MAREK KUCZMA

ON SOME ANALOGIES BETWEEN MEASURE
AND CATEGORY AND THEIR APPLICATIONS
IN THE THEORY OF ADDITIVE FUNCTIONS

Abstract. The first part of the paper is devoted to topological analogies
of some theorems from real analysis (Vitali’s covering theorem, Lebesgue theorem
on outer density, Smital’s lemma). Then we give a topological analogue of a theorem
of Ostrowski connected with additive functions.

In the last part we deal with Hamel bases, specially with Burstin bases. We
prove their existence and study topological and measure properties.

Introduction. It is well known that there exist many analogues bet-
ween measure and category (of., e.g., [18]). So measurable sets correspond
to sets with the Baire property, and sets of measure zero to sets of tlhe
first category.

In the present paper we indicate topological analogues of some theo-
rems from real analysis and show 'how some of them may be applied in
the theory of additive functions.

Concerning all topological notions in the present paper cf. [14]. R
denotes the set of all real numbers, Q the set of all rational numbers.
The closure and the interior of a set A in a topological space will be de-
noted by clA and intA, respectively. The inner and outer Lebesgue mea-
sure in an Euclidean space (the dimension of the space is considered as
fixed) will be denoted by mi and me, respectively. The axiom of choice
will be freely used throughout the paper!

Covering theorem. Let X be a topological space. For the purpose of
the present section a set A d X will be called regular iff Ad clint A.
A family A of sets ACI X is called a Vitali cover of a set Ed X iff for
every x e E and for every neighbourhood U of x there exists an A gA
.such that xeAdU .
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THEOREM 1. If a family A of regular sets is a Vitali cover of a set
E d X, then there exists a family SC. A of mutually disjoint sets such
that the set

(1) E\U A
ae®

is nowhere dense. If the space X is separablel, then the family S is at
most countable.

Proof. Without loss of generality we may assume that all sets in
A are non-empty.

By Zorn’s lemma it follows that A contains a maximal subfamily S
of mutually disjoint sets. Write

F = clE\ U intA.
ae S

Since set (1) is evidently contained in F, it is sufficient to show that F
is nowhere dense.

Suppose that U = intF~* 0. We have UdclE, and hence U £ 7=
N 0. Take an x eU r\E. Since A is a Vitali cover of E, there exists
an Aoe A such that x e Aod U. For an arbitrary AeS we have intA d
d X\U, whence Ad dintA d cI(X\U) = X\U. This shows that Ao '\ A =
— 0 for every AeS, which contradicts the maximality of S.

Consequently int F = 0, and since F is evidently closed, it is no-
where dense. The last statement is obvious.

If X = RN, then we can assert that if A is a Vitali cover of a set E
by closed (or open) cubes, then there exists a (finite or infinite) sequence
{Qn} of disjoint cubes from A such that the set

@ E\U Qn
n

is nowhere dense and of measure zero.
In fact, by the Vitali theorem there exists a sequence {Kn} of di-
sjoint cubes from A such that the set

(©) E\U Kn
n

has measure zero. By Zorn’s lemma there exists a maximal family Sd A
of disjoint cubes such that {K,,} d S. Since RN is separable, S is at most
countable, and so it can be arranged in a (finite or infinite) sequence
{Qn}. Since every cube is a regular set, the proof of Theorem 1 shows
that set (2) is nowhere dense. And since {Kn}d {Q,}, set (2) is contai-
ned in (3), and hence the former is of measure zero.

Density. Let X be a topological space. For an arbitrary set A d X
we write t(A) = 0 iff A contains no second category Baire set. Looking

1 Here ,separable” means that X contains an at most countable dense subset.
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at the analogy between measure and category we see that a second cate-
gory Baire set corresponds to a measurable set of positive measure, and
thus the statement t(A) = 0 corresponds to the statement that A contains
no measurable set of positive measure, i.e. to the statement that mi(A)—Q

We say that a point xe X is a point of outer topological density of
aset Ad X iff there exists a neighbourhood U of x such that t(T)A) = 0.
Note that the notion of the outer topological density is not wholly ana-
logous to the measure-theoretical notion of the outer density.

The notion of the outer topological density does not coincide with
the notion of the locally second category. For example, on the real line,
the interval [0,1] is locally of the second category at the point x —o,
but o is not a point of the outer topological density of [o, 1]

Let D(A) denote the set of the points at which A locally is of the se-
cond category (cf. [14]), and let g(A) denote the set of the points of outer
topological density of A.

LEMMA 1. If every non-empty open set in X is of the second cate-
goryi, then for every set A d X we have g(A)d D(A).

Proof. If g(A) = 0, this is certainly true. So suppose that g(A) 9"
9" 0, and take an arbitrary xeg(A). Then there exists a neighbourhood
V of x such that t(U\A) = 0. Take an arbitrary neighbourhood V of x
and put W= U V. SincexeW, W# 0, and so it is of the second ca-
tegory. We have WdU, whence WA\A<ZU\A and, just as U\A) also
W\A cannot contain any second category Baire set. Suppose that the set
W n A is of the first category. In view of the equality W = (W\A) »
A (W n A) this would imply that the set WAA = W\(W n A) is a second
category Baire set, which, as we have just seen, is impossible. Thus
W n A is of the second category, and, since W Ad V rnA,alsoV n A
is of the second category. We have shown that for every neighbourhood
V of x the set V r\ A is of the second category, which means that xeD (A).
Consequently g(A) d D(A).

