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GLEASON-KAHANE-ZELAZKO THEOREM
FOR BILINEAR MAPS

ABBAS ZIVARI-KAZEMPOUR

Abstract. Let A and B be two unital Banach algebras and 2l = A x B. We
prove that the bilinear mapping ¢: 2 — C is a bi-Jordan homomorphism if and
only if ¢ is unital, invertibility preserving and jointly continuous. Additionally,
if 2 is commutative, then ¢ is a bi-homomorphism.

1. Introduction and preliminaries

Throughout the paper, let A and B be two unital Banach algebras, over
the complex field C, with unit elements e; and es, respectively.

A linear map f: A — B is called unital if f(e;) = es and it is said
to preserves invertibility if a € Inv(A) implies that f(a) € Inv(B), where
Inv(A) stands for the set of all invertible elements of A. In the case B = C,
the invertibility preserving property simply means that f(a) # 0 for every
a € Inv(A).

A linear map f: A — B is called Jordan homomorphism if

f(ab+ba) = f(a)f(b) + f(b)f(a), a,beE A,

or equivalently, f(a?) = f(a)? for all a € A.
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Clearly, each homomorphism is a Jordan homomorphism, but the converse
is not valid in general. For example, it is proved (see [3]) that some Jordan
homomorphism on the polynomial rings can not be homomorphism. Other
examples demonstrated by the author can be found in [I4].

The following famous characterization of Jordan homomorphisms is due
to Zelazko [10] (see also [7]).

THEOREM 1.1 ([10, Theorem 1|). Ewvery Jordan homomorphism from Ba-
nach algebra A into a semisimple commutative Banach algebra B is a homo-
morphism.

Concerning characterization of Jordan homomorphisms and their auto-
matic continuity on Banach algebras, we refer the reader to [11} 12} [14] and
references therein.

Let A be a Banach algebra and f: A — C be a unital invertibility pre-
serving linear functional. When is f multiplicative?

One of the earliest results in this area is the following, which was obtained
independently by Gleason [2], Kahane and Zelazko 5], and now known as the
Gleason-KahaneZelazko theorem (see also [1]).

THEOREM 1.2. Let A be a unital Banach algebra and f: A — C be a unital
linear functional. If for every a € A,

fla) €o(a) ={A€C: Xe; —a ¢ Inv(A)},
or equivalently, f(a) # 0 for every a € Inv(A), then f is multiplicative.

REMARK 1.3. It should be pointed out that:

(i) Theorem first was proved for commutative Banach algebra A, and
then Zelazko by proving Theorem showed that the conclusion also
holds for non-commutative case.

(ii) It follows from the hypotheses of Theorem that f is continuous.
Indeed, let a € A with ||a|| < 1. Then e; — a is invertible and hence
f(ex —a) # 0. Therefore f(a) # 1 for all a € A with ||a| < 1. This
implies that f is continuous.

A generalization of Theorem to real Banach algebra was proved in [6].
Subsequently several generalizations of this result were published by many
authors. See for example, the interesting articles by Jarosz [4] and Sourour [§].
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Throughout the paper, we assume that 2 = A x B. Then 2 becomes a
Banach algebra with the multiplication

(a,b)(z,y) = (az,by), (a,b),(z,y) € AX B,
and norm
[(a,b)[| := lal| + [/b]|-

Let D be a complex Banach algebra and ¢: 2 — D be a bilinear map. Then ¢
is called bounded if there is a real number M such that ||¢(a,b)| < M||all|b]|
for all (a,b) € 2.

Obviously, ¢ is bounded if and only if it is jointly continuous. A bilinear
map ¢ is called bi-homomorphism if for all (a,b), (z,y) € 2,

plaz,by) = ¢(a,b)e(z,y),
and it is called bi-Jordan homomorphism if
p(a®,b%) = ¢(a,b)*,  (a,b) €2,

Clearly, each bi-homomorphism is a bi-Jordan homomorphism, but the con-
verse is not true, in general. For example, take

a={[s D:aver)

Let B be the algebra A with an identity matrix I adjoined. Define the bilinear
mapping ¢: A — A by ¢(x,y) = zy. Then ¢ is a bi-Jordan homomorphism,
while it is not a bi-homomorphism. Indeed, let

a b s t c d
u:[o 0}, v:[o 0}, x:[o O]’ and y=1.

Then (u,v), (z,y) € A, but

p(uz, vy) = [“53 ‘ﬂ 7 h‘ojc a(s,d] = ¢(u,v)p(x,y).

The aim of this paper is to investigate the Gleason-KahaneZelazko the-
orem for bilinear maps.
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2. Main results

We commence with the following lemma which proof is straightforward.

