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ON SOME ANALOGIES BETWEEN MEASURE 
AND CATEGORY AND THEIR APPLICATIONS 
IN THE THEORY OF ADDITIVE FUNCTIONS

A b s t r a c t .  The firs t p a r t  of the paper is devoted to topological analogies 
of some theorem s from  rea l analysis (Vitali’s covering theorem , Lebesgue theorem  
o n  ou te r density, S m ita l’s lem m a). T hen  we give a topological analogue of a theorem  
of O strow ski connected w ith  additive functions.

In  the  la s t p a r t  we deal w ith  H am el bases, specially w ith  B urstin  bases. We 
prove th e ir  existence and  study  topological and  m easure properties.

Introduction. It is well known tha t there exist many analogues bet
ween measure and category (of., e.g., [18]). So measurable sets correspond 
to sets w ith the Baire property, and sets of measure zero to sets of tlhe 
firs t category.

In the present paper we indicate topological analogues of some theo
rems from real analysis and show 'how some of them may be applied in 
the theory of additive functions.

Concerning all topological notions in  the present paper cf. [14]. R 
denotes the set of all real numbers, Q the set of all rational numbers. 
The closure and the interior of a set A  in  a topological space will be de
noted by clA and intA, respectively. The inner and outer Lebesgue mea
sure in an Euclidean space (the dimension of the space is considered as 
fixed) will be denoted by m i and m e, respectively. The axiom of choice 
will be freely used throughout the paper!

Covering theorem. Let X be a topological space. For the purpose of 
the present section a set A d X  will be called regular iff A d clint A. 
A family A  of sets A Cl X is called a Vitali cover of a set E d  X  iff for 
every x e E and for every neighbourhood U of x  there exists an A g A 
.such that x e A d U .
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THEOREM 1. I f a fam ily A of regular sets is a Vitali cover of a set 
E d  X , then there exists a fam ily S C . A of m utually disjoint sets such 
that the set

(1 ) E\ U A
a  e c5

is nowhere dense. If the space X  is separable1, then the fam ily S is at 
most countable.

P r o o f .  W ithout loss of generality we m ay assume tha t all sets in 
A are non-empty.

By Zorn’s lemma it follows that A contains a maximal subfamily S 
of m utually disjoint sets. W rite

F = clE\ U intA.
a e cS

Since set (1) is evidently contained in F, it is sufficient to show that F 
is nowhere dense.

Suppose that U =  intF  ^  0 .  We have U d c lE ,  and hence U ^  £  7= 
^  0 .  Take an x  e U  r\ E. Since A is a Vitali cover of E, there exists 
an A0 e  A  such that x  e  A0 d  U. For an arb itrary  A e S  we have intA d  
d  X\U, whence A d  d in tA  d  cl(X\U) =  X\U. This shows that A0 r\ A  =
— 0  for every A e S ,  which contradicts the maxim ality of S.

Consequently int F =  0 ,  and since F is evidently closed, it is no
where dense. The last statem ent is obvious.

If X =  RN, then we can assert that if A  is a Vitali cover of a set E 
by closed (or open) cubes, then there exists a (finite or infinite) sequence 
{Qn} of disjoint cubes from A  such that the set

(2) E \U Qn
n

is nowhere dense and of measure zero.
In fact, by  the Vitali theorem there exists a sequence {K n} of di

sjoint cubes from A  such th a t the  set

(3) E\U K n
n

has measure zero. By Zorn’s lemma there exists a maximal family S d A  
of disjoint cubes such that {K„} d  S. Since RN is separable, S is at most 
countable, and so it can be arranged in  a (finite or infinite) sequence 
{Qn}. Since every cube is a regular set, the proof of Theorem 1 shows 
that set (2) is nowhere dense. And since {K n} d  {Q„}, set (2) is contai
ned in (3), and hence the former is of measure zero.

Density. Let X be a topological space. For an arb itrary  set A d X  
we write t(A) =  0 iff A contains no second category Baire set. Looking

1 H ere „separab le” m eans th a t X contains an  a t m ost countable dense subset.
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at the analogy between measure and category we see that a second cate
gory Baire set corresponds to a measurable set of positive measure, and 
thus the statem ent t(A) =  0 corresponds to the statem ent tha t A  contains 
no measurable set of positive measure, i.e. to the statem ent tha t m i(A)—Q.

