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SOME OBSERVATIONS ON THE GREATEST
PRIME FACTOR OF AN INTEGER

Rafael Jakimczuk

Abstract. We examine the multiplicity of the greatest prime factor in k-full
numbers and k-free numbers. We generalize a well-known result on greatest
prime factors and obtain formulas related with the Riemann zeta function.

1. Introduction

We examine the multiplicity of the greatest prime factor in k-full numbers
and k-free numbers (Theorem 2.1 and Theorem 2.2). We define some new
arithmetical functions related with the greatest prime factor and obtain in
Theorem 2.3 asymptotic formulas related with the Riemann zeta function.
Finally in Theorem 2.4 we obtain an asymptotic formula for the sum of m-th
powers of greatest prime factors obtaining a better result than the previous
one of the author.

Let us consider the prime factorization of a positive integral number n,
namely n = qs11 · · · qsrr , where the qi (i = 1, . . . , r) are its distinct prime
factors and the si (i = 1, . . . , r) are their respective multiplicities. We shall
need the following well-known arithmetical functions, σ(n) is the sum of the
positive divisors of n, k(n) = q1 · · · qr is the kernel of n and hence σ(k(n)) =
(q1 + 1) · · · (qr + 1).

Received: 03.03.2022. Accepted: 02.11.2022. Published online: 23.11.2022.
(2020) Mathematics Subject Classification: 11A99, 11B99.
Key words and phrases: greatest prime factor, zeta function.
c©2022 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
CC BY (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/


68 Rafael Jakimczuk

A positive integer n is square-free if and only if its prime factorization has
not factors with an exponent larger than one, that is, n = q1 · · · qr, where
the qi (i = 1, . . . , r) are distinct. Let Q2(x) denote the cardinality of the set
of square-free numbers not exceeding x. It is well-known that these numbers
have density 1

ζ(2) =
6
π2 , where ζ(s) denotes the Riemann zeta function. More

exactly,

Q2(x) =
1

ζ(2)
x+O(

√
x) =

6

π2
x+O(

√
x),(1.1)

where the error term can be improved.

Lemma 1.1. Let Qq1···qr(x) denote the number of square-free not exceeding
x relatively prime to the square-free q1 · · · qr. The following formula holds

Qq1···qr(x) =
6

π2

q1 · · · qr
(q1 + 1) · · · (qr + 1)

x+O(2r
√
x).

Proof. See [4]. �

Let s ≥ 2 be an arbitrary fixed integer. A positive integer is said to be
s-full if all the factors in its prime factorization have exponent greater than
or equal to s. That is, the number qs11 · · · qsrr is s-full if si ≥ s (i = 1, . . . , r).
Let ns denote a general s-full number. If s = 1 then we obtain the positive
integers. If s = 2 these numbers are called square-full or powerful.

Lemma 1.2. Let s ≥ 1 be an arbitrary fixed integer. Let As(x) denote the
cardinality of the set of s-full numbers not exceeding x. We have

As(x) =
6

π2
Csx

1
s + o

(
x

1
s

)
,

where
Cs =

∞∑
n=1

1

σ(k(n))

1

n
1
s

=
∏
p

(
1 +

1

(p+ 1)(p
1
s − 1)

)
.

Proof. See [5]. �

Lemma 1.3. Let s ≥ 1 be an arbitrary fixed integer. The following series
converges ∑

Q

1

Q
1
s

,

where Q runs over the (s+ 1)-full numbers Q = qs11 · · · qsrr .
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Proof. Let an denote the n-th (s + 1)-full number. We have (see
Lemma 1.2) As+1(x) ∼ c1 s+1

√
x, where c1 is a constant. Therefore if x = an

then we obtain n = As+1(an) ∼ c1 s+1
√
an, that is, an ∼ ns+1

cs+1
1

. The lemma

follows by the comparison criterion, since the series
∑

1

n
s+1
s

converges. The
lemma is proved. �

Let us consider the prime factorization of a positive integral number n,
namely n = qs11 · · · qsrr , where the qi (i = 1, . . . , r) are the distinct prime
factors and the si (i = 1, . . . , r) are their respective multiplicities. Let k ≥ 2
be an arbitrary fixed positive integer. We shall say that n is k-free if si ≤ k−1
(i = 1, . . . , r). In particular, if k = 2 we obtain the square-free numbers. Let
sk denote a general k-free number. Let Qk(x) be the cardinality of the set
of k-free numbers not exceeding x. It is well-known that these numbers have
density 1

ζ(k) , that is,

Qk(x) =
1

ζ(k)
x+O

(
x1/k

)
, (k ≥ 2).(1.2)

In particular, if k = 2 then equation (1.2) becomes equation (1.1).
We shall need the following well-known lemmas.

