
Annales Mathematicae Silesianae 36 (2022), no. 2, 129–150
DOI: 10.2478/amsil-2022-0013

ON QUATERNION GAUSSIAN
BRONZE FIBONACCI NUMBERS

Paula Catarino, Sandra Ricardo

Abstract. In the present work, a new sequence of quaternions related to the
Gaussian Bronze numbers is defined and studied. Binet’s formula, generat-
ing function and certain properties and identities are provided. Tridiagonal
matrices are considered to determine the general term of this sequence.

1. Introduction and background

Recently, the subject of several studies by many researchers is related to
numerical sequences. The well-known Fibonacci sequence and also the Lu-
cas sequence are two of several examples of numerical sequences that great
emphasis has been given. However, many other numerical sequences have con-
tributed to the increase of researchers interested in this area and in its sev-
eral applications. Sequences of numbers, polynomials, quaternions, octonions,
sedenions, etc., are the topic of a vast literature. For instance, one can consult
the works of Catarino ([7]) where the sequence of k−Pell hybrid numbers was
introduced, of Kizilates ([25]) with the study of another sequence of hybrid
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numbers (Fibonacci and Lucas), of Koshy ([26]) with the study of some ap-
plications of the Fibonacci and Lucas sequences, of Catarino and Borges ([9])
with the introduction of the numerical sequence constituted by Leonardo’s
numbers and in [8] of the incomplete version of these types of numbers, of
Catarino and Vasco ([11]) with the study of the k−Pell generalized numbers
of order m, where m is a non negative integer. Many identities and proper-
ties of these sequences come from the use of the so-called Binet’s formula for
each sequence deduced by Levesque in 1985 ([27]). With this formula we have
the possibility to determine the general term of a sequence without having to
resort to other terms of the sequence.

The study of quaternions sequences is also a great topic of research. For
instance in the work of Catarino ([6]) the sequence of bicomplex quaternions
whose terms are the k-Pell numbers was introduced, among many other works.
Also, in [1], [28], [33] and [34], a split version of quaternions is considered.
Another kind of Pell and Pell–Lucas quaternions are presented in [4], where
some identities satisfied by these sequences of quaternions and their respective
generating functions are stated. One can consult the works [5], [12], [16], [31]
and [32], where also some properties of these types of quaternion sequences
are established.

A quaternion q is a hyper-complex number, written as

q = q01 + q1i+ q2j + q3k,

where q0, q1, q2, q3 ∈ R; 1 is the multiplication identity (thus q01 = q0) and
i, j, k are imaginary units, satisfying the famous multiplication rules defined
by Hamilton in 1866 ([18]):

(1.1) i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The set of quaternions, which we will denote by H, form a four-dimensional
associative and noncommutative algebra over the set of real numbers. For any
p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k, elements of H, the
quaternions addition is obtained as

p+ q = (p0 + q0) + (p1 + q1)i+ (p2 + q2)j + (p3 + q3)k,

and the quaternions multiplication (known as the Hamilton product) occurs,
accordingly with the distributive law and (1.1), as

pq = (p0q0 − p1q1 − p2q2 − p3q3) + (p0q1 + p1q0 + p2q3 − p3q2) i

+ (p0q2 + p2q0 + p3q1 − p1q3) j + (p0q3 + p1q2 + p3q0 − p2q1) k.
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We consider the Euclidean vector space R4, with the orthonormal ba-
sis {1, i, j, k}, and identify the element (q0, q1, q2, q3) ∈ R4 with the element
q = q0 + q1i + q2j + q3k ∈ H, thus embedding R4 in H. Based on this, the
quaternion q can also be defined as a four-tuple:

q = q01 + q1i+ q2j + q3k = (q0, q1, q2, q3),

where q0, q1, q2, q3 ∈ R.
Quaternions extend the complex numbers to four-dimensional space. The

conjugate q of the quaternion q is given by q = q0 − q1i − q2j − q3k and the
norm and absolute value of q are ||q|| = qq = qq and |q| =

√
||q||, respectively.

For any quaternion q = q0 + q1i + q2j + q3k, the scalar part and vector part
of q is given by Sc(q) = q0 and Vec(q) = q1i+ q2j + q3k, respectively.

