there exists an rje E sudh that i\, £+ rje CGo(x+
+ 1) and 'hence Oe GO(x +rj). This implies £€ GO(x), by T' and (3.14) is
proved.

Since axiom T' is somewhat artificial for zero-convergences (see sec-
tion 4), we shall prove (3.13) and (3.14) also under other assumptions.

PROPOSITION 3.7. If a convergence GO satisfies S', A and M, then
(3.13) and (3.14) hold.

Proof. By Proposition 2.3, the general convergence CGO and the
zero-convergence COCG satisfy axiom H. To prove (3.13), it remains to
note that 0e COCGO(x) implies 0e CGQO(X) and this implies 0e GOX).

Relation (3.14) is obvious if Go = 0. Further, note that for non-emp-
ty zero-convergences condition M implies So. Hence, by Propositions 2.4
and 2.6, the general convergence CGo fulfils axioms S and A. Conse-
quently, we have CoCGo = CoCGQ in view of the second part of Propo-
sition 1.1. Hence (3.14) follows, by virtue of the first part of this propo-
sition.

Note that for zero-convergences

(3.15) T' implies T.

In fact, assume that £eG O(x). Then 0OeGo(x) = GOx—E+£) and we
obtain
-£9gGQx-£),
in view of T'. But this means, by the definition of zero-convergences,
that OeGo(x—]). Thus (3.15) holds.
By virtue of implications (3.12) and (3.15), we obtain from Proposi-
tions 3.5, 3.6 and 3.7 the following result.

COROLLARY 3.2. If a zero-convergence Go on E satisfies 1° T'; or
2° S'' A, Mand T; or 3° S', H, A and M, then the identities

(3.16) CoCGo = Go
(3.17) COCGO0= GO
hold.

We shall show now that relations (3.13)—(3.14) and (3.16)—(3.17)
are not true generally (if T' and one of axioms S0, A, M do not hold for
Go).

EXAMPLE 35. If Go is as in Example 2.1, then axioms H, A, M are
satisfied and axioms S', T' — not. We have

cocG,(i) = cocco() = RQ {0} = ..

for every £e X.
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If Go is taken as in Example 2.2, then H, M, S0 hold and, at the sa-
me time, A as well as T' do not hold. Moreover we have

C,CG, =CCG,{{+1))=SC {0} =0G. (jf+i})

for every fe X.
At last, if Go is taken from Example 2.3, then H, A, So are fulfilled,
but any of axioms M, T' is not. We have in this case

CoCG,(x) = COCGOX) = RQ {0} = G@)

for x = {£,} with 00.

4, Finally, we would like to present, without proofs, mutual rela-
tions between axioms concerning general convergences.

First note that each of axioms F, U, S, H, A, M is independent of
others. Axioms F, U, A, M do not depend on axioms S', T, T' either. Ho-
wever we have the following implication:

(4.1) S'a Aa M=>H.

On the other hand, according to (4.1) it can be shown that H does
not depend: 1° on F, U, S, A, M, Tand T, 2° on F, U, S, S'" M, T
and T'.

Further note that S does not depend on axioms F, U, H, A, M, S',| T
and T', because the trivial convergence (defined as G{x) = 0 for all
x e X N) satisfies all mentioned axioms except S. The situation is different
when considering only non-trivial convergences. Then we have the im-
plication

(4.2) Ma T =S.

On the other hand, one can ishow that in the class of nontrivial con-
vergences S does not depend: 1°on F, U, S, H, A, Mand T; 2° on F, U,
S'"H, A Tand T

We are passing now to axioms S', T, T'. The following relations

hold:

4.3 SaH=S§,

4.9 Ha Ma T <>S|,
(4.5) HaAaTaT-*§,
(4.6) SaA=T,

4.7 SaA=>T.
However
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1° axiom S' does not depend: a) on F, U, S, A, M, T, T'; b) on F,
U H A MT;c)onF, U H A T;donF, U H, T, T —see (4.3), (4.4),
(4.5) and (4.2);

2° axiom T does not depend: a) on F, U, S, S, H, M, T'; b) on F, T,
S"H,A T;c)onF, U, S H A, M — see (4.6) and (4,2);

3° axiom T' does not depend: a) on F, U, S, S', H, M, T; b) on F, U,
S, H, A, M, T — see (4.7).

Finally note that axiom T' is unnatural for zero-oonvergences. For

we have the implication SOa S i*l -|-|
! !

provided E =£ {0}.
We omit here other relations between axioms SO, So and the remai-
ning ones for zero-convergences.

REFERENCES

11} A. R. BEDNAREK, J. MIKUSINSKI, Convergence and topology, Bull. Acad.
Polon. Sci. Ser. Sci. Math. 17 (1969), 437—442.

121 J. BURZYK, On convergence in the Mikusinski operational calculus, Studia
Math, (to appear).

[3] J. BURZYK, On type Il convergence in the Mikusinski operational calculus,
Studia Math, (to appear).

[4] A. KAMINSKI, On characterization of topological convergences, Proc. of the
Conf. on Convergence — Szczyrk 1979, Katowice, 1980, 50—70.

[5] A. KAMINSKI, On multivalued topological convergences, Bull. Acad. Polon.
Sci. Sér. Sci. Math., 39 (1981), 607—610.

[6] A. KAMINSKI, Remarks on multivalued convergences, Proc. of the 5th Pra-
gue Topological Symposium — Prague 1981 (to appear).

[7]1 L. V. KANTOROVITCH, B. Z. VULIH, A. G. PINSKER, Funkcionalnyi analiz
v poluuporiado¢ennyh prostranstvah, Moskva 1950 (in Russian).

[8] J. KISYNSKI, Convergence du type L, Collog. Math. 12 (1960), 205—211.

[9] J. MIKUSINSKI, Operational Calculus, Pergamon Press — PWN, Warszawa
1959.

[10] P. MIKUSINSKI, Aksjomatyczna teoria zbieznosci, [w:] Prace matematycz-
ne 12. Prace naukowe Uniwersytetu Slaskiego nr 425, pod red. K. Szymicz-
k a, Katowice 1982.

[11] J. NOVAK, On convergence groups, Czechoslovak Math. J. 20 (1970), 357—374.