Lemma 1.4. We have∑
p≤x

1

p
= log log x+M +O (δc(x)) ,

where M ≈ 0, 26149 . . . is the Mertens’s constant and δc(x) is the usual num-
ber theoretic function δc(x) = e−c(log x)

3/5(log log x)−1/5

for some c > 0. Note
that for all positive integer N we have δc(x) = O

(
1

logN x

)
.

Lemma 1.5. Let π(x) denote the prime counting function. We have

π(x) =
∑
p≤x

1 = Li(x) +O (xδc(x)) ,

where Li(x) =
∫ x
2

dt
log t is the logarithmic integral.

We also shall need the following fundamental lemma.
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Lemma 1.6. Let j, ` nonnegative integers and α a positive integer. Then
for all positive integer N

∑
p≤x

1
α

p`
{
x

pα

}j
=
x
`+1
α

log x

N−1∑
h=0

aj,h,`,α
(log x)h

+O

(
x
`+1
α

(log x)N+1

)
,

where

aj,h,`,α =

∫ ∞
1

{u}j (log u)h

u1+
`+1
α

du

and (as usual) {x} = x− bxc is the fractional part of x.
The error term depends at most on j, `, α,N.

Proof. See [3]. �

Let us consider the prime factorization of a positive integer n, namely
n = qs11 · · · qsrr , where q1 > q2 > · · · > qr are the distinct prime factors and
the si (i = 1, . . . , r) are the multiplicities. Note that q1 is the greatest prime
factor of n and note that n can be considered as a product of prime powers
qsii (i = 1, . . . , r).

Let G(n) = q1 denote the greatest prime factor in the prime factorization
of n and let A(n) denote the sum of all prime factors in the prime factorization
of n, that is, A(n) = s1q1 + s2q2 + · · · + srqr. Alladi and Erdős ([1]) proved
the following formulas

∑
n≤x

G(n) =
π2

12

x2

log x
+O

(
x2

log2 x

)
,

∑
n≤x

A(n) =
π2

12

x2

log x
+O

(
x2

log2 x

)
.

Therefore ∑
n≤x

A(n) ∼
∑
n≤x

G(n) ∼ π2

12

x2

log x
.(1.3)

Below, in Remark 3.1, we shall prove (1.3) and more precise formulas, as
a consequence of our results in Theorem 2.3.

We shall establish the following definitions. Let ak(n) be the sum of prime
powers qsii such that si = k. If all prime powers qsii are such that si 6= k we
put ak(n) = 0. Let Ak(n) be the sum of prime powers qsii such that si ≥ k.
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If all prime powers qsii are such that si < k we put Ak(n) = 0. We put
gk(n) = qs11 if s1 = k and gk(n) = 0 if s1 6= k. We put Gk(n) = qs11 if
s1 ≥ k and Gk(n) = 0 if s1 < k. We recall that q1 is the greatest prime
factor of n. For example, a4(19411555) = 194 , a5(19411555) = 115 + 55,
a3(19

411555) = 0, A4(19
411555) = 194 + 115 + 55, A3(19

411555) = 194 +
115 + 55, A8(19

411555) = 0, g4(19411555) = 194, gh(19411555) = 0 (h 6= 4),
G2(19

411555) = 194, G7(19
411555) = 0.

Alladi and Erdős ([1]) proved that

∑
n≤x

G(n) =
ζ(2)

2

x2

log x
+O

(
x2

log2 x

)
.(1.4)

Jakimczuk ([6]) proved the following generalization

∑
n≤x

G(n)m ∼ ζ(m+ 1)

m+ 1

xm+1

log x
,

where m is an arbitrary fixed positive integer.
In Theorem 2.4 we obtain a more precise result.

2. Main Results

Theorem 2.1. Let s ≥ 1 be an arbitrary fixed integer. Let Gs(x) denote
the cardinality of the set of s-full numbers ns not exceeding x such that the
greatest prime factor of ns has multiplicity s in the prime factorization of ns.
Then Gs(x) ∼ As(x). That is, in almost all s-full numbers the greatest prime
factor has multiplicity s. If s = 1 then in almost all integers the greatest prime
factor has multiplicity 1.