LEMMA 2.1. Suppose that ¢: A — C is a bi-Jordan homomorphism. Then
for every (a,b), (z,y) € A,

(1) p(ax + xa,b?) = 2p(x, b)p(a,b),
(2) p(a®, by +yb) = 2¢(a,b)p(a, y).

LEMMA 2.2. Let ¢: A — C be a bi-Jordan homomorphism. Then for all
(z,y) € A,

e, y) = ¢z, e2)p(er,y).
ProOOF. By our assumpion
(2.1) o(@®,y%) = e(z,y)%, (z,y) €A
Replacing = by © +e; and y by y + ez in , we get
(2.2) oa®+2x+e,y? + 2y +e) = plx+er,y+e)

By applying Lemma 1) for a = e; and (2) for b = ey, respectively, we
obtain

(2.3)  w(22,y°) = 2p(x,y)¢(e1,y), and (2% 2y) = 2p(z, e2) (2, y).
It follows from (2.1, (2.2)) and (2.3)) that

90(3:> y) = 90(377 62)@0(61, y)>

for all (x,y) € 2, as required. O

We mention that when studying invertibility preserving bilinear maps be-
tween unital Banach algebras, there is no loss of generality in assuming that
the map is unital. Indeed, if p: A — C preserves invertibility, then ¢(eq,es)
is invertible in C and we can instead work with the bilinear map : A — C,
defined by ¥ (z,y) = p(e1,e2) to(z,y), for all (x,y) € 2. Then ¢ is unital
and preserves invertibility.

THEOREM 2.3. Let ¢ be a bilinear map from 2 into C. If ¢ preserves
invertibility, then ¢ is continuous at (z,e2) and (e1,y).
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Proor. Without loss of generality let p(eq, e2) = 1. Suppose that (z,ez2) €
A with [|z]] < 1. Then (e; — z,e2) € Inv(2l). Since ¢ preserves invertibil-
ity, p(e1 — x,e2) # 0 and hence we get p(z,e2) # ¢(e1,e2) = 1. Therefore
o(x,ez) # 1 for all (z,e2) € A with ||z|| < 1. Let |p(z,e2)| > 1, and take

Then |ja|| < 1 and ¢(a,ez) = 1, which is a contradiction. Consequently,
lp(z,e2)] < 1, for all (z,e2) € A with ||z|| < 1. If we replace x by AT
then we obtain |p(x,e2)| < 2||z| for all (x,e2) € A. Thus, ¢ is continuous at
(z,ez). Similarly, ¢ is continuous at (e1,y). O

As a consequence of Theorem [2.3] we get the next corollary.

COROLLARY 2.4. Suppose that p: A — C is a bi-Jordan homomorphism.
If ¢ preserves invertibility, then o is jointly continuous.

PrROOF. By Theorem for all (z,e2), (e1,y) € A,

[o(z,e2)] < 2|z and  p(er, )| < 2yl

Now it follows from Lemma [2.2] that

lp(x,y)| = [p(z, e2)p(er,y)| < |o(z, e2)||e(er, y)| < 4llzfl|lyll,

for all (z,y) € 2. Thus, ¢ is bounded and so it is jointly continuous. O
We may formulate now our main result.

THEOREM 2.5. Let p: 24 — C be a bilinear map. Then ¢ is a bi-Jordan
homomorphism if and only if the following conditions hold:

(i) ¢ler,e2) =1,
(ii) ¢ is jointly continuous,
(iii) ¢ preserves invertibility.

PROOF. First suppose that ¢ is a bi-Jordan homomorphism. Then clearly,
¢(er,ez) = 1. Let (z,y) € Inv(A). By Lemma[2.1]

-1

20(xx™ ", e2) = gp(:ca:_l + e, er) = 290(%,62)30(.1’_1, €2),

and

20(e1,yy ™) = pler,yyt +y ty) = 2p(er, y)pler, y ).
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Thus, from Lemma [2.2) we get

1 =p(e1,e2)

rx 17 62)90(617 yyil)
z,e2)p(a " e2)llpler, y)eler, y "))
p(z, e2)p(en, y)llp™" ea)pler,y™ )]
= o(z,y)e(a™ !y ).

