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ON THE TWO-DIMENSIONAL VERSION OF THE
SPERNER LEMMA AND BROUWER’S THEOREM

Eugeniusz Barcz

Abstract. In this work the Brouwer fixed point theorem for a triangle was
proved by two methods based on the Sperner Lemma. One of the two proofs of
Sperner’s Lemma given in the paper was carried out using the so-called index.

1. Introduction

In 1912 Luitzen Brouwer published the famous and remarkable result:
on the Euclidean plane each continuous transformation of a closed circle
D = {(x, y);x2 + y2 6 1} into itself has at least one fixed point (i.e. the
p ∈ D for which f(p) = p).

For the interval I = 〈a, b〉 we have a special case of this theorem: each
continuous transformation f : I → I has a fixed point (i.e. the point p ∈ I
such that f(p) = p). In this case, it follows immediately from the Darboux
property. For higher dimension balls, the proof of the Brouwer theorem re-
quired the use of more sophisticated techniques. Emanuel Sperner, giving
a simple combinatorial result called the Sperner Lemma in 1928, surprised
mathematicians dealing with the subject of fixed points. For it turned out
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that both the Brouwer theorem and other important theorems can be de-
rived from his Lemma. It is worth adding that the beautiful and ingenious
the Sperner Lemma is accompanied by an interesting proof based on double
counting.

We will present two versions of the Sperner Lemma proof for a triangle.
One of them is related to counting of so-called paths that start outside a large
triangle with vertices A1, A2, A3 (which has been triangulated), and end in a
small triangle with such vertices, and counting paths that not only come out
but also come back from outside the large triangle.

The second version is related to the so-called index, which we get from the
oriented version of the Sperner Lemma.

In the last part of this work we present two proofs of the Brouwer fixed
point theorem for a triangle. The first is based on Lemma 4 (no retraction of
a triangle to its boundary). This proof is largely a modification of the proof of
Brouwer’s theorem continued in [3], where the non-existence of a retraction of
a circle on its boundary was used. On the other hand, in the second proof, we
use the Sperner lemma by first determining the so-called Sperner numbering
(using the vector f(p)−p from p to f(p), for a point p belonging to the triangle
∆, where f : ∆ → ∆ is continuous). The proof is a slight modification of the
relevant proof from [4].

Brouwer’s theorem in the general version applies to a simplex of any dimen-
sion, and hence (using the retraction of a simplex onto a closed ball contained
in this simplex) we obtain from Fact 1 Brouwer’s theorem for a closed ball in
n-dimensional space Rn.

Currently, the Brouwer theorem has a number of proofs using a variety
of topological and combinatorial techniques. J. Milnor in [2] (compare [1])
proved this theorem for balls using analytical methods.

It is possible show that every compact map F : B → B (i.e. a continuous
map such that F (B) is compact) of the ball B of any normed linear space has
a fixed point.
We owe this result (from 1930), extending Brouwer’s theorem to infinite di-
mensional spaces, to Juliusz Schander.

2. The Sperner Lemma

Division of a triangle into a finite number of smaller triangles in such a way
that the cross-section of each two of the divisions triangles be their common
side, common vertex or empty set, we will call triangulation or simplicial
division.
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Lemma 1 (E. Sperner 1928). Divide the triangle A1A2A3 simplicialy. Let
the vertices of the triangles of division be numered 1, 2, 3 so that
(∗) the vertex Ai has the number i, a vertex lying on the side AiAjhas the

number i or j, the numbers of the other vertices are arbitrary.
Then among the triangles of division there is one whose vertices are numbered
1, 2, 3 (Figure 1). (The numbering that satisfies the condition (∗) is called the
Sperner’s labeling.)

Figure 1. Sperner’s lemma

The oriented version of Sperner’s Lemma gives the relationship between
what is happening inside the triangulated polygon (we say here the so-called
content of this polygon) and what is happening on its boundary (we are then
talking about the so-called index).

A triangulation of a polygon W is a division of W into a finite number of
triangles so that each edge on the boundary of W belongs to just one triangle
of the subdivision, and each edge in the interior ofW is shared by exactly two
triangles of the subdivision.