The center of H is the set of real quaternions, that is, the set of quaternions
whose vector part is zero:

{q ∈ H : qp = pq, ∀p ∈ H} = {(q0, 0, 0, 0) : q0 ∈ R} ⊂ H,

which is clearly isomorphic to R.
In this work, it is our purpose to introduce and study a new quaternion

sequence with Gaussian integers and present some of its properties. A Gauss-
ian integer x + iy is a complex number whose real and imaginary parts are
both integers, i.e. x, y ∈ Z. The conjugate of p = x+ iy is p = x− iy. The set
of all Gaussian integers with the usual addition and multiplication of complex
numbers forms an integral domain.

The use of numerical sequences defined recursively together with the Gauss-
ian type integers, gives rise to a new sequence of complex numbers, such that,
for instance, the sequences of Gaussian Fibonacci, Gaussian Lucas, Gauss-
ian Pell, Gaussian Pell–Lucas, Gaussian Jacobsthal and Gaussian Bronze Fi-
bonacci numbers. There are several studies dedicated to these sequences of
Gaussian numbers such as the works in [2], [3], [10], [17], [19], [21] and [22],
among others.

The sequence that will serve as the basis for the study that we will present
in this article is the sequence of Bronze Fibonacci numbers that was extended
to the Gaussian Bronze Fibonacci numbers by Kartal in [22].

The sequence {BFn}n≥0 of Bronze Fibonacci numbers is also called as
3-Fibonacci sequence, listed in The On-line Encyclopedia of Integer Sequences
([29]) as the sequence A006190 and defined by the following recurrence relation

(1.2) BFn+2 = 3BFn+1 +BFn,

with the initial conditions BF0 = 0 and BF1 = 1.
In Table 1, we present a few Bronze Fibonacci numbers.
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Table 1. The Bronze Fibonacci numbers BFn, for 0 ≤ n ≤ 7

BF0 BF1 BF2 BF3 BF4 BF5 BF6 BF7

0 1 3 10 33 109 360 1189

The characteristic equation associated with the recurrence relation (1.2)
is r2−3r−1 = 0, which has two roots r1 = 3+

√
13

2 , called the Bronze number,
and r2 = 3−

√
13

2 . Note that r1 + r2 = 3, r1 − r2 =
√
13, r1r2 = −1, r1

r2
= −r21

and r2
r1

= −r22. The Binet’s formula of the sequence {BFn}n≥0 is given by

(1.3) BFn =
rn1 − rn2
r1 − r2

.

The next result is known as the Convolution Identity and it’s one more
identity that is satisfied by the sequence {BFn}n≥0. This identity will be used
later in this article when studying the Cassini’s identity for the new sequence
of quaternions that we are going to introduce.

Lemma 1.1. For m,n integers such that m,n ≥ 1, the following identity
is satisfied by the Bronze Fibonacci sequence

BFm+n = BFm−1BFn +BFmBFn+1.

Proof. We fix m and proceed by induction on n. If n = 1 then BFm+1 =
BFm−1BF1+BFmBF2 = BFm−1.1+BFm.3, which is true by the recurrence
relation (1.2). Now let us suppose that

(1.4) BFm+l = BFm−1BFl +BFmBFl+1, l ≥ 1.

Once more by the recurrence relation (1.2) and the induction hypothesis (1.4),
we obtain

BFm+l+1 = 3 (BFm−1BFl +BFmBFl+1) + (BFm−1BFl−1 +BFmBFl)

= BFm−1 (3BFl +BFl−1) +BFm (3BFl+1 +BFl)

= BFm−1BFl+1 +BFmBFl+2,

which proves the claim. �
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The particular cases of m = n and m = n + 1 give the expressions of
the general term of Bronze Fibonacci numbers with index even and odd,
respectively, and they are given as

(1.5) BF2n = BFn−1BFn +BFnBFn+1

and

(1.6) BF2n+1 = BF 2
n +BF 2

n+1.

Extending the sequence {BFn}n≥0 to the Gaussian Bronze Fibonacci se-
quence {GBFn}n≥0, the recurrence relation satisfied by the last sequence is
similar to the first one and it is given as follows:

(1.7) GBFn+2 = 3GBFn+1 +GBFn,

with the initial conditions GBF0 = i and GBF1 = 1 and GBFn is a complex
number given by GBFn = BFn + iBFn−1, where BFj is the jth Bronze-
Fibonacci number.