The following lemma is obvious.

LEMMA 2. If Ad BdX, then g(A)d g(B).

LEMMA 3. If for an A d X we have A r\g(A) — 0, then the set
A is of the first category.

Proof. No point of A is a point of outer topological density of A.
Let R be the family of all open subsets of X which have a non-empty
intersection with A. For every 17eJ? it is not true that t(U\A) = 0, the-
refore the set U\A must contain a second category Baire set Eu. Let

Eu — (Gu\Pu) Ru,

1 This IS certainly true if X IS a complete metric space, or a second cate-
gory topological group.
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where Gv is open (and non-empty, since Ev is of the second category),
and rjj, Rv are of the first category. Since Evd U\A, we have A r\ Ev =
— 0, whence A N Gud P v, and so A r\ Gv is of the first category, for
every UeK.
Put
G= U Gv.
ue )?
By a theorem of Banach ([3]; cf. also [14], § 10. Ill) the set A n, G is of
the first category. We have A\G d clA\G. Suppose that V = int(clA\G)
# o . Thus VdolA, whence V r\A=£0, and V eR. Hence GvdG,
a contradiction. Thus V = 0, and the closed set clA\G is nowhere dense,
whence also the set A\G is nowhere dense. Consequently the set

A= (An G)w (AQG)

is of the first category.

THEOREM 2. For an arbitrary set A d X the set A\g(A) is of the
first category.

Proof. Since A\g{A)d A, we have by Lemma 2 g(A\g(A)) d g{A),
whence [A\g(A)] n\ g(A\g(Aj) = 0. By Lemma 3 A\g(A) is of the first
category.

In other words, Theorem 2 says that almost every (in the category
sense) point of an arbitrary set Ad X is a point of its outer topological
density.

Smital’s lemma. Smital’s lemma ([12], [13]; cf. also [19]) reads as
follows.

THEOREM 3. Let B,D d Rw be sets such that me(B)> 0 and D is
dense in Rw. Let A = B+D. Then mi(RWA) = 0.

In order to formulate a topological analogue of Theorem 3 we assu-
me that X is a topological group. The operation in X will be denoted
by +, but we do not assume X to be commutative.

THEOREM 4. Let B,D d X be sets such that B is of the second
category and D is dense in X. Let A = B+D. Then t(X\A) = 0.

Proof. For an indirect proof suppose that there exists a second
category Baire set Ed X\A. Thus

E- (G\WP) R

where G is open and non-empty, and P, R are of the first category. Sin-
ce B is of the second category, there exists an xeD(B) (this is a well
known fact, but it follows also from our Lemmas 3 and 1). Since D is
dense in X, there exists a deD such that x+d e G. Hence xe G —d so
that G—d is a neighbourhood of x and the set B <(G—d) is of the se-
cond category. Consequently so is also the set [B &~(G—d)]+d = [{B+
d) G], and since
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B+d)nGC(B+D)'n G=AnG,

also the set A n G is of the second category. If we had A GdP, the
set An G would be of the first category; and thus A (G\P) 72 0 and
A n £ 97 0. This contradicts the condition £ Cl X\A.

A set ACR™* is called saturated-non-measurable (cf. [9]) iff
wii(A) = mi(RNA) = 0. Analogously, a set A contained in a topological
space X is said to be saturated-non-Baire iff t(A) = t(X\A) = 0, i.e., iff
neither A nor X\A contains a second category Baire set. As Theorem 3
is a useful tool in proving that a set is saturated-non measurable, Theo-
rem 4 plays a similar role in proving that a set is saturated-non-Baire.
In the next section we will show this on the example of a topological
analogue of a theorem of Ostrowski ([17], [12]).

A theorem of Ostrowski. A function f :RN->R is called additive
iff it satisfies Cauchy’s functional equation

Kx+V) = f(x)+f(y)

for all x,yeRN. As is well known (cf., e.g., [2]), discontinuous additive
functions display many pathological properties. In particular, iff :Rw R
is a discontinuous additive function, and JC R is a non-degenerated in-
terval, then the set f~I(J) is saturated-raon-measurable ([17], [12]). The
topological analogue of this fact is also true.

THEOREM 5. If /:RW->R is a discontinuous additive function, and
JC R is a non-degenerated interval, then the set f~I(J) is saturated-non-
-Baire.