We say that a point x e X  is a point of outer topological density  of 
a set A  d  X iff there exists a neighbourhood U of x  such that t(TJ\A) =  0. 
Note that the notion of the outer topological density is not wholly ana
logous to the m easure-theoretical notion of the outer density.

The notion of the outer topological density does not coincide with 
the notion of the locally second category. For example, on  the real line, 
the interval [0 , 1 ] is locally of the  second category a t the point x  — 0 , 
but 0  is not a point of the outer topological density of [0 , 1 ].

Let D(A) denote the set of the points at which A  locally is of the se
cond category (cf. [14]), and let g(A) denote the set of the points of outer 
topological density of A.

LEMMA 1. If every non-em pty open set in X  is of the second cate
goryi, then for every set A d  X  we have g(A) d  D(A).

P r o o f .  If g(A) =  0 ,  this is certainly true. So suppose tha t g(A) 9^ 
9^ 0 ,  and take an arb itrary  x e g (A ) .  Then there exists a neighbourhood
V of x  such that t(U\A) =  0. Take an arbitrary neighbourhood V of x  
and put W =  U V. Since x  e  W, W #  0 ,  and so it is of the second ca
tegory. We have W  d U ,  whence W\A <Z U\A  and, just as U \A) also 
W\A cannot contain any second category Baire set. Suppose tha t the set 
W n  A is of the first category. In  view of the equality W  = (W\A) ^  
^  (W n  A) this would imply tha t the set W\A =  W\(W n  A) is a second 
category Baire set, which, as we have just seen, is impossible. Thus 
W n  A is of the second category, and, since W A d  V r\ A, also V n, A  
is of the second category. We have shown tha t for every neighbourhood
V of x  the set V r\ A  is of the second category, which means that x e D (A ).  
Consequently g(A) d  D(A).

The following lemma is obvious.
LEMMA 2. If A d  B d X ,  then g(A) d  g(B).
LEMMA 3. If for an A d  X  we have A  r\ g(A) — 0 ,  then the set 

A is of the first category.
P r o o f .  No point of A is a point of outer topological density of A. 

Let R  be the family of all open subsets of X which have a non-empty 
intersection w ith A. For every 17 eJ? it is not true  tha t t(U\A) =  0, the
refore the set U\A must contain a second category Baire set Eu. Let

Eu — (Gu\Pu) Ru,

1 This is certa in ly  tru e  if X is a com plete m etric space, or a  second ca te
gory topological group.
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where Gv is open (and non-empty, since Ev is of the second category), 
and P jj,  R v are of the first category. Since Ev d  U\A, we have A  r\ Ev =
— 0 ,  whence A  r\ Gu d P v, and so A  r\ Gv  is of the first category, for 
every UeK.

Put
G =  U Gv . 

u e  )?

By a theorem of Banach ([3]; cf. also [14], § 10. Ill) the set A n, G is of 
the first category. We have A\G d  clA\G. Suppose tha t V =  int(clA\G) ^  
=7̂ 0 . Thus V d o l A ,  whence V r \A = £ 0 ,  and V e R .  Hence Gv d G ,  
a contradiction. Thus V =  0 ,  and the closed set clA\G is nowhere dense, 
whence also the set A\G is nowhere dense. Consequently the set

A = (A n  G) w (A\G)

is of the first category.
THEOREM 2. For an arbitrary set A d  X  the set A\g(A) is of the 

first category.
P r o o f .  Since A\g{A) d  A , we have by Lemma 2 g(A\g(A)) d  g{A), 

whence [A\g(A)] r\ g(A\g(Aj) =  0 .  By Lemma 3 A\g(A) is of the first 
category.

In other words, Theorem 2 says that almost every (in the category 
sense) point of an arb itrary  set A d  X  is a point of its outer topological 
density.

Sm ital’s lemma. Sm ital’s lemma ([12], [13]; cf. also [19]) reads as 
follows.

THEOREM 3. Let B , D d  Rw be sets such that m e(B) >  0 and D is 
dense in  Rw. Let A = B + D. Then  mi(Rw\A) =  0.