In Table 2, we present a few Gaussian Bronze Fibonacci numbers.

Table 2. The Gaussian Bronze Fibonacci numbers GBFn, for 0 ≤ n ≤ 5

GBF0 GBF1 GBF2 GBF3 GBF4 GBF5

i 1 3 + i 10 + 3i 33 + 10i 109 + 33i

According to Theorems 2 and 3 stated in [22], the generating function and
the Binet’s formula, for the sequence {GBFn}n≥0, are given, respectively, by

g(z) =

∞∑
n=0

GBFnz
n =

z + i (1− 3z)

1− 3z − z2

and

(1.8) GBFn =
αn − βn

α− β
+ i

αβn − βαn

α− β
,

where α and β are the roots of the characteristic equation associated with the
recurrence relation (1.7).

In [14], Halici and in [15], Halici and Cerda-Morales studied properties of
quaternions Gaussian Lucas and quaternions Gaussian Fibonacci numbers,
respectively, where some basic identities are stated and with the use of the
Binet’s formula, some fundamental relations between these numbers are pre-
sented.
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Motivated essentially by the recent works [14], [15] and [22], in this pa-
per, we introduce the quaternion-Gaussian Bronze Fibonacci sequence and we
study some properties, including the Binet’s formula, the generating function
and some other interesting identities.

The structure of the article is as follows: in the next section, we intro-
duce the formal definition of the quaternionic Gaussian Bronze Fibonacci
sequence and we give the Binet’s formula and the generating function. Sec-
tion 3 is dedicated to the study of some identities satisfied by this sequence,
such as the sum of terms and the norm value. Section 4 is devoted to results
involving some special tridiagonal matrices and their determinants. In partic-
ular, we give alternative ways to determine the general term of the Bronze
Fibonacci sequence, of the Gaussian Bronze Fibonacci sequence and of the
quaternion Gaussian Bronze Fibonacci sequence. Finally, some perspectives
of future work are given in the last section of this paper.

2. Quaternion-Gaussian Bronze Fibonacci Numbers,
Binet’s formula and Generating function

In this section we introduce the sequence of quaternions whose terms are
Gaussian Bronze Fibonacci numbers. We begin with a formal definition of the
general term in the quaternion-Gaussian Bronze Fibonacci number sequence.

Definition 2.1. For a non negative integer n, let us denote the sequence
of quaternion-Gaussian Bronze Fibonacci by {GBFQn}n≥0. The general term
is given by

GBFQn = GBFn1 +GBFn+1i+GBFn+2j +GBFn+3k

= (GBFn, GBFn+1, GBFn+2, GBFn+3)

where GBFj is the jth term of the sequence of Gaussian Bronze Fibonacci
numbers and 1, i, j and k are the four base elements that satisfy the rules
(1.1).

According to the recurrence relation (1.7) (see also [22]), for the sequence of
quaternion-Gaussian Bronze Fibonacci, we can write the following recurrence
relation:

(2.1) GBFQn+2 = 3GBFQn+1 +GBFQn, n ≥ 0.
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Note that the initial conditions are

GBFQ0 = (i, 1, 3 + i, 10 + 3i) = 2i+ 11k,(2.2)

GBFQ1 = (1, 3 + i, 10 + 3i, 33 + 10i) = 3(i+ 12k).(2.3)

The next result shows the Binet’s formula, which gives the term of order n
of the sequence {GBFQn}n≥0 without having to resort to other terms of the
sequence, as we have mentioned before. To get it we will use a result from [20].
Here the authors found the solutions for quaternionic quadratic equations of
the special form x2+bx+c = 0, where b, c ∈ H. In the particular case in which
b, c ∈ R and b2 ≥ 4c, it was proven that the quaternionic quadratic equation
has exactly two distinct solutions lying in the centre of H, that is, in the set
of real numbers: x1 = −b+

√
b2−4c
2 and x2 = −b−

√
b2−4c
2 (see Theorem 2.3, case

2, and Corollary 2.9 in reference [20]).