Consequently, o(z,y) ™t = p(x~1,y~1), for all (z,y) € Inv(A) and therefore
preserves invertibility. Now the joint continuity of ¢ follows from Corollary [2.4]

For the converse let conditions (i), (ii) and (iii) hold. Let (z,y) € 2 be
fixed and define I': C — C by

[(z) = p(e**, ™).
Then T is an entire function and I'(z) # 0 for all z € C, because (e**,e*Y) €
Inv(2A). So, there exists entire function f such that I'(z) = e/(*) for all z € C.
Thus by Hadamard’s factorization theorem ([9, p. 250]) there exist o, 8 € C
such that f(z) = az + . Since
1 =g(er,e) =T(0) = €P,

we have 8 = 0. Therefore

(e*® eY) =T(z) = e/ ®) = 22,

and hence

2™ = Z"y" = 2"a
(2.4) @(61%—27,62—1—2 n! ) :(p(ezm7ezy):eaz:1_’_z -
n=1 n=1

By taking z = 0 in (2.4) and comparing coefficients, we get

(25> @(61? y)n =a" = ()0(617 yn),
for all n € N. Similarly,

n

(2.6) Pl e2)" = a" = p(x

n

782)-
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Comparing coefficients z, 22 and 2% in l , respectively, we obtain
(P) ple1,y) + ¢(z,e2) = a,

(Q) 90(617 y2) + QQO(.%‘, Z/) + (p($2, 62) = 042,

(R) @(a?,e2) + (e, y*) + 4oz, y®) 4 6p(z?,y?) + dp(2®,y) = o,
It follows from (P) and (Q) that

ple1,¥?) + 20(z,y) + (22, e2) = o

= p(e1,y)* + p(x,e2)* + 2¢(e1, y)p(z, €2),

and hence by ([2.5)), (2.6) we arrive at

(2.7) e(@,y) = oz, e2)p(e1,y),
for all (x,y) € 2. By (2.5) and (2.7]), we have
(28) 4@($,y3) = 4(70($7 €2 90(61, )

)
:4@($,62)(p(61, ) (elqu)
= dp(z,y)p(e1, ).

Similarly, . ) and (2.7)), give

(2.9) (2%, y) = dp(z,y)p(a?, e2).

By applying equations (Q), (R) and equalities (2.8)), we get

(2.10) dp(z,y)® + 20(2%, e2)p(e1,y) = 6p(a?,°).

It follows from and ( that p(22,y?) = (x,y)? for all (z,y) € 2A.
This completes the proof O

From Theorem [2.5| and [I3 Theorem 2.1], we get the next result.
COROLLARY 2.6. Let ¢: A — C be a bilinear map such that the conditions
(i), (ii) and (iii) of Theorem [2.5] hold. If A is commutative, then ¢ is a bi-

homomorphism.

Let ¢: A — C be a bilinear map. We say that 2 is commutative with
respect to ¢ or g-commutative if for all (a,b), (x,y) € 2,

o(ax,y) = p(za,y), and ¢(z,by) = p(z,yb).

Clearly, if 2 is commutative, then it is p-commutative. The converse is false
in general. The following example illustrates this fact.
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EXAMPLE 2.7. Let

A = {({201 ZOQ] ; [u(])l u(ﬂ) D21, 22, W1, W2 GC},

and define ¢: A — C by ¢(z,y) = z1w;, where

N B ) _ w1 w2
=i i el

Then it is easy to check that 2 is ¢-commutative, but neither 2 is unital nor
commutative.

The following theorem characterizes bi-Jordan homomorphism.

THEOREM 2.8. FEwery bi-Jordan homomorphism ¢ from @-commutative
Banach algebra A into a semisimple commutative Banach algebra D is a bi-
homomorphism.

PrOOF. We first assume that D = C and let ¢: 2 — C be a bi-Jordan
homomorphism. By Lemma [2.2] for all (z,y) € 2, ¢(z,y) = ¢(z,e2)p(e1,y).
Replacing x by ax and y by by, we get
(2.11) p(az,by) = p(az, e2)p(e1, by),
for all (a,b), (z,y) € A. By Lemma and p-commutativity of 2l we have

(2.12) p(ax,e2) = @(x,e2)p(a,ez) and p(e1,by) = ¢(e1,y)p(e1,d).

Hence, by (2.11) and (2.12]),

p(az,by) = p(ax, e2)p(e1, by)
= [p(x, e2)@(a, e2)][p(e1, y)p(e1, )]
= [p(a, e2)p(e1, b)][p(x, e2)p(e1, )]
= p(a,b)p(z, ).

Thus, ¢(azx,by) = ¢(a,b)e(x,y), for all (a,b), (x,y) € A.