Theorem 2.2. Let k ≥ 3 be an arbitrary fixed integer. Let Hk(x) denote
the cardinality of the set of k-free numbers sk not exceeding x such that the
greatest prime factor of sk has multiplicity 1 in the prime factorization of sk.
Then Hk(x) ∼ Qk(x). That is, in almost all k-free numbers sk the greatest
prime factor has multiplicity 1.
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Theorem 2.3. Let k and N be arbitrary fixed positive integers. We have
the following asymptotic formulas

∑
n≤x

ak(n) =
x1+

1
k

log x

N−1∑
h=0

bh,k
(log x)h

+O

(
x1+

1
k

(log x)N+1

)
,(2.1)

∑
n≤x

Ak(n) =
x1+

1
k

log x

N−1∑
h=0

bh,k
(log x)h

+O

(
x1+

1
k

(log x)N+1

)
,(2.2)

∑
n≤x

gk(n) =
x1+

1
k

log x

N−1∑
h=0

bh,k
(log x)h

+O

(
x1+

1
k

(log x)N+1

)
,(2.3)

∑
n≤x

Gk(n) =
x1+

1
k

log x

N−1∑
h=0

bh,k
(log x)h

+O

(
x1+

1
k

(log x)N+1

)
,(2.4)

where the error terms depend at most on k and N and where bh,k depends on
the zeta function ζ(s) = ζ(0)(s) and its successive derivatives ζ(i)(s) in the
point s = 1 + 1

k , as it is showed by the following formula

bh,k = h!

h∑
i=0

(−1)i

i!

ζ(i)
(
1 + 1

k

)(
1 + 1

k

)h+1−i .(2.5)

The first coefficient is

b0,k =
1

1 + 1
k

ζ

(
1 +

1

k

)
.

Therefore we have

∑
n≤x

Ak(n) ∼
∑
n≤x

ak(n) ∼
∑
n≤x

gk(n) ∼
∑
n≤x

Gk(n) ∼
1

1 + 1
k

ζ

(
1 +

1

k

)
x1+

1
k

log x
.

Theorem 2.4. Let m be an arbitrary fixed positive integer. Then

∑
n≤x

G(n)m =
ζ(m+ 1)

m+ 1

xm+1

log x
+O

(
xm+1

log2 x

)
.(2.6)

If m = 1 then equation (2.6) becomes equation (1.4).
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3. Proofs

Proof of Theorem 2.1. If the s-full number ns is of the form qs, where
q is a square-free, then clearly the greatest prime factor of ns has multiplicity
s. The cardinality of the set of the numbers ns = qs not exceeding x, that is,
qs ≤ x, is (see (1.1))

6

π2
x1/s + o

(
x1/s

)
.(3.1)

Let us consider the prime factorization of a (s + 1)-full number Q, that is,
Q = qr11 · · · q

rt
t . Let us consider the s-full numbers ns of the form qsQ, where

q is a square-free, gcd(q,Q) = 1 and Q is fixed. Except by a finite number of
cases, the greatest prime factor in qsQ is in the prime factorization of q and
consequently it has multiplicity s. Therefore the number of these numbers qsQ
not exceeding x (qsQ ≤ x) such that the greatest prime factor has multiplicity
s will be (see Lemma 1.1)

6

π2

q1 · · · qt
(q1 + 1) · · · (qt + 1)

x1/s

Q1/s
+ o

(
x1/s

)
.(3.2)

Let ε > 0. We choose B such that (see Lemma 1.3)∑
Q>B

1

Q1/s
< ε.(3.3)

Therefore we have (see (3.1), (3.2), (3.3) and Lemma 1.2)

Gs(x) =
6

π2

1 +
∑
Q≤B

q1 · · · qt
(q1 + 1) · · · (qt + 1)

1

Q1/s

x1/s + o
(
x1/s

)
+ F (x)

=
6

π2
Csx

1/s −

∑
Q>B

q1 · · · qt
(q1 + 1) · · · (qt + 1)

1

Q1/s

+ o
(
x1/s

)
+ F (x),(3.4)

where (see (3.3))

0 ≤ F (x) ≤
∑

x≥Q>B

⌊
x1/s

Q1/s

⌋
≤
∑
Q>B

x1/s

Q1/s
≤ εx1/s.(3.5)
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Note that

1 +
∑
Q

q1 · · · qt
(q1 + 1) · · · (qt + 1)

1

Q
1
s

=
∏
p

(
1 +

p

p+ 1

(
1

p
s+1
s

+
1

p
s+2
s

+ · · ·
))

=
∏
p

1 +
1

p+ 1

1

p
1
s

1

1− 1

p
1
s


=
∏
p

(
1 +

1

p+ 1

1

p
1
s − 1

)
= Cs.