Theorem 2.2. For n ≥ 0, the nth term of the sequence {GBFQn}n≥0 is
given as follows

GBFQn =
1

s1 − s2
(GBFQ1 (s

n
1 − sn2 ) +GBFQ0 (s1s

n
2 − s2sn1 )) ,

where s1 and s2 are the roots of the characteristic equation associated with the
recurrence relation (2.1).

Proof. The characteristic equation associated with the recurrence rela-
tion (2.1) is s2 − 3s− 1 = 0. It was proven by Huang and So in [20] that this
quadratic equation, with quaternion indeterminate s, has exactly two distinct
solutions which lie in the centre of H, that is, in the set of real numbers:

s1 =
3 +
√
13

2
and s2 =

3−
√
13

2
.

Therefore, GBFQn = Asn1 + Bsn2 is the general solution of equation (2.1).
Considering n = 0 and n = 1 in this identity and solving this system of linear
equations, we obtain unique values for A and for B, which are, in this case,
A = GBFQ1−GBFQ0s2

s1−s2 and B = GBFQ0s1−GBFQ1

s1−s2 . So, using these values in
the expression of GBFQn stated before and performing some calculations, we
get the required result. �

Corollary 2.3. For n ≥ 1, the nth term of the sequence {GBFQn}n≥0
is given as follows

(2.4) GBFQn = BFnGBFQ1 +BFn−1GBFQ0.
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Proof. Since the roots s1 and s2 of the quaternionic characteristic equa-
tion associated with the recurrence relation (2.1) lie in R, the center of H, we
have s1 = r1 and s2 = r2, with r1 and r2 as in (1.3). We get s1sn2 − s2sn1 =
r1r

n
2 − r2rn1 = r1r2(r

n−1
2 − rn−11 ) = rn−11 − rn−12 and the result follows. �

In the following result we give the generating function for the sequence
{GBFQn}n≥0.

Theorem 2.4. The generating function for the sequence {GBFQn}n≥0 is
given by

gGBFQn
(t) =

∞∑
n=0

GBFQnt
n =

GBFQ0 (1− 3t) +GBFQ1t

1− 3t− t2

=
(2i+ 11k) + (−3i+ 3k)t

1− 3t− t2
.

Proof. Using the definition of generating function, we have

gGBFQn(t) = GFBQ0 +GFBQ1t+GFBQ2t
2 + . . .+GFBQnt

n + . . .

and multiplying both sides of this identity by−3t and−t2, from the recurrence
relation (2.1), we obtain that(

1− 3t− t2
)
gGBFQn(t) = GFBQ0 (1− 3t) +GFBQ1t

and the result follows. �

3. Some identities involving the quaternionic sequence
of Gaussian Bronze Fibonacci

In this section we present some identities that are satisfied by the quater-
nionic sequence of Gaussian Bronze Fibonacci. We start by the statement
of the expression of the sum of the first n + 1 elements of the sequence
{GBFQj}j≥0.
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Theorem 3.1. The sum of the first n+1 terms of the sequence {GBFQj}j≥0
is given by

n∑
l=0

GBFQl =
1

3
(GBFQn +GBFQn+1 + 2GBFQ0 −GBFQ1)

=
1

3
(GBFQn +GBFQn+1 + (i− 14k)) .

Proof. Taking into account the recurrence relation (2.1), we can equiva-
lently consider that 1

3 (GBFQn+2 −GBFQn) = GBFQn+1 and then

GBFQ1 =
1

3
(GBFQ2 −GBFQ0) ,

GBFQ2 =
1

3
(GBFQ3 −GBFQ1) ,

GBFQ3 =
1

3
(GBFQ4 −GBFQ2) ,

...

GBFQn−2 =
1

3
(GBFQn−1 −GBFQn−3) ,

GBFQn−1 =
1

3
(GBFQn −GBFQn−2) ,

GBFQn =
1

3
(GBFQn+1 −GBFQn−1) .