In order to formulate a topological analogue of Theorem 3 we assu
me tha t X is a topological group. The operation in  X will be denoted 
by + , but we do not assume X to be commutative.

THEOREM 4. Let B , D d X  be sets such that B is of the second 
category and D is dense in X. Let A = B+ D . Then  t(X\A) =  0.

P r o o f .  For an  indirect proof suppose that there exists a second 
category Baire set E d  X\A. Thus

E -  (G\P) R,

where G is open and non-empty, and P, R are of the first category. Sin
ce B is of the second category, there exists an x e D ( B )  (this is a well 
known fact, bu t it follows also from our Lemmas 3 and 1). Since D is 
dense in  X, there exists a d e D  such that x + d  e  G. Hence x e G —d so 
tha t G —d is a neighbourhood of x  and the set B <-'> (G—d) is of the se
cond category. Consequently so is also the set [B /-> (G —d)] +  d =  [{B+ 
d) G], and since
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(.B +  d) n G C ( B + D ) ’n  G =  A r\ G,

also the set A n  G is of the second category. If we had A G d P ,  the 
set A n  G would be of the first category; and thus A  (G\P) 7^ 0  and 
A  n  £  9  ̂ 0 .  This contradicts the condition £  Cl X\A.

A set A C R *  is called saturated-non-measurable (cf. [9]) iff 
wii(A) =  mi(RN\A) =  0. Analogously, a set A contained in a topological 
space X is said to be saturated-non-Baire iff t(A) =  t(X\A) =  0, i.e., iff 
neither A nor X\A contains a second category Baire set. As Theorem 3 
is a useful tool in proving that a set is saturated-non measurable, Theo
rem 4 plays a similar role in  proving that a set is saturated-non-Baire. 
In the next section we will show this on the example of a topological 
analogue of a theorem of Ostrowski ([17], [12]).

A theorem of Ostrowski. A function f : R N -> R is called additive 
iff it satisfies Cauchy’s functional equation

Kx+V) = f(x)+f(y)

for all x , y e R N. As is well known (cf., e.g., [2]), discontinuous additive 
functions display many pathological properties. In particular, if f  : Rw R 
is a discontinuous additive f unction, and J  C  R is a non-degenerated in
terval, then the set f~ l(J) is saturated-raon-measurable ([17], [12]). The 
topological analogue of this fact is also true.

THEOREM 5. If / : R W- > R  is a discontinuous additive function, and 
J C R  is a non-degenerated interval, then the set f~l(J) is saturated-non- 
-Baire.

P r o o f .  As in [12], we m ay assume that J  =  [c, d], where 0 <  c <C d 
and q = d/c is rational. Since f(qx) =  qfix) for every x e R w (cf., e.g.,
[2 ]), we have

(4) / _1([c, oo)) =  U qnf^ \J) .
n  — 0

If the set f _1{J) were of the first category, then by (4) also the set 
f - 1([c, oo)) would be of the first category, and consequently its comple
ment would be a second category Baire set. Thus f  would be bounded 
from above (by c) on a second category Baire set, and hence (cf. [16],
[11]) would have to be continuous, which is not the case. Consequently 
the set f - 1(J) is of the second category, and this is valid for every non- 
-degenerated interval J C R .  Also, for every non-degenerated interval 
J Cl R, the set f~*(J) is dense in  Rw (this may be motivated as in  [1 2 ], 
but it follows also from the fact that f~*(J) is saturated-non-measurable).

Write r =  (d—c)/2, J j =  [c, c + r], J 2 =. [0, r]. Then

f - Hj)  = f - 1(J1) + f - i (Ja),
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and, as pointed out above, the set is of the second category, f~ 1(J3)
is dense in Rw. By Theorem 4 t(R”\f_1(J)) =  0. Also t(/—1(J-)) =  0, for 
otherwise f  would be bounded from above (by d) on a second category 
Baire set. Thus the set f~HJ) is saturated-non-Baire.

Burstin bases. Any basis of RN considered as a linear space over the 
field Q of rationais w ill be referred to  as a Hamel basis (cf. [10]). Let us 
note the following lemma (cf. also [2 0 ], [1 ]).

