Annales Mathematicae Silesianae **36** (2022), no. 2, 228–237 DOI: 10.2478/amsil-2022-0017

## GLEASON-KAHANE-ŻELAZKO THEOREM FOR BILINEAR MAPS

Abbas Zivari-Kazempour

**Abstract.** Let A and B be two unital Banach algebras and  $\mathfrak{A} = A \times B$ . We prove that the bilinear mapping  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  is a bi-Jordan homomorphism if and only if  $\varphi$  is unital, invertibility preserving and jointly continuous. Additionally, if  $\mathfrak{A}$  is commutative, then  $\varphi$  is a bi-homomorphism.

## 1. Introduction and preliminaries

Throughout the paper, let A and B be two unital Banach algebras, over the complex field  $\mathbb{C}$ , with unit elements  $e_1$  and  $e_2$ , respectively.

A linear map  $f: A \to B$  is called *unital* if  $f(e_1) = e_2$  and it is said to *preserves invertibility* if  $a \in Inv(A)$  implies that  $f(a) \in Inv(B)$ , where Inv(A) stands for the set of all invertible elements of A. In the case  $B = \mathbb{C}$ , the invertibility preserving property simply means that  $f(a) \neq 0$  for every  $a \in Inv(A)$ .

A linear map  $f \colon A \to B$  is called Jordan homomorphism if

$$f(ab+ba)=f(a)f(b)+f(b)f(a),\quad a,b\in A,$$

or equivalently,  $f(a^2) = f(a)^2$  for all  $a \in A$ .

Received: 09.09.2021. Accepted: 31.08.2022. Published online: 15.09.2022.

<sup>(2020)</sup> Mathematics Subject Classification: 47B48, 46H99, 46H25.

Key words and phrases: Gleason–Kahane–Żelazko theorem, preserves invertibility, bihomomorphism, bi-Jordan homomorphism.

<sup>©2022</sup> The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

Clearly, each homomorphism is a Jordan homomorphism, but the converse is not valid in general. For example, it is proved (see [3]) that some Jordan homomorphism on the polynomial rings can not be homomorphism. Other examples demonstrated by the author can be found in [14].

The following famous characterization of Jordan homomorphisms is due to Żelazko [10] (see also [7]).

Theorem 1.1 ([10, Theorem 1]). Every Jordan homomorphism from Banach algebra A into a semisimple commutative Banach algebra B is a homomorphism.

Concerning characterization of Jordan homomorphisms and their automatic continuity on Banach algebras, we refer the reader to [11, 12, 14] and references therein.

Let A be a Banach algebra and  $f: A \to \mathbb{C}$  be a unital invertibility preserving linear functional. When is f multiplicative?

One of the earliest results in this area is the following, which was obtained independently by Gleason [2], Kahane and Żelazko [5], and now known as the Gleason–Kahane–Żelazko theorem (see also [1]).

THEOREM 1.2. Let A be a unital Banach algebra and  $f: A \to \mathbb{C}$  be a unital linear functional. If for every  $a \in A$ ,

$$f(a) \in \sigma(a) = \{ \lambda \in \mathbb{C} : \lambda e_1 - a \notin Inv(A) \},$$

or equivalently,  $f(a) \neq 0$  for every  $a \in Inv(A)$ , then f is multiplicative.

REMARK 1.3. It should be pointed out that:

- (i) Theorem 1.2 first was proved for commutative Banach algebra A, and then Żelazko by proving Theorem 1.1 showed that the conclusion also holds for non-commutative case.
- (ii) It follows from the hypotheses of Theorem 1.2 that f is continuous. Indeed, let  $a \in A$  with ||a|| < 1. Then  $e_1 a$  is invertible and hence  $f(e_1 a) \neq 0$ . Therefore  $f(a) \neq 1$  for all  $a \in A$  with ||a|| < 1. This implies that f is continuous.

A generalization of Theorem 1.2 to real Banach algebra was proved in [6]. Subsequently several generalizations of this result were published by many authors. See for example, the interesting articles by Jarosz [4] and Sourour [8].