It follows that

n∑
l=1

GBFQl =
1

3
(GBFQn +GBFQn+1 −GBFQ0 −GBFQ1)

and

n∑
l=0

GBFQl = GBFQ0 +
1

3
(GBFQn +GBFQn+1 −GBFQ0 −GBFQ1)

and after some calculations, we get the required result. �

The next two results are related to the sum of terms of the sequence
{GBFQj}j≥0 with even and odd indexes. For these results the respective
proofs are omitted as it can be easily made in a similar way to the proof of
the previous theorem.
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Theorem 3.2. The sum of the even indexed quaternion Gaussian Bronze
Fibonacci numbers is given by

n∑
l=1

GBFQ2l =
1

3
(GBFQ2n+1 −GBFQ1)

=
1

3
GBFQ2n+1 − (i+ 12k).

Now for the odd indexes we have

Theorem 3.3. The sum of the odd indexed quaternion Gaussian Bronze
Fibonacci numbers is given by

n∑
l=0

GBFQ2l+1 =
1

3
(GBFQ2n+2 −GBFQ0)

=
1

3
(GBFQ2n+2 − (2i+ 11k)) .

Our next result establishes an identity involving the sum of squares of two
consecutive terms.

Proposition 3.4. Let n be a non negative integer. Then the following
identity follows

GBFQ2
n +GBFQ2

n+1 = −143BF2n+3,

where BFn is the nth Bronze Fibonacci number.

Proof. From equality (2.4) we get

GBFQ2
n = BF 2

nGBFQ
2
1 +BF 2

n−1GBFQ
2
0

+ BFnBFn−1(GBFQ1GBFQ0 +GBFQ0GBFQ1).

Since (see (2.2) and (2.3))

GBFQ2
0 = (2i+ 11k)(2i+ 11k) = −125,

GBFQ2
1 = 9(i+ 12k)(i+ 12k) = −1305,

GBFQ1GBFQ0 = 3(i+ 12k)(2i+ 11k) = 3(−134 + 13j),

GBFQ0GBFQ1 = 3(2i+ 11k)(i+ 12k) = 3(−134− 13j),
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it follows

GBFQ2
n = −(1305BF 2

n + 804BFnBFn−1 + 125BF 2
n−1).

Similarly,

GBFQ2
n+1 = −(1305BF 2

n+1 + 804BFn+1BFn + 125BF 2
n).

Therefore

GBFQ2
n +GBFQ2

n+1 = −1305(BF 2
n +BF 2

n+1)− 125(BF 2
n−1 +BF 2

n)

− 804(BFnBFn−1 +BFn+1BFn),

and, taking into account equalities (1.5) and (1.6),

GBFQ2
n +GBFQ2

n+1 = −(1305BF2n+1 + 125BF2n−1 + 804BF2n)

= −(1305(3BF2n +BF2n−1) + 125BF2n−1 + 804BF2n)

= −(4719BF2n + 1430BF2n−1)

= −(429BF2n + 1430BF2n+1)

= −(429BF2n+2 + 143BF2n+1)

= −143BF2n+3. �

The next result concerns the norm of quaternion-Gaussian Bronze Fi-
bonacci numbers. We observe that GBFQn is a quaternion with complex
entries (see Definition 2.1), whose norm is obtained as

‖GBFQn‖ = GBFQnGBFQn = GBF 2
n +GBF 2

n+1 +GBF 2
n+2 +GBF 2

n+3,

where GBFQn = GBFn −GBFn+1i−GBFn+2j −GBFn+3k is the ‘Hamil-
tonian’ or quaternion conjugate (see, for instance, [30]).

Theorem 3.5. The norm value of GBFQn is

‖GBFQn‖ = 11(3 + 2i)BF2n+2,

where BFn is the nth Bronze Fibonacci number.
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Proof. We start by proving two claims.
Claim 1. For n ≥ 0,

GBF 2
n =

(1− iβ)2α2n − 2(−1)n(2− 3i) + (1− iα)2β2n

(α− β)2
,

where α = 3+
√
13

2 and β = 3−
√
13

2 are the roots of the characteristic equation
associated with the recurrence relation (1.7).

Proof of Claim 1. The Binet’s formula for Gaussian Bronze Fibonacci
sequence is given by (see (1.8))

GBFn =
αn − βn

α− β
+ i

αβn − βαn

α− β
,

where α and β are the roots of the characteristic equation associated with the
recurrence relation (1.7). We re-write

GBFn =
1

α− β
[(1− iβ)αn − (1− iα)βn] .

Therefore

(α− β)2GBF 2
n = (1− iβ)2α2n − 2(αβ)n [1− i(α+ β)− αβ] + (1− iα)2β2n.