LEMMA 4. I f  H d  RN is a Hamel basis, then m t(H) =  t{H) =  0.
P r o o f .  The function f(h) = 1  for h e  H can be extended (by the 

procedure described in  [10]) onto RN to an  additive function which takes 
on only rational values, and hence is discontinuous. By a result of 
A. Ostrowski (i[17]; cf. also [5], [15]) we m ust have mt(H) =  0, and by 
a  theorem of M. R. Mehdi ([16]; cf. also [11]) we have t(H) =  0.

Let X C R ®  be a Borel set. A Hamel basis B C X  is called a Bur
stin  basis relative to X  iff B  intersects every uncountable Borel subset 
of X. The name is after C. Burstin, who first considered sets with simi
la r properties ([4]; cf. also [1]).

THEOREM 6 . Let X  d  KN be a Borel set which spans over Q the 
whole RN. Then there exists a Burstin basis B relative to X.

P r o o f .  Let B be the family of all the uncountable Borel subsets of 
X. Since the set X spans RN over Q, it is itself uncountable, and being 
a Boirel set has the power of continuum (cf. [14]). The family of sets 
(X \{x})x £ x  is contained in B, and hence card B ^  c. On the other hand, 
there are only continuum m any Borel subsets of RN. Consequently card 
B =  c.

Let y be the smallest ordinal whose cardinality is c. The family B 
can be well ordered into a transfinite sequence of type y.

W a <

We define a transfinite sequence {xa} 0 < .. cf elements of X. We take 
an arbitrary x Q 6 B0, x 0 0. Suppose that for a certain a <L y we have 
.already defined x fi for (S <  a. Let

=  U {x ,},
fi <  a

and let Ea be the linear subspace of R‘v over Q spanned by Sa. Since 
a <. y, card Sa <  c, whence also card Ea <  c. Consequently Ba\Ea 0 .  
As x  we take an arbitrary  element of Ba\Ea. It follows tha t x a is li
nearly independent over Q cf all x^, p <  a.

It follows by transfinite induction that there exists a transfinite se
quence {x } ,  of elements of X such that x  e  B for a < y ,  and the set' a' a y a a

s =  U {X0}
o < 7
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is linearly independent over Q. Since X  spans RN over Q, i t  contains 
a Hamel basis BID  S. Clearly B is a Burstin basis relative to X.

THEOREM 7. Let X  C  Rw be a Borel set. I f  m(RN\X) =  0, then eve
ry Burstin basis B relative to X  is saturated-non-measurable.

P r o o f .  If we had mi(X\B) >  0, then there would exist a  closed 
set F  d  X\B of positive measure. Hence F would be an  uncountable Borel 
subset of X such tha t F r> B — 0 , which is impossible. Consequently 
7Uj(X\B) =  0, and mi(RN\B) =  0, since m(RN\X) =  0. By Lemma 4 also 
mi(B) =  0. This means that B is saturated-non-measurable.

THEOREM 8 . Let X  d  R N be a Borel set. I f X  is residual, then eve
ry Burstin basis B relative to X  is saturated-non-Baire.

P r o o f .  If we had t(X\B) ^  0, then there would exist a set F e  Q} 
of the second category and with the Baire property such tha t F  d  XVB. 
Hence F  would be an uncountable Borel subset of X disjoint with B, 
which is impossible. Consequently t(X\B) =  0, and t(RN\B) =  0, since 
RW\X is of the first category. By Lemma 4 also t(B) =  0. This means 
that B is saturated-non-Baire.

Let C d  RN be a closed set of measure zero and nowhere dense 
which spans the whole RN over the rationals. Such sets do exist (cf. [6 ], 
[7], [8 ]). Further, let

Rw =  X w Y, X  r \ Y = £  0 ,

where X is a Qs of measure zero, and Y is an 1a of the first category. 
It is also well known tha t such a decomposition exists. Let Bj be a Bur
stin basis relative to C, let B2 be a Burstin basis relative to X, let B3 be 
a Burstin basis relative to Y, and let B4 be a Burstin basis relative to 
RN. Then Bj is nowhere dense and of measure zero, B2 is saturated-non- 
-Baire but of measure zero, B3 is saturated-non-m easurable but nowhere 
dense, and B4 is saturated-non-m easurable and saturated-non-Baire.
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