Throughout the paper, we assume that  $\mathfrak{A} = A \times B$ . Then  $\mathfrak{A}$  becomes a Banach algebra with the multiplication

$$(a,b)(x,y) = (ax,by), \quad (a,b),(x,y) \in A \times B,$$

and norm

$$||(a,b)|| := ||a|| + ||b||.$$

Let D be a complex Banach algebra and  $\varphi \colon \mathfrak{A} \to D$  be a bilinear map. Then  $\varphi$  is called bounded if there is a real number M such that  $\|\varphi(a,b)\| \leqslant M\|a\|\|b\|$  for all  $(a,b) \in \mathfrak{A}$ .

Obviously,  $\varphi$  is bounded if and only if it is jointly continuous. A bilinear map  $\varphi$  is called bi-homomorphism if for all  $(a,b),(x,y)\in\mathfrak{A}$ ,

$$\varphi(ax, by) = \varphi(a, b)\varphi(x, y),$$

and it is called bi-Jordan homomorphism if

$$\varphi(a^2, b^2) = \varphi(a, b)^2, \quad (a, b) \in \mathfrak{A}.$$

Clearly, each bi-homomorphism is a bi-Jordan homomorphism, but the converse is not true, in general. For example, take

$$A = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}.$$

Let B be the algebra A with an identity matrix I adjoined. Define the bilinear mapping  $\varphi \colon \mathfrak{A} \to A$  by  $\varphi(x,y) = xy$ . Then  $\varphi$  is a bi-Jordan homomorphism, while it is not a bi-homomorphism. Indeed, let

$$u = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}, \quad v = \begin{bmatrix} s & t \\ 0 & 0 \end{bmatrix}, \quad x = \begin{bmatrix} c & d \\ 0 & 0 \end{bmatrix}, \text{ and } y = I.$$

Then  $(u, v), (x, y) \in \mathfrak{A}$ , but

$$\varphi(ux, vy) = \begin{bmatrix} acs & act \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} asc & asd \\ 0 & 0 \end{bmatrix} = \varphi(u, v)\varphi(x, y).$$

The aim of this paper is to investigate the Gleason–Kahane–Żelazko theorem for bilinear maps.

## 2. Main results

We commence with the following lemma which proof is straightforward.

LEMMA 2.1. Suppose that  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  is a bi-Jordan homomorphism. Then for every  $(a,b),(x,y) \in \mathfrak{A}$ ,

- (1)  $\varphi(ax + xa, b^2) = 2\varphi(x, b)\varphi(a, b),$
- (2)  $\varphi(a^2, by + yb) = 2\varphi(a, b)\varphi(a, y)$ .

Lemma 2.2. Let  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  be a bi-Jordan homomorphism. Then for all  $(x,y) \in \mathfrak{A}$ ,

$$\varphi(x,y) = \varphi(x,e_2)\varphi(e_1,y).$$

Proof. By our assumpion

(2.1) 
$$\varphi(x^2, y^2) = \varphi(x, y)^2, \quad (x, y) \in \mathfrak{A}.$$

Replacing x by  $x + e_1$  and y by  $y + e_2$  in (2.1), we get

(2.2) 
$$\varphi(x^2 + 2x + e_1, y^2 + 2y + e_2) = \varphi(x + e_1, y + e_2)^2.$$

By applying Lemma 2.1(1) for  $a=e_1$  and (2) for  $b=e_2$ , respectively, we obtain

(2.3) 
$$\varphi(2x, y^2) = 2\varphi(x, y)\varphi(e_1, y)$$
, and  $\varphi(x^2, 2y) = 2\varphi(x, e_2)\varphi(x, y)$ .

It follows from (2.1), (2.2) and (2.3) that

$$\varphi(x,y) = \varphi(x,e_2)\varphi(e_1,y),$$

for all  $(x, y) \in \mathfrak{A}$ , as required.

We mention that when studying invertibility preserving bilinear maps between unital Banach algebras, there is no loss of generality in assuming that the map is unital. Indeed, if  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  preserves invertibility, then  $\varphi(e_1, e_2)$  is invertible in  $\mathbb{C}$  and we can instead work with the bilinear map  $\psi \colon \mathfrak{A} \to \mathbb{C}$ , defined by  $\psi(x,y) = \varphi(e_1,e_2)^{-1}\varphi(x,y)$ , for all  $(x,y) \in \mathfrak{A}$ . Then  $\psi$  is unital and preserves invertibility.