Since α+ β = 3 and αβ = −1 we obtain the desired result.
Claim 2.

‖GBFQn‖ = 11(3 + 2i)
α2n−1(36α+ 11) + β2n−1(36β + 11)

(α− β)2
.

Proof of Claim 2. By Claim 1,

(α− β)2‖GBFQn‖ = (1− iβ)2α2n − 2(−1)n(2− 3i) + (1− iα)2β2n

+ (1− iβ)2α2n+2 − 2(−1)n+1(2− 3i) + (1− iα)2β2n+2

+ (1− iβ)2α2n+4 − 2(−1)n+2(2− 3i) + (1− iα)2β2n+4

+ (1− iβ)2α2n+6 − 2(−1)n+3(2− 3i) + (1− iα)2β2n+6

= (1− iβ)2α2n(1 + α2 + α4 + α6)

+ (1− iα)2(1 + β2 + β4 + β6).
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Since α and β are the roots of the characteristic equation r2− 3r− 1 = 0, the
repeated relations of α and β satisfy the equalities

αn = BFnα+BFn−1 and βn = BFnβ +BFn−1,

thus yielding

1 + α2 + α4 + α6 = 396α+ 121 and 1 + β2 + β4 + β6 = 396β + 121.

Therefore

(α− β)2‖GBFQn‖ = (1− iβ)2α2n(396α+ 121) + (1− iα)2β2n(396β + 121)

= 11
[
(1− β2)α2n(36α+ 11) + (1− α2)β2n(36β + 11)

]
+ 22i

[
α2n−1(36α+ 11) + β2n−1(36β + 11)

]
.

Notice that 1− α2 = −3α and 1− β2 = −3β. Then

(α− β)2‖GBFQn‖ = 11
[
−3βα2n(36α+ 11)− 3αβ2n(36β + 11)

]
+ 22i

[
α2n−1(36α+ 11) + β2n−1(36β + 11)

]
= 11

[
3α2n−1(36α+ 11) + 3β2n−1(36β + 11)

]
+ 22i

[
α2n−1(36α+ 11) + β2n−1(36β + 11)

]
= 11(3 + 2i)

[
α2n−1(36α+ 11) + β2n−1(36β + 11)

]
,

thus proving Claim 2.
It only remains to show that

α2n−1(36α+ 11) + β2n−1(36β + 11)

(α− β)2
= BF2n+2,

or, equivalently, that

BF2n+2(α− β) =
α2n−1(36α+ 11) + β2n−1(36β + 11)

α− β
.
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Notice that, by the Binet’s formula of the sequence {BFn} (see (1.3)), we
obtain

BF2n+2(α− β) =
α2n+3 − α2n+2β − β2n+2α+ β2n+3

α− β

=
α2n+3 + α2n+1 + β2n+1 + β2n+3

α− β

=
α2n−1(α4 + α2) + β2n−1(β4 + β2)

α− β

=
α2n−1(36α+ 11) + β2n−1(36β + 11)

α− β
. �

4. Some tridiagonal matrices

In this section, we consider some special tridiagonal matrices which will al-
low us to further establish properties of quaternion-Gaussian Bronze Fibonacci
numbers. We start by introducing a tridiagonal matrix An which allows us to
find the scalar part of GBFQn. Then we find a matrices identity giving the
components of GBFQn and the Cassini’s identity is also established. Finally,
motivated by the works of [13] and [24], we give alternative ways of finding
the general terms of the sequences {BFn}, {GBFn} and {GBFQn}.

We define the following tridiagonal matrix with complex coefficients and
order n× n

(4.1) An =



1 i 0 . . . . . . . . . 0

−1 3 1
. . .

...

0 −1 3
. . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . 3 1 0

...
. . . −1 3 1

0 . . . . . . . . . 0 −1 3


.

With this matrix we can determine the scalar part of the general term of the
sequence {GBFQj}j≥0, by the use of the value of the respective determinant.
At this point, it is important to remark that, due to the noncommutative mul-
tiplication of the quaternion elements, whenever we calculate the determinant
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of a square matrix with quaternions entries using the Laplace expansion, we
will always start with the entries of the last column, i.e., for any square matrix
X = [xij ]n×n the determinant is given by

detX =

n∑
i=1

cinxin,

with
cin = (−1)i+n detYin,

where detYin is the i, n minor of X.