In order to formulate and prove this version of Lemma, let us denote:
• by T+ the number of complete triangles, i.e. those whose vertices have
the colors-numbers from the set {1, 2, 3} and are directed positively, which
means that moving along the perimeter of the triangle we see numbers in
the order 1, 2, 3,
• by T− the number of these complete triangles whose vertices appear in the
order 1, 2, 3 when we move clockwise around the circumference.

We will deal with the edges at the boundary of the polygon. We will highlight
the edges that have colors 1 and 2. Edges marked with 12 (read as one,
two) will be called positively oriented, which means that moving along the
perimeter of the polygon counter-clockwise we see the vertices of the edges
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in order 1, 2; the edges 21 (read two, one) will be “negatively oriented”. We
denote the numbers of these edges as E+ and E−, respectively. We now have
the oriented version of the Sperner Lemma:

Lemma 2. E+ − E− = T+ − T−.

Proof. Crossing each of the edges 12 and 21 with a perpendicular vector
(in the direction as shown in Figure 2) we get a graph made of these vectors.
It consists of directed paths. Each path starts in a negatively oriented triangle

Figure 2. Oriented version of the Sperner Lemma

or on a positive oriented segment, and ends in a positive triangle or negatively
oriented segment (Figure 2). The number of path starts (T− + E+) and the
number of path ends (T+ + E−) must be equal, which ends the proof. �

Definition 1. Index I is the number of edges A1A2 on the boundary of
a polygon, calculated according to the rule

E+ − E−.

Definition 2. The content of C is the number of complete triangles,
calculated according to the rule

T+ − T−.

The oriented version of Sperner’s Lemma now takes the form of equality

I = C.

The first proof of the Sperner Lemma. It is enough to show that
the index is odd.

Let
b – number of complete sections (i.e. with the ends 1, 2) on A1A2,
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a – number of sections A1A1 (on A1A2),
q – number of vertices A1 inside side A1A2.
So we have, the total number of vertices A1 on A1A2 is q + 1. Since each
segment A1A1 contains two vertices A1, while the inner segment A1A2 has
only one such vertex, so we have

2a+ b = 2q + 1,

because A1 is a common vertex (Figure 1). Therefore b is an odd number. �

Later in the article, we will call the original triangle large, and we will call
singles triangles of triangulation small. By the door we will understand each
edge with the ends 1, 2. A small triangle with vertices 1, 2, 3 we will call
complete.

The second proof of the Sperner Lemma. Let us first consider the
special situation illustrated in Figure 1. We walk in this situation from a small
complete triangle to another small triangle of this type through a door (i.e.
a common side with ends 1 and 2). Of course, we then get an even number
of such triangles, which will not affect the kind of the total number of them,
when it will be odd or even.

Now let us consider the path through the triangle, which begins at certain
point beyond the triangle, and after passing through the next door it ends in
one of two ways:
(1) exit beyond the triangle, or
(2) entry into the complete little triangle.
Moreover, such a path after entering is determined (since no triangle has three
edges with ends 1 and 2).

Now note that each path that ends outside the triangle is determined by
a pair of doors on its boundary, while the path entering a small complete
triangle is determined by only one door. Because on the boundary of the
triangle there is an odd number of doors (indeed, going along the large side
from A1 to A2 and numbering the consecutive vertices of the division, we must
an odd number of times change 1 to 2 or vice versa), so some path must enter
a small complete triangle, which proves the truth of the Lemma. �
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3. Brouwer’s theorem as a consequence of Sperner’s lemma

Lemma 3. Let ∆ be a triangle with sides K1,K2,K3. Let C1, C2, C3 be
closed sets such that K1 ⊂ C1,K2 ⊂ C2,K3 ⊂ C3 and ∆ ⊂ C1 ∪ C2 ∪ C3.
Then C1 ∩ C2 ∩ C3 6= ∅.