THEOREM 2.3. Let  $\varphi$  be a bilinear map from  $\mathfrak{A}$  into  $\mathbb{C}$ . If  $\varphi$  preserves invertibility, then  $\varphi$  is continuous at  $(x, e_2)$  and  $(e_1, y)$ .

PROOF. Without loss of generality let  $\varphi(e_1, e_2) = 1$ . Suppose that  $(x, e_2) \in \mathfrak{A}$  with ||x|| < 1. Then  $(e_1 - x, e_2) \in Inv(\mathfrak{A})$ . Since  $\varphi$  preserves invertibility,  $\varphi(e_1 - x, e_2) \neq 0$  and hence we get  $\varphi(x, e_2) \neq \varphi(e_1, e_2) = 1$ . Therefore  $\varphi(x, e_2) \neq 1$  for all  $(x, e_2) \in \mathfrak{A}$  with ||x|| < 1. Let  $|\varphi(x, e_2)| > 1$ , and take

$$a = \frac{x}{\varphi(x, e_2)}.$$

Then ||a|| < 1 and  $\varphi(a, e_2) = 1$ , which is a contradiction. Consequently,  $|\varphi(x, e_2)| \leq 1$ , for all  $(x, e_2) \in \mathfrak{A}$  with ||x|| < 1. If we replace x by  $\frac{x}{2||x||}$ , then we obtain  $|\varphi(x, e_2)| \leq 2||x||$  for all  $(x, e_2) \in \mathfrak{A}$ . Thus,  $\varphi$  is continuous at  $(x, e_2)$ . Similarly,  $\varphi$  is continuous at  $(e_1, y)$ .

As a consequence of Theorem 2.3, we get the next corollary.

COROLLARY 2.4. Suppose that  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  is a bi-Jordan homomorphism. If  $\varphi$  preserves invertibility, then  $\varphi$  is jointly continuous.

PROOF. By Theorem 2.3, for all  $(x, e_2), (e_1, y) \in \mathfrak{A}$ ,

$$|\varphi(x, e_2)| \le 2||x||$$
 and  $|\varphi(e_1, y)| \le 2||y||$ .

Now it follows from Lemma 2.2 that

$$|\varphi(x,y)| = |\varphi(x,e_2)\varphi(e_1,y)| \le |\varphi(x,e_2)||\varphi(e_1,y)| \le 4||x||||y||,$$

for all  $(x, y) \in \mathfrak{A}$ . Thus,  $\varphi$  is bounded and so it is jointly continuous.

We may formulate now our main result.

THEOREM 2.5. Let  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  be a bilinear map. Then  $\varphi$  is a bi-Jordan homomorphism if and only if the following conditions hold:

- (i)  $\varphi(e_1, e_2) = 1$ ,
- (ii)  $\varphi$  is jointly continuous,
- (iii)  $\varphi$  preserves invertibility.

PROOF. First suppose that  $\varphi$  is a bi-Jordan homomorphism. Then clearly,  $\varphi(e_1, e_2) = 1$ . Let  $(x, y) \in Inv(\mathfrak{A})$ . By Lemma 2.1,

$$2\varphi(xx^{-1}, e_2) = \varphi(xx^{-1} + x^{-1}x, e_2) = 2\varphi(x, e_2)\varphi(x^{-1}, e_2),$$

and

$$2\varphi(e_1, yy^{-1}) = \varphi(e_1, yy^{-1} + y^{-1}y) = 2\varphi(e_1, y)\varphi(e_1, y^{-1}).$$

Thus, from Lemma 2.2 we get

$$1 = \varphi(e_1, e_2)$$

$$= \varphi(xx^{-1}, yy^{-1})$$

$$= \varphi(xx^{-1}, e_2)\varphi(e_1, yy^{-1})$$

$$= [\varphi(x, e_2)\varphi(x^{-1}, e_2)][\varphi(e_1, y)\varphi(e_1, y^{-1})]$$

$$= [\varphi(x, e_2)\varphi(e_1, y)][\varphi(x^{-1}, e_2)\varphi(e_1, y^{-1})]$$

$$= \varphi(x, y)\varphi(x^{-1}, y^{-1}).$$

Consequently,  $\varphi(x,y)^{-1} = \varphi(x^{-1},y^{-1})$ , for all  $(x,y) \in Inv(\mathfrak{A})$  and therefore  $\varphi$  preserves invertibility. Now the joint continuity of  $\varphi$  follows from Corollary 2.4.