Now suppose that D is semisimple and commutative. Let 9t(D) be the
maximal ideal space of D. We associate with each f € (D) a function
s A — C defined by

@f(aa b) = f(gp(a, b))a (av b) S8
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Pick f € M(D) arbitrary. Then ¢y is a bi-Jordan homomorphism, therefore
by the above argument it is a bi-homomorphism. From definition of ¢ we
have

f(plaz,by)) = f(p(a; ) f((z,9)) = f(ela, b)p(z,y)).
Since f € M(D) was arbitrary and D is assumed to be semisimple,
plaz, by) = ¢(a, b)p(z,y),

for all (a,b), (z,y) € A. O

The following result is a consequence of Theorem and Theorem 2.8

COROLLARY 2.9. Let ¢: A — C be a bilinear map such that the conditions
(i), (ii) and (iii) of Theorem hold. If 2 is p-commutative, then ¢ is a
bi-homomorphism.

Next we generalize Theorem for non semisimple Banach algebra D.

THEOREM 2.10. FEwery bi-Jordan homomorphism ¢ from @-commutative
Banach algebra 2 into a commutative Banach algebra D is a bi-homomorphism.

PROOF. Let ¢: 2l — D be a bi-Jordan homomorphism. Then ¢(a?,b?) =
©(a,b)? for all (a,b) € A. Replacing a by a + x and b by b+ y, we get

(2.13) p(ax + za, by + yb) = 2¢(a, b)o(x,y) + 2¢(a, y)(,b),
for all (a,b), (z,y) € 2. It follows from (2.13)) and ¢-commutativity of 2 that

dp(azx,by) = p(ax + za,by + yb)
=2¢(a,b)p(z,y) + 2¢(a,y)p(z,b).

Hence,
(2.14) 2p(azx,by) = ¢(a,b)p(z,y) + ¢(a, y)p(z,b),
for all (a,b), (z,y) € A. By Lemma[2.2]
p(a,b)p(z,y) = [p(a, e2)p(er, b)][p(x, e2)p(e1,y)] = p(a,y)p(z,b).

Consequently, from ([2.14) we deduce that ¢ is a bi-homomorphism. O



Gleason-Kahane—Zelazko theorem for bilinear maps 237

Acknowledgments. The author would like to thank the referees for prov-

ing valuable comments and helping in improving the content of this paper.

(1]
2]
(3]
[4]
[5]
[6]
[7]

8]

9]
[10]
[11]
[12]
[13]

[14]

References

F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York,
1973.

A.M. Gleason, A characterization of mazimal ideals, J. Analyse Math. 19 (1967),
171-172.

N. Jacobson and C.E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math.
Soc. 69 (1950), no. 3, 479-502.

K. Jarosz, Generalizations of the Gleason—Kahane—Zelazko theorem, Rocky Mountain
J. Math. 21 (1991), no. 3, 915-921.

J.-P. Kahane and W. Zelazko, A characterization of mazimal ideals in commutative
Banach algebras, Studia Math. 29 (1968), 339-343.

S.H. Kulkarni, Gleason-Kahane—Zelazko theorem for real Banach algebras, J. Math.
Phys. Sci. 18 (1983/84), Special Issue, S19-S28.

T. Miura, S.-E. Takahasi, and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan
homomorphisms on Banach algebras, J. Inequal. Appl. 2005, no. 4, 435-441.

A.R. Sourour, The Gleason-Kahane—Zelazko theorem and its generalizations, in:
J. Zemének (ed.), Functional Analysis and Operator Theory, Banach Center Publ., 30,
Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 327-331.

E.C. Titchmarsh, The Theory of Functions, Reprint of the second (1939) edition, Ox-
ford University Press, Oxford, 1976.

W. Zelazko, A characterization of multiplicative linear functionals in complex Banach
algebras, Studia Math. 30 (1968), 83-85.

A. Zivari-Kazempour, A characterisation of 3-Jordan homomorphisms on Banach al-
gebras, Bull. Aust. Math. Soc. 93 (2016), no. 2, 301-306.

A. Zivari-Kazempour, Automatic continuity of n-Jordan homomorphisms on Banach
algebras, Commun. Korean Math. Soc. 33 (2018), no. 1, 165-170.

A. Zivari-Kazempour, When is a bi-Jordan homomorphism bi-homomorphism?, Kra-
gujevac J. Math. 42 (2018), no. 4, 485-493.

A. Zivari-Kazempour, Characterization of n-Jordan homomorphisms and their auto-
matic continuity on Banach algebras, Ann. Univ. Ferrara (2022). DOI: 10.1007/s11565-
022-00425-6

DEPARTMENT OF MATHEMATICS

AvaroLLAH BoORUJERDI UNIVERSITY
BORUJERD

IrAN

e-mail: zivari@abru.ac.ir, zivari6526@gmail.com


https://doi.org/10.1007/s11565-022-00425-6
https://doi.org/10.1007/s11565-022-00425-6

	1. Introduction and preliminaries
	2. Main results
	Acknowledgments
	References