Proof. Asin [12], we may assume that J = [c, d], where 0< ¢ <Cd
and g = d/c is rational. Since f(qx) = gfix) for every xeRw (cf., e.g.,
[2]), we have
@) /_1([c, 00)) = U gnfM\J).

n—o0

If the set f_1{J) were of the first category, then by (4) also the set
f-1([c, 00)) would be of the first category, and consequently its comple-
ment would be a second category Baire set. Thus f would be bounded
from above (by c) on a second category Baire set, and hence (cf. [16],
[11]) would have to be continuous, which is not the case. Consequently
the set f-1(J) is of the second category, and this is valid for every non-
-degenerated interval JCR. Also, for every non-degenerated interval
J CI R, the set f~*(J) is dense in Rw (this may be motivated as in [i12],
but it follows also from the fact that f~*(J) is saturated-non-measurable).
Write r = (d—<c)/2, Jj = [c,c+7r], J2 =. [0, r]. Then

f-Hj) =f-13)+f-i(Ja),
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and, as pointed out above, the set is of the second category, f~1(J3
is dense in Rw. By Theorem 4 t(R”\f_1(J)) = 0. Also t(/—J)) = 0, for
otherwise f would be bounded from above (by d) on a second category
Baire set. Thus the set f~HJ) is saturated-non-Baire.

Burstin bases. Any basis of RN considered as a linear space over the
field Q of rationais will be referred to as a Hamel basis (cf. [10]). Let us
note the following lemma (cf. also [20], [1]).

LEMMA 4. If Hd RN is a Hamel basis, then mt(H) = t{H) = 0.

Proof. The function f(h) =1 for he H can be extended (by the
procedure described in [10]) onto RN to an additive function which takes
on only rational values, and hence is discontinuous. By a result of
A. Ostrowski (i[17]; cf. also [5], [15]) we must have mt(H) = 0, and by
a theorem of M. R. Mehdi ([16]; cf. also [11]) we have t(H) = O.

Let XCR® be a Borel set. A Hamel basis B C X is called a Bur-
stin basis relative to X iff B intersects every uncountable Borel subset
of X. The name is after C. Burstin, who first considered sets with simi-
lar properties ([4]; cf. also [1]).

THEOREM 6. Let X d KN be a Borel set which spans over Q the
whole RN Then there exists a Burstin basis B relative to X.

Proof. Let B be the family of all the uncountable Borel subsets of
X. Since the set X spans RN over Q, it is itself uncountable, and being
a Boirel set has the power of continuum (cf. [14]). The family of sets
(X\{x})x£x is contained in B, and hence card B~ c. On the other hand,
there are only continuum many Borel subsets of RN. Consequently card
B=c

Let y be the smallest ordinal whose cardinality is c. The family B
can be well ordered into a transfinite sequence of type y.

W a<

We define a transfinite sequence {xa}0<. cf elements of X. We take
an arbitrary xQ6 BQ x0 0. Suppose that for a certain a <Ly we have
.already defined xfi for S< a. Let

= U {x},
fi< a

and let Ea be the linear subspace of R¥ over Q spanned by Sa. Since
a<.y, card Sa< c, whence also card Ea < c. Consequently BaEa 0.
As x we take an arbitrary element of Ba\Ea It follows that xa is li-

nearly independent over Q cf all x*, p< a
It follows by transfinite induction that there exists a transfinite se-
quence {Xa}, ,yof elements of X such that x,e B,for a<y, and the set

s= U {X0}

o<7
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is linearly independent over Q. Since X spans RN over Q, it contains
a Hamel basis BID S. Clearly B is a Burstin basis relative to X.

THEOREM 7. Let X C Rw be a Borel set. If m(RN\X) = 0, then eve-
ry Burstin basis B relative to X is saturated-non-measurable.

Proof. If we had mi(X\B) > 0, then there would exist a closed
set Fd X\B of positive measure. Hence F would be an uncountable Borel
subset of X such that F =B — 0, which is impossible. Consequently
Uj(X\B) = 0, and mi(RNB) = 0, since m(RN\X) = 0. By Lemma 4 also
mi(B) = 0. This means that B is saturated-non-measurable.

THEOREM s. Let X d RN be a Borel set. If X is residual, then eve-
ry Burstin basis B relative to X is saturated-non-Baire.

Proof. If we had t(X\B) ~ 0, then there would exist a set Fe Q}
of the second category and with the Baire property such that Fd XVB.
Hence F would be an uncountable Borel subset of X disjoint with B,
which is impossible. Consequently t(X\B) = 0, and t(RN\B) = 0, since
RWX is of the first category. By Lemma 4 also t(B) = 0. This means
that B is saturated-non-Baire.

Let Cd RN be a closed set of measure zero and nowhere dense
which spans the whole RN over the rationals. Such sets do exist (cf. [s],
[7], [s]). Further, let

Rw= X wY, X r\Y=£ 0,

where X is a Qs of measure zero, and Y is an la of the first category.
It is also well known that such a decomposition exists. Let Bj be a Bur-
stin basis relative to C, let B2 be a Burstin basis relative to X, let B3 be
a Burstin basis relative to Y, and let Bs be a Burstin basis relative to
RN. Then Bj is nowhere dense and of measure zero, B2 is saturated-non-
-Baire but of measure zero, B3is saturated-non-measurable but nowhere
dense, and B is saturated-non-measurable and saturated-non-Baire.
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