For the converse let conditions (i), (ii) and (iii) hold. Let  $(x,y) \in \mathfrak{A}$  be fixed and define  $\Gamma \colon \mathbb{C} \to \mathbb{C}$  by

$$\Gamma(z) = \varphi(e^{zx}, e^{zy}).$$

Then  $\Gamma$  is an entire function and  $\Gamma(z) \neq 0$  for all  $z \in \mathbb{C}$ , because  $(e^{zx}, e^{zy}) \in Inv(\mathfrak{A})$ . So, there exists entire function f such that  $\Gamma(z) = e^{f(z)}$  for all  $z \in \mathbb{C}$ . Thus by Hadamard's factorization theorem ([9, p. 250]) there exist  $\alpha, \beta \in \mathbb{C}$  such that  $f(z) = \alpha z + \beta$ . Since

$$1 = \varphi(e_1, e_2) = \Gamma(0) = e^{\beta},$$

we have  $\beta = 0$ . Therefore

$$\varphi(e^{zx}, e^{zy}) = \Gamma(z) = e^{f(z)} = e^{\alpha z},$$

and hence

$$(2.4) \ \varphi\Big(e_1 + \sum_{n=1}^{\infty} \frac{z^n x^n}{n!}, e_2 + \sum_{n=1}^{\infty} \frac{z^n y^n}{n!}\Big) = \varphi(e^{zx}, e^{zy}) = e^{\alpha z} = 1 + \sum_{n=1}^{\infty} \frac{z^n \alpha^n}{n!}.$$

By taking x = 0 in (2.4) and comparing coefficients, we get

(2.5) 
$$\varphi(e_1, y)^n = \alpha^n = \varphi(e_1, y^n),$$

for all  $n \in \mathbb{N}$ . Similarly,

(2.6) 
$$\varphi(x, e_2)^n = \alpha^n = \varphi(x^n, e_2).$$

Comparing coefficients z,  $z^2$  and  $z^4$  in (2.4), respectively, we obtain

- (P)  $\varphi(e_1, y) + \varphi(x, e_2) = \alpha$ ,
- (Q)  $\varphi(e_1, y^2) + 2\varphi(x, y) + \varphi(x^2, e_2) = \alpha^2$ ,
- (R)  $\varphi(x^4, e_2) + \varphi(e_1, y^4) + 4\varphi(x, y^3) + 6\varphi(x^2, y^2) + 4\varphi(x^3, y) = \alpha^4$ .

It follows from (P) and (Q) that

$$\varphi(e_1, y^2) + 2\varphi(x, y) + \varphi(x^2, e_2) = \alpha^2$$
  
=  $\varphi(e_1, y)^2 + \varphi(x, e_2)^2 + 2\varphi(e_1, y)\varphi(x, e_2)$ ,

and hence by (2.5), (2.6) we arrive at

(2.7) 
$$\varphi(x,y) = \varphi(x,e_2)\varphi(e_1,y),$$

for all  $(x, y) \in \mathfrak{A}$ . By (2.5) and (2.7), we have

(2.8) 
$$4\varphi(x, y^{3}) = 4\varphi(x, e_{2})\varphi(e_{1}, y^{3})$$
$$= 4\varphi(x, e_{2})\varphi(e_{1}, y)\varphi(e_{1}, y^{2})$$
$$= 4\varphi(x, y)\varphi(e_{1}, y^{2}).$$

Similarly, (2.6) and (2.7), give

(2.9) 
$$4\varphi(x^{3}, y) = 4\varphi(x, y)\varphi(x^{2}, e_{2}).$$

By applying equations (Q), (R) and equalities (2.8), (2.9) we get

(2.10) 
$$4\varphi(x,y)^2 + 2\varphi(x^2, e_2)\varphi(e_1, y^2) = 6\varphi(x^2, y^2).$$

It follows from (2.7) and (2.10) that  $\varphi(x^2, y^2) = \varphi(x, y)^2$  for all  $(x, y) \in \mathfrak{A}$ . This completes the proof.