Consequently (see (3.4) and (3.5))∣∣∣∣Gs(x)x1/s
− 6

π2
Cs

∣∣∣∣ ≤ ε+ ε+ ε = 3ε (x ≥ xε).

That is, since ε > 0 can be arbitrarily small,

Gs(x) ∼
6

π2
Csx

1/s ∼ As(x).

The theorem is proved. �

Proof of Theorem 2.2. The proof is identical to the proof of Theo-
rem 2.1. If the k-free number is a square-free q then clearly the greatest prime
factor of q has multiplicity 1. The number of these numbers not exceeding x,
that is, q ≤ x, is (see (1.1))

6

π2
x+ o (x) .

Let us consider the prime factorization of a square-full number Q, that is,
Q = qr11 · · · q

rt
t , where 2 ≤ ri ≤ k − 1 (i = 1, . . . , t). Let us consider the k-

free numbers sk of the form qQ, where q is a square-free, gcd(q,Q) = 1 and
Q is fixed. Except for a finite number of cases the greatest prime factor in
sk = qQ is in the prime factorization of q and consequently it has multiplicity
1. Therefore the number of these numbers sk = qQ not exceeding x (qQ ≤ x)
such that the greatest prime factor has multiplicity 1 will be (see Lemma 1.1)

6

π2

q1 · · · qt
(q1 + 1) · · · (qt + 1)

x

Q
+ o (x) .
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Now, the proof follows as the proof of Theorem 2.1. Note that

6

π2

1 +
∑
Q

q1 · · · qt
(q1 + 1) · · · (qt + 1)

1

Q


=
∏
p

(
1− 1

p2

)∏
p

(
1 +

p

p+ 1

(
1

p2
+ · · ·+ 1

pk−1

))

=
∏
p

(
p2 − 1

p2

)∏
p

(
1 +

1

p2 − 1

(
1− 1

pk−2

))
=
∏
p

(
1− 1

pk

)

=
1

ζ(k)
.

The theorem is proved. �

Proof of Theorem 2.3. It is well-known the asymptotic formula

Li(x) =
x

log x

N−1∑
h=0

h!

(log x)h
+ON

(
x

(log x)N+1

)
.(3.6)

We have (Lemma 1.4, Lemma 1.5, Lemma 1.6 and equality (3.6))

∑
n≤x

ak(n) =
∑
p≤x

pk
(⌊

x

pk

⌋
−
⌊

x

pk+1

⌋)

= xπ
(
x

1
k

)
− x

∑
p≤x

1
k+1

1

p
−
∑
p≤x

1
k

pk
{
x

pk

}
+

∑
p≤x

1
k+1

pk
{

x

pk+1

}

= x
(
Li
(
x

1
k

)
+O

(
x

1
k δc

(
x

1
k

)))
− x

(
log log x

1
k +M +O

(
δc

(
x

1
k+1

)))
−

(
x1+

1
k

log x

N−1∑
h=0

a1,h,k,k
(log x)h

+O

(
x1+

1
k

(log x)N+1

))

+

(
x

log x

N−1∑
h=0

a1,h,k,k+1

(log x)h
+O

(
x

(log x)N+1

))
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= xLi
(
x

1
k

)
− x1+

1
k

log x

N−1∑
h=0

a1,h,k,k
(log x)h

+O

(
x1+

1
k

(log x)N+1

)

=
x1+

1
k

log x

N−1∑
h=0

bh,k
(log x)h

+O

(
x1+

1
k

(log x)N+1

)
,(3.7)

where

bh,k = kh+1h!− a1,h,k,k = kh+1h!−
∫ ∞
1

{u} (log u)h

u2+
1
k

du.(3.8)

Now, by application of Euler-Maclaurin summation formula ([2]), we obtain

ζ(h)(s) =
(−1)hh!