Proof. The assertion of the lemma is satisfied if the triangle ∆ is con-
tained in the union of two sets of the family {C1, C2, C3}. Let us assume that
the triangle ∆ is not contained in the union of the sets of this family. For each
n > 2 we divide the sides of the triangle into n equal parts, and by connecting
them with lines parallel to the sides of the triangle, we get a n-th order net.
Let each vertex of the net in K1 be the number 1 or 2, the numbers of the next
vertices are: 2 or 3 in K2, 3 or 1 in K3. On the basis of the Sperner Lemma,
in each such net there is αnβnγn triangle whose vertices are numered 1, 2, 3.
The Bolzano–Weierstrass theorem implies the existence of a convergent sub-
sequence αni → p, and since the diameters of the triangles of successive nets
tends to zero, βni → p, γni → p. Moreover, αni ∈ C1, βni ∈ C2 and γni ∈ C3,
therefore (since the sets C1, C2, C3 are closed) we get p ∈ C1 ∩ C2 ∩ C3. �

In order to formulate Lemma 4, we will need the concept of retract and
retraction.

The subset A of the metric (generally topological) space X is a retract of
X, if there is a continuous mapping (retraction) r : X → A such that r(x) = x
for all x ∈ A.

Lemma 4. There is no retraction of triangle ∆ with sides K1,K2,K3 to
its boundary ∂∆ = K1 ∪K2 ∪K3.

Proof. Suppose f : ∆ → ∂∆ is a continuous transformation such that
f(x) = x for x ∈ ∂∆. Then f(Ki) ⊂ Ki, i = 1, 2, 3.

Now let Ci = f−1(Ki), i = 1, 2, 3. The sets Ki (i = 1, 2, 3) are closed,
so due to the continuity of f the sets Ci are also closed. Moreover, K1 ⊂
C1,K2 ⊂ C2 and K3 ⊂ C3. For every x ∈ ∆, f(x) ∈ ∂∆ = K1 ∪K2 ∪K3, and
hence C1∪C2∪C3 = ∆. Section K1∩K2∩K3 is empty, so C1∩C2∩C3 = ∅.
So we got a contradiction with Lemma 3. �

Theorem 1 (L. Brouwer, 1912). Each continuous transformation f : ∆→
∆ (of a closed triangle ∆) has at least one fixed point, that is, a point x ∈ ∆
for which f(x) = x.

Below we present two proofs of the Brouwer theorem.
As we mentioned in the introduction, the first one is largely a modification

of Shaskin’s proof in [3] of this theorem for a circle. On the other hand, the
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second proof in which we use a certain “vector field given by f(P ) − P ” was
inspired by [4].

The first proof of the Brouwer theorem (based on Lemma 4).
Suppose there is continuous transformation f : ∆→ ∆ such that f(p) 6= p for
any p ∈ ∆. For each such p by g(p) let us denote the intersection point of the
half-line originating from f(p) and passing through p with the boundary ∂∆
of the triangle ∆ (Figure 3).

Figure 3. The first proof of the Brouwer theorem

So we have a transformation g : ∆ → ∂∆ such that g(p) = p for p ∈ ∂∆.
We will prove the continuity of transformation g using open balls (for example,
B(p, δ) means an open ball, which here is an open circle centrated at point p
and radius δ called a neighborhood of the point p).

Let us take any ε > 0 and consider the neighborhood of the point g(p)
on the boundary ∂∆ with an ε radius. On this neighborhood we build a cone
with a vertex on the segment joining points p and f(p). Then we choose
number ε′ > 0 such that the neighborhood B(f(p), ε′) is contained in the
cone. In view of the continuity of transformation f there is δ > 0 such that
f(B(p, δ)) ⊂ B(f(p), ε′) and B(p, δ) is contained in the cone. So we have
g(B(p, δ)) ⊂ B(g(p), ε), which means the continuity of transformation g. We
got a contradiction with Lemma 4. �

The second proof of the Brouwer theorem. For simplicity, posi-
tion of the triangle ∆ is such that its base is horizontal and the third vertex
is above the base. We will consider a sequence of triangulation τn of ∆ with
diameters δ(τn) → 0 (as n → ∞). We will associate each such triangulation
with the Sperner’s labeling. Let for every P ∈ ∆, w(P ) = f(P )− P .