From Theorem 2.5 and [13, Theorem 2.1], we get the next result.

COROLLARY 2.6. Let  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  be a bilinear map such that the conditions (i), (ii) and (iii) of Theorem 2.5 hold. If  $\mathfrak{A}$  is commutative, then  $\varphi$  is a bihomomorphism.

Let  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  be a bilinear map. We say that  $\mathfrak{A}$  is commutative with respect to  $\varphi$  or  $\varphi$ -commutative if for all  $(a,b),(x,y) \in \mathfrak{A}$ ,

$$\varphi(ax, y) = \varphi(xa, y), \text{ and } \varphi(x, by) = \varphi(x, yb).$$

Clearly, if  $\mathfrak{A}$  is commutative, then it is  $\varphi$ -commutative. The converse is false in general. The following example illustrates this fact.

Example 2.7. Let

$$\mathfrak{A} = \left\{ \left( \begin{bmatrix} z_1 & z_2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} w_1 & w_2 \\ 0 & 0 \end{bmatrix} \right) : z_1, z_2, w_1, w_2 \in \mathbb{C} \right\},\,$$

and define  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  by  $\varphi(x,y) = z_1 w_1$ , where

$$x = \begin{bmatrix} z_1 & z_2 \\ 0 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} w_1 & w_2 \\ 0 & 0 \end{bmatrix}.$$

Then it is easy to check that  $\mathfrak A$  is  $\varphi$ -commutative, but neither  $\mathfrak A$  is unital nor commutative.

The following theorem characterizes bi-Jordan homomorphism.

Theorem 2.8. Every bi-Jordan homomorphism  $\varphi$  from  $\varphi$ -commutative Banach algebra  $\mathfrak A$  into a semisimple commutative Banach algebra D is a bi-homomorphism.

PROOF. We first assume that  $D = \mathbb{C}$  and let  $\varphi : \mathfrak{A} \to \mathbb{C}$  be a bi-Jordan homomorphism. By Lemma 2.2, for all  $(x,y) \in \mathfrak{A}$ ,  $\varphi(x,y) = \varphi(x,e_2)\varphi(e_1,y)$ . Replacing x by ax and y by by, we get

(2.11) 
$$\varphi(ax, by) = \varphi(ax, e_2)\varphi(e_1, by),$$

for all  $(a,b),(x,y) \in \mathfrak{A}$ . By Lemma 2.1 and  $\varphi$ -commutativity of  $\mathfrak{A}$  we have

(2.12) 
$$\varphi(ax, e_2) = \varphi(x, e_2)\varphi(a, e_2)$$
 and  $\varphi(e_1, by) = \varphi(e_1, y)\varphi(e_1, b)$ .

Hence, by (2.11) and (2.12),

$$\varphi(ax, by) = \varphi(ax, e_2)\varphi(e_1, by)$$

$$= [\varphi(x, e_2)\varphi(a, e_2)][\varphi(e_1, y)\varphi(e_1, b)]$$

$$= [\varphi(a, e_2)\varphi(e_1, b)][\varphi(x, e_2)\varphi(e_1, y)]$$

$$= \varphi(a, b)\varphi(x, y).$$

Thus,  $\varphi(ax, by) = \varphi(a, b)\varphi(x, y)$ , for all  $(a, b), (x, y) \in \mathfrak{A}$ .

Now suppose that D is semisimple and commutative. Let  $\mathfrak{M}(D)$  be the maximal ideal space of D. We associate with each  $f \in \mathfrak{M}(D)$  a function  $\varphi_f \colon \mathfrak{A} \to \mathbb{C}$  defined by

$$\varphi_f(a,b) := f(\varphi(a,b)), \quad (a,b) \in \mathfrak{A}.$$

Pick  $f \in \mathfrak{M}(D)$  arbitrary. Then  $\varphi_f$  is a bi-Jordan homomorphism, therefore by the above argument it is a bi-homomorphism. From definition of  $\varphi_f$  we have

$$f(\varphi(ax, by)) = f(\varphi(a, b))f(\varphi(x, y)) = f(\varphi(a, b)\varphi(x, y)).$$

Since  $f \in \mathfrak{M}(D)$  was arbitrary and D is assumed to be semisimple,

$$\varphi(ax, by) = \varphi(a, b)\varphi(x, y),$$

for all 
$$(a,b),(x,y)\in\mathfrak{A}$$
.