Proposition 4.1. The scalar part GBFj of the general term of the se-
quence {GBFQj}j≥0 is given by

det(Aj) = GBFj = Sc(GBFQj).

Proof. We proceed by induction on j. For j = 1 and j = 2, we have
respectively, det(A1) = 1 = GBF1 = Sc(GBFQ1), det(A2) = 3+i = GBF2 =
Sc(GBFQ2), which is true by Definition 2.1. Let us assume the claim for
j − 1 and j − 2. So, det(Aj−1) = GBFj−1 = Sc(GBFQj−1) and det(Aj−2) =
GBFj−2 = Sc(GBFQj−2). Then, the determinant of the matrix Aj can be
computed by using the Laplace expansion along the last column and so:

det(Aj) = 3 (−1)2j det(Aj−1)+1 (−1)2j−1 det



1 i 0 . . . . . . 0

−1 3 1
. . .

...

0 −1 3
. . . 0

...
. . . . . . . . .

... −1 3 1
0 . . . . . . . . . 0 −1


.

By the use of properties of determinants we know that

det



1 i 0 . . . . . . 0

−1 3 1
. . .

...

0 −1 3
. . . 0

...
. . . . . . . . .

... −1 3 1
0 . . . . . . . . . 0 −1


= det



1 i 0 . . . . . . 0

−1 3 1
. . .

...
0 −1 3 0
...

. . . . . .
... −1 3 0
0 . . . . . . . . . 0 −1


.
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Once more, the use of the Laplace expansion along the last column of the
second determinant yields

det(Aj) = 3 det(Aj−1) + 1 (−1)2j−1 (−1) (−1)2j−2 det(Aj−2),

and so det(Aj) = 3 det(Aj−1) + det(Aj−2) and by the induction hypothesis
the result follows. �

The next result also uses other matrices and with it we can determine the
components of GBFQn. We have

Proposition 4.2. Let n be integer and n ≥ 1. Then, it holds that[
GBFQn GBFQn−1
GBFQn+1 GBFQn

]
=

[
GBFQ1 GBFQ0

GBFQ2 GBFQ1

] [
3 1
1 0

]n−1
.

Proof. We use induction on n. For n = 1, we get[
GBFQ1 GBFQ0

GBFQ2 GBFQ1

]
=

[
GBFQ1 GBFQ0

GBFQ2 GBFQ1

] [
1 0
0 1

]
,

which is true. Let us assume that the above equality is true for n. Then, for
n+ 1, we write[

GBFQ1 GBFQ0

GBFQ2 GBFQ1

] [
3 1
1 0

]n
=

[
GBFQ1 GBFQ0

GBFQ2 GBFQ1

] [
3 1
1 0

]n−1 [
3 1
1 0

]

=

[
GBFQn GBFQn−1
GBFQn+1 GBFQn

] [
3 1
1 0

]

=

[
3GBFQn +GBFQn−1 GBFQn

3GBFQn+1 +GBFQn GBFQn+1

]

=

[
GBFQn+1 GBFQn

GBFQn+2 GBFQn+1

]
,

as required. �

Taking advantage of the previous proposition, we state an identity related
with this type of quaternion sequence designated by Cassini’s identity.
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Theorem 4.3. Let n be integer and n ≥ 1. Then the following identity
follows

GBFQ2
n −GBFQn+1GBFQn−1 = (−1)n−1

(
GBFQ2

1 −GBFQ2GBFQ0

)
= (−1)n−1 (26− 117j) .

Proof. From the equality of the previous proposition, we get

det

[
GBFQn GBFQn−1
GBFQn+1 GBFQn

]
= det

[
GBFQ1 GBFQ0

GBFQ2 GBFQ1

](
det

[
3 1
1 0

])n−1

and then the result follows from equalities (2.1), (2.2) and (2.3). �

Let us consider now the following n× n tridiagonal matrices:

Mn =



a b 0 . . . . . . . . . 0

c d e
. . .

...

0 c d
. . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . d e 0

...
. . . c d e

0 . . . . . . . . . 0 c d


.