A vertex P of the triangulation receives a label A1 if w(P ) points in the
northeast direction, a label A2 if w(P ) points in the northwest direction, a
label A3 if w(P ) points any other direction.
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We assume that f(P ) 6= P . We then have the triangulation τn to en-
sure the existence of the complete triangle ∆n. Now consider the sequences
of vertices Bn, Cn and Dn of consecutive such triangles ∆n. Based on the
Bolzano-Weiertstrass theorem one can choose from them convergent subse-
quences Bnk

, Cnk
, Dnk

such that limk Bnk
= limk Cnk

= limkDnk
= P , be-

cause δ(∆n)→ 0. By continuity of f , w(P ) = 0. Consequently, f(P ) = P . �

In order to clarify some of the observations at the end of the paper regard-
ing retraction and those concerning homeomorphisms, we will present below
two facts related to these concepts.

Let us recall that the subspace A of the topological (metric) space X is a
retract of X, if there is a continuous transformation (retraction) r : X → A
such that r(x) = x for all x ∈ A. Let us add that a topological (metric) space
X has the fixed-point property if every continuous transformation f : X → X
has a fixed point.

Below we will give two known facts with their justifications.

Fact 1. All retractions retain the fixed-point property.

Indeed, assume that A ⊂ X is a retract of X, and f : A → A continuous
transformation. Taking any retraction r : X → A we get a continuous trans-
formation g = f ◦ r : X → X having a fixed point x0 ∈ X, i.e. f(r(x0)) = x0.
Since the values of f belong to A, x0 ∈ A; hence r(x0) = x0. Therefore
f(x0) = x0, i.e. x0 is the fixed point of transformation f : A→ A.

Let us add that the property of the fixed point is a topological invariant.
This is clarified by the following

Fact 2. Let X,Y be homeomorphic topological (metric) spaces. If the
space X has the fixed-point property, then the space Y also has the fixed-point
property.

Indeed, let g : Y → X, g−1 : X → Y be continuous mappings establish-
ing homeomorphism of the space X with the space Y . Such mappings ex-
ist because X and Y are homeomorphic. Consider the continuous mapping
F : Y → Y . We will prove that F has a fixed point. Superposition g ◦F ◦ g−1
is a continuous mapping of the space X into itself, so by assumption it has a
fixed point x0 ∈ X:

(g ◦ F ◦ g−1)(x0) = x0, (F ◦ g−1)(x0) = g−1(x0).

Therefore y0 = g−1(x0) ∈ Y is a fixed point of the mapping F .
It can be shown that the triangle ∆ and the circle, i.e. the closed two-

dimensional ball B2, are homeomorphic, so on the basis of Fact 2, Brouwer’s
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theorem holds for B2. This result can also be obtained from Fact 1 by con-
sidering the retraction of the triangle ∆ (two-dimensional simplex) on B2.

Brouwer’s theorem remains true in Euclidean spaces Rn, most often it is
formulated in the form (for a closed ball Bn ⊂ Rn):

Every continuous f : Bn → Bn has at least one fixed point.
The Brouwer theorem in this form can be obtained from Brouwer’s theorem

for a simplex using the existence of a retraction an n-dimensional simplex onto
a ball Bn (contained in it) and using Fact 1.

Remark 1. Karol Borsuk proved in 1931 that the Sn−1 = ∂Bn sphere is
not a retract of the ball Bn. Since it can be shown that this theorem implies the
Brouwer theorem, then if we demonstrate (below) that the Borsuk theorem
follows from the Brouwer theorem, we will obtain equivalent results. Well,
assuming that there is a retraction r of the ball Bn on Sn−1 and considering
the transformation g : Bn → Bn given the formula g(x) = −r(x) for x ∈ Bn

we conclude that g has no fixed point. The obtained contradiction with the
Brouwer theorem guarantees the truth of the aforementioned equivalence. Let
us add that Borsuk’s result is intuitively more obvious.
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