The following result is a consequence of Theorem 2.5 and Theorem 2.8.

COROLLARY 2.9. Let  $\varphi \colon \mathfrak{A} \to \mathbb{C}$  be a bilinear map such that the conditions (i), (ii) and (iii) of Theorem 2.5 hold. If  $\mathfrak{A}$  is  $\varphi$ -commutative, then  $\varphi$  is a bi-homomorphism.

Next we generalize Theorem 2.8 for non semisimple Banach algebra D.

THEOREM 2.10. Every bi-Jordan homomorphism  $\varphi$  from  $\varphi$ -commutative Banach algebra  $\mathfrak{A}$  into a commutative Banach algebra D is a bi-homomorphism.

PROOF. Let  $\varphi \colon \mathfrak{A} \to D$  be a bi-Jordan homomorphism. Then  $\varphi(a^2, b^2) = \varphi(a, b)^2$  for all  $(a, b) \in \mathfrak{A}$ . Replacing a by a + x and b by b + y, we get

(2.13) 
$$\varphi(ax + xa, by + yb) = 2\varphi(a, b)\varphi(x, y) + 2\varphi(a, y)\varphi(x, b),$$

for all  $(a,b),(x,y)\in\mathfrak{A}$ . It follows from (2.13) and  $\varphi$ -commutativity of  $\mathfrak{A}$  that

$$4\varphi(ax, by) = \varphi(ax + xa, by + yb)$$
  
=  $2\varphi(a, b)\varphi(x, y) + 2\varphi(a, y)\varphi(x, b).$ 

Hence,

(2.14) 
$$2\varphi(ax, by) = \varphi(a, b)\varphi(x, y) + \varphi(a, y)\varphi(x, b),$$

for all  $(a, b), (x, y) \in \mathfrak{A}$ . By Lemma 2.2,

$$\varphi(a,b)\varphi(x,y) = [\varphi(a,e_2)\varphi(e_1,b)][\varphi(x,e_2)\varphi(e_1,y)] = \varphi(a,y)\varphi(x,b).$$

Consequently, from (2.14) we deduce that  $\varphi$  is a bi-homomorphism.

**Acknowledgments.** The author would like to thank the referees for proving valuable comments and helping in improving the content of this paper.

## References

- F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973.
- [2] A.M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171–172.
- [3] N. Jacobson and C.E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), no. 3, 479–502.
- [4] K. Jarosz, Generalizations of the Gleason-Kahane-Żelazko theorem, Rocky Mountain J. Math. 21 (1991), no. 3, 915-921.
- [5] J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339–343.
- [6] S.H. Kulkarni, Gleason-Kahane-Żelazko theorem for real Banach algebras, J. Math. Phys. Sci. 18 (1983/84), Special Issue, S19-S28.
- [7] T. Miura, S.-E. Takahasi, and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 2005, no. 4, 435–441.
- [8] A.R. Sourour, The Gleason-Kahane-Żelazko theorem and its generalizations, in: J. Zemánek (ed.), Functional Analysis and Operator Theory, Banach Center Publ., 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 327–331.
- [9] E.C. Titchmarsh, The Theory of Functions, Reprint of the second (1939) edition, Oxford University Press, Oxford, 1976.
- [10] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83–85.
- [11] A. Zivari-Kazempour, A characterisation of 3-Jordan homomorphisms on Banach alqebras, Bull. Aust. Math. Soc. 93 (2016), no. 2, 301–306.
- [12] A. Zivari-Kazempour, Automatic continuity of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc. 33 (2018), no. 1, 165–170.
- [13] A. Zivari-Kazempour, When is a bi-Jordan homomorphism bi-homomorphism?, Kragujevac J. Math. 42 (2018), no. 4, 485–493.
- [14] A. Zivari-Kazempour, Characterization of n-Jordan homomorphisms and their automatic continuity on Banach algebras, Ann. Univ. Ferrara (2022). DOI: 10.1007/s11565-022-00425-6

DEPARTMENT OF MATHEMATICS AYATOLLAH BORUJERDI UNIVERSITY BORUJERD IRAN

e-mail: zivari@abru.ac.ir, zivari6526@gmail.com