We get, see [13],

|M1| = a,

|M2| = d|M1| − bc,

|M3| = d|M2| − ce|M1|,

|M4| = d|M3| − ce|M2|,
...

|Mn+1| = d|Mn| − ce|Mn−1|.

If a = d = 3, b = e = 1 and c = −1 the above matrix Mn becomes, in this
case,
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(4.2) Mn =



3 1 0 . . . . . . . . . 0

−1 3 1
. . .

...

0 −1 3
. . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . 3 1 0

...
. . . −1 3 1

0 . . . . . . . . . 0 −1 3


,

and, accordingly, we also have

|M1| = 3 = BF2,

|M2| = 10 = BF3,

|M3| = 33 = BF4,

|M4| = 109 = BF5,

...
|Mn+1| = 3|Mn|+ |Mn−1|.

We thus get the following result:

Proposition 4.4. If Mn is the n× n tridiagonal matrix defined in (4.2),
then the nth Bronze Fibonacci number is given by

BFn = |Mn−1|, n ≥ 2.

Accordingly with the recurrence relation (1.7), we immediately obtain the
next result, which offers an alternative way to calculate the nth Gaussian
Bronze Fibonacci numbers using determinants.

Corollary 4.5. GBFn = |Mn−1|+ i|Mn−2|, n ≥ 3.

Also, by Definition 2.1, we can express the quaternion-Gaussian Bronze
Fibonacci numbers GBFQn by the use of some determinants.

Corollary 4.6. For n ≥ 3,

GBFQn = (|Mn−1|+ i|Mn−2|,
|Mn|+ i|Mn−1|, |Mn+1|+ i|Mn|, |Mn+2|+ i|Mn+1|).



On quaternion Gaussian Bronze Fibonacci numbers 147

In Proposition 4.1 we proved that the determinant of the matrix Aj defined
in (4.1) gives the scalar part of GBFQj , for j ≥ 0. Our purpose now is to
obtain an alternative way, using determinants, to compute BFn, GBFn and
GBFQn. We start by recalling that, accordingly with [24] (see also [23]), for
any sequence {xn}n≥0 satisfying the second order linear recurrence

xn+1 = Axn +Bxn−1, n ≥ 1,

with x0 = C, x1 = D, and A,B,C,D real numbers, we have, for n ≥ 0

xn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C D 0 0 . . . 0 0
−1 0 B 0 . . . 0 0
0 −1 A B . . . 0 0

0 0 −1 A
. . . 0 0

...
...

...
. . . . . .

...
...

0 0 0 0 . . . A B
0 0 0 0 . . . −1 A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

In particular, considering A = 3, B = 1, C = 0 and D = 1 (compare with the
recurrence relation (1.2)) we obtain

BFn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0 0
−1 0 1 0 . . . 0 0
0 −1 3 1 . . . 0 0

0 0 −1 3
. . . 0 0

...
...

...
. . . . . .

...
...

0 0 0 0 . . . 3 1
0 0 0 0 . . . −1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

, n ≥ 0.

Similarly, from the recurrence relation (1.7) with initial conditions GBF0 = i
and GBF1 = 1 we conclude that

GBFn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i 1 0 0 . . . 0 0
−1 0 1 0 . . . 0 0
0 −1 3 1 . . . 0 0

0 0 −1 3
. . . 0 0

...
...

...
. . . . . .

...
...

0 0 0 0 . . . 3 1
0 0 0 0 . . . −1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

, n ≥ 0,
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and, finally, considering the recurrence relation (2.1) with initial conditions
GBFQ0 = 2i+ 11k and GBFQ1 = 3i+ 36k we get

GBFQn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2i+ 11k 3i+ 36k 0 0 . . . 0 0
−1 0 1 0 . . . 0 0
0 −1 3 1 . . . 0 0

0 0 −1 3
. . . 0 0

...
...

...
. . . . . .

...
...

0 0 0 0 . . . 3 1
0 0 0 0 . . . −1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

, n ≥ 0.

5. Future work

The subject of this paper has the potential to motivate future researches
on the applications of these sequences in matrix theory, combinatorial number
theory, and other areas involving matrix algebras. Also, it is our goal to study
more algebraic properties and the hybrid, the polynomial, and the hybrinomial
versions of these sequences.
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