(s− 1)h+1
+ (−1)hh

∫ ∞
1

{u} logh−1 u
us+1

du

+ (−1)h+1s

∫ ∞
1

{u} logh u
us+1

du.

Therefore by mathematical induction we find that

ζ(s) =
s

s− 1
− s

∫ ∞
1

{u}
us+1

du,

−ζ ′(s) = −ζ(s)
s

+
s

(s− 1)2
− s

∫ ∞
1

{u} log u
us+1

du,

and in general

∫ ∞
1

{u} logh u
us+1

du =
h!

(s− 1)h+1
+ h!

h∑
i=0

(−1)i+1

i!

ζ(i)(s)

sh+1−i .(3.9)

Substituting s = 1 + 1
k into (3.9) and by application of (3.8) we obtain for-

mula (2.5). Therefore equality (2.1) is proved.
We have ∑

n≤x

Ak(n) =
∑
p≤x

pk
(⌊

x

pk

⌋
−
⌊

x

pk+1

⌋)
+ F (x)

=
∑
n≤x

ak(n) + F (x).(3.10)
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Note that the inequality ph > x holds for h =
⌊
log x
log 2

⌋
+ 1 > log x

log 2 ≥
log x
log p and

therefore we have

0 ≤ F (x) ≤
∑

p≤x
1
k+1

(
pk+1

⌊
x

pk+1

⌋
+ pk+2

⌊
x

pk+2

⌋
+ · · ·+ ph

⌊
x

ph

⌋)

≤ hx
∑

p≤x
1
k+1

1 ≤
(
log x

log 2
+ 1

)
xc

x
1
k+1

log x
1
k+1

= O

(
x1+

1
k

(log x)N+1

)
.(3.11)

Properties (3.10), (3.11) and (2.1) give equality (2.2).
Note that gk(n) ≤ ak(n) and hence formula (2.1) gives

∑
n≤x

gk(n) ≤
x1+

1
k

log x

N−1∑
h=0

bh,k
(log x)h

+O

(
x1+

1
k

(log x)N+1

)
.(3.12)

Note that if x
1
k+1 < p ≤ x

1
k then pk ≤ x and pk+1 > x. Now, the multiples

of pk not exceeding x are pk, pk2, . . . , pk
⌊
x
pk

⌋
, where

⌊
x
pk

⌋
< p. Therefore p is

the greatest prime factor of these numbers. Consequently, we have (see (3.7))

∑
n≤x

gk(n) ≥
∑

x
1
k+1<p≤x

1
k

pk
⌊
x

pk

⌋
= xπ

(
x

1
k

)
−
∑
pk≤x

pk
{
x

pk

}
− xπ

(
x

1
k+1

)

+
∑

p≤x
1
k+1

pk
{
x

pk

}
=
x1+

1
k

log x

N−1∑
h=0

bh,k
(log x)h

+O

(
x1+

1
k

(log x)N+1

)
,(3.13)

since

0 ≤
∑

p≤x
1
k+1

pk
{
x

pk

}
≤

∑
p≤x

1
k+1

pk ≤
(
x

1
k+1

)k ∑
p≤x

1
k+1

1

≤ c x

log x
= O

(
x1+

1
k

(log x)N+1

)

and

xπ
(
x

1
k+1

)
≤ x1+

1
k+1 = O

(
x1+

1
k

(log x)N+1

)
.

Inequalities (3.12) and (3.13) give formula (2.3).
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Finally, we have ∑
n≤x

Gk(n) =
∑
n≤x

gk(n) + F1(x),(3.14)

where (see (3.11))

0 ≤ F1(x) ≤ F (x) = O

(
x1+

1
k

(log x)N+1

)
.(3.15)

Properties (2.3), (3.14) and (3.15) give equality (2.4), which completes the
proof. �

Remark 3.1. If k = 1 then equalities (2.3) and (2.2) give

∑
n≤x

g1(n) =
x2

log x

N−1∑
h=0

bh,1
(log x)h

+O

(
x2

(log x)N+1

)
,

∑
n≤x

A1(n) =
x2

log x

N−1∑
h=0

bh,1
(log x)h

+O

(
x2

(log x)N+1

)
,

where A1(n) is the sum of the prime powers in the prime factorization of n,
that is, A1(n) = qs11 + qs22 + · · ·+ qsrr . Therefore, since siqi ≤ qsii (i = 1, . . . , r),
we have ∑

n≤x

g1(n) ≤
∑
n≤x

G(n) ≤
∑
n≤x

A(n) ≤
∑
n≤x

A1(n).

Therefore we obtain

∑
n≤x

G(n) =
x2

log x

N−1∑
h=0

bh,1
(log x)h

+O

(
x2

(log x)N+1

)
∼ π2

12

x2

log x
,

∑
n≤x

A(n) =
x2

log x

N−1∑
h=0

bh,1
(log x)h

+O

(
x2

(log x)N+1

)
∼ π2

12

x2

log x
.

Consequently
∑
n≤xG(n) and

∑
n≤xA(n) have the same asymptotic expan-

sion.
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Proof of Theorem 2.4. By the prime number theorem we have

π(x) =
x

log x
+O

(
x

log2 x

)
.

Abel’s summation gives

Sm(x) =
∑
p≤x

pm =
1

m+ 1

xm+1

log x
+O

(
xm+1

log2 x

)
.

That is

(3.16) Sm(x) =
∑
p≤x

pm =
1

m+ 1

xm+1

log x
+ f(x)

(
xm+1

log2 x

)
(x ≥ 2),

where |f(x)| < M for x ≥ 2. Note that M depends on m.
Let us consider the positive integer s =

⌊
(log x)

1
m

⌋
+ 1 and a positive

integer k such that 1 ≤ k ≤ s− 1. Now, consider the primes p such that x
s ≤

x
k+1 < p ≤ x

k . The numbers multiples of p not exceeding x are p, 2p, 3p, . . . , kp
and since p > k, if x is sufficiently large, we obtain that p is the greatest
prime factor of these k numbers. Hence if F (x) is the contribution to the sum∑
n≤xG(n)

m of the numbers not exceeding x such that their greatest prime
factor is in the interval

[
2, xs

]
then we have

∑
n≤x

G(n)m =

s−1∑
k=1

∑
x
k+1<p≤

x
k

kpm + F (x)

=

s−1∑
i=1

 ∑
x
s<p≤

x
i

pm

+ F (x) =
s−1∑
i=1

(
Sm

(x
i

)
− Sm

(x
s

))
+ F (x)

=

s−1∑
i=1

Sm

(x
i

)
− (s− 1)Sm

(x
s

)
+ F (x),(3.17)

where

(s− 1)Sm

(x
s

)
= O

(
xm+1

log2 x

)
,(3.18)

0 ≤ F (x) ≤
∑
p≤xs

pm
⌊
x

p

⌋
= x

∑
p≤xs

pm−1 = O

(
xm+1

log2 x

)
,(3.19)
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and (see (3.16))

s−1∑
i=1

Sm

(x
i

)
=

s−1∑
i=1

(
1

m+ 1

(x
i

)m+1 1

log
(
x
i

)+f (x
i

)(x
i

)m+1 1

log2
(
x
i

)).(3.20)

Now, we have the formula 1
1−t = 1+g(t)t, where g(t)→ 1 as t→ 0. Therefore

we have (see (3.20))

s−1∑
i=1

1

m+ 1

(x
i

)m+1 1

log
(
x
i

) =
xm+1

m+ 1

1

log x

s−1∑
i=1

1

im+1

(
1 + g

(
log i

log x

)
log i

log x

)

=
ζ(m+ 1)

m+ 1

xm+1

log x
− xm+1

(m+ 1) log x

∑
i≥s

1

im+1

+
xm+1

(m+ 1) log2 x

s−1∑
i=1

log i

im+1
g

(
log i

log x

)

=
ζ(m+ 1)

m+ 1

xm+1

log x
+O

(
xm+1

log2 x

)
,(3.21)

and (see (3.16))∣∣∣∣∣
s−1∑
i=1

f
(x
i

)(x
i

)m+1 1

log2
(
x
i

)∣∣∣∣∣ =
∣∣∣∣∣
s−1∑
i=1

f
(x
i

) xm+1

im+1

1

log2 x

1(
1− log i

log x

)2
∣∣∣∣∣

≤ 2Mζ(m+ 1)
xm+1

log2 x
.(3.22)

Substituting (3.21) and (3.22) into (3.20) and then substituting (3.20), (3.19)
and (3.18) into (3.17) we obtain (2.6). The theorem is proved. �
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