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SOME OBSERVATIONS ON THE GREATEST
PRIME FACTOR OF AN INTEGER

RAFAEL JAKIMCZUK

Abstract. We examine the multiplicity of the greatest prime factor in k-full
numbers and k-free numbers. We generalize a well-known result on greatest
prime factors and obtain formulas related with the Riemann zeta function.

1. Introduction

We examine the multiplicity of the greatest prime factor in k-full numbers
and k-free numbers (Theorem and Theorem [2.2). We define some new
arithmetical functions related with the greatest prime factor and obtain in
Theorem [2.3] asymptotic formulas related with the Riemann zeta function.
Finally in Theorem we obtain an asymptotic formula for the sum of m-th
powers of greatest prime factors obtaining a better result than the previous
one of the author.

Let us consider the prime factorization of a positive integral number n,
namely n = ¢j'---¢i", where the ¢; (¢ = 1,...,7) are its distinct prime
factors and the s; (i = 1,...,r) are their respective multiplicities. We shall
need the following well-known arithmetical functions, o(n) is the sum of the
positive divisors of n, k(n) = ¢y - - - ¢, is the kernel of n and hence o(k(n)) =
(@ +1)-- (g +1).
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A positive integer n is square-free if and only if its prime factorization has
not factors with an exponent larger than one, that is, n = ¢; - ¢,, where
the ¢; (i = 1,...,r) are distinct. Let Q2(x) denote the cardinality of the set
of square-free numbers not exceeding x. It is well-known that these numbers
have density %~ = -5, where ((s) denotes the Riemann zeta function. More

2 — m
exactly,

1 6
(1.1) Q2(z) = @x +0(Wr) = ZrT OW=),

where the error term can be improved.

LEMMA 1.1. Let Qq,...q,(z) denote the number of square-free not exceeding
x relatively prime to the square-free qq - - - q.. The following formula holds

_ 6 qi---qr .

PROOF. See [4]. O

Let s > 2 be an arbitrary fixed integer. A positive integer is said to be
s-full if all the factors in its prime factorization have exponent greater than
or equal to s. That is, the number ¢;* --- ¢S~ is s-fullif s, > s (i = 1,...,r).
Let ns denote a general s-full number. If s = 1 then we obtain the positive
integers. If s = 2 these numbers are called square-full or powerful.

LEMMA 1.2. Let s > 1 be an arbitrary fized integer. Let Ag(x) denote the
cardinality of the set of s-full numbers not exceeding x. We have

Aur) = 50t +o(at)),

where

> 1 1 1
@:demmzno+@ﬂmhw>

n=1 p
PROOF. See [5]. O

LEMMA 1.3. Let s > 1 be an arbitrary fized integer. The following series

converges 1
—
>

where @ runs over the (s + 1)-full numbers Q = ¢;* - - ¢".
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PROOF. Let a, denote the n-th (s + 1)-full number. We have (see
Lemma Asi1(z) ~ ¢1 *H/x, where ¢; is a constant. Therefore if z = a,

. . s+1
then we obtain n = Asiq(a,) ~ ¢1 *+a,, that is, a, ~ Zﬁ The lemma
1

follows by the comparison criterion, since the series > —L+ converges. The
n S
lemma is proved. O

Let us consider the prime factorization of a positive integral number n,
namely n = ¢i*--- ¢S, where the ¢; (¢ = 1,...,r) are the distinct prime
factors and the s; (i = 1,...,r) are their respective multiplicities. Let k > 2
be an arbitrary fixed positive integer. We shall say that n is k-free if s; < k—1
(i =1,...,r). In particular, if kK = 2 we obtain the square-free numbers. Let
sk denote a general k-free number. Let Qk(x) be the cardinality of the set
of k-free numbers not exceeding x. It is well-known that these numbers have
density ﬁ, that is,

1 1
(1.2) Qu(z) = 5@+ 0 (x /k) . (k>2).

In particular, if £ = 2 then equation ([1.2)) becomes equation (|1.1J).
We shall need the following well-known lemmas.

LEMMA 1.4. We have

1
Zi =loglogz + M + O (0.(x)),

p<z

where M =~ 0,26149. .. is the Mertens’s constant and 6.(x) is the usual num-
ber theoretic function 0.(x) = ecllog2)*/? (loglog ) ™/ for some ¢ > 0. Note

that for all positive integer N we have 0.(x) = O <#)

loghN x

LEMMA 1.5. Let w(z) denote the prime counting function. We have

m(z) =Y 1= Li(z) + O (xd(x)),

p<z

where Li(z) = [, % is the logarithmic integral.

We also shall need the following fundamental lemma.
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LEMMA 1.6. Let j, ¢ nonnegative integers and « a positive integer. Then
for all positive integer N

JE5%
¢ )t a]hfa X o
2. {pa} 1ogx Z (logz)" ((logx)N“>’

where

inia= [ {u)’ (log )"

1+e+1

and (as usual) {x} = x — |x] is the fractional part of x.
The error term depends at most on j,£,c, N.

PROOF. See [3]. O

Let us consider the prime factorization of a positive integer n, namely
n = q*---q:r, where g1 > g2 > --- > ¢, are the distinct prime factors and
the s; (i = 1,...,r) are the multiplicities. Note that ¢; is the greatest prime
factor of n and note that n can be considered as a product of prime powers
¢t i=1,...,r).

Let G(n) = ¢1 denote the greatest prime factor in the prime factorization
of n and let A(n) denote the sum of all prime factors in the prime factorization
of n, that is, A(n) = s1q1 + S2g2 + - -+ + 8,q,. Alladi and Erdés ([I]) proved
the following formulas

2 .2 2
> 6 =T +0 (i ).

e ogx log” z

w2 g2 x?
An) = — +O< )

; ( ) 12 logx loggx

Therefore

w2 z2

1.3 An) ~ S Gn) ~ = _

(13) > A~ 36 ~ Ty

Below, in Remark we shall prove and more precise formulas, as
a consequence of our results in Theorem [2.3]

We shall establish the following definitions. Let ax(n) be the sum of prime
powers ¢;" such that s; = k. If all prime powers ¢;* are such that s; # k we
put ai(n) = 0. Let Ax(n) be the sum of prime powers ¢;* such that s; > k.
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If all prime powers ¢;* are such that s; < k we put Ax(n) = 0. We put
ge(n) = ¢i* if s1 = k and gx(n) = 0 if s # k. We put Gi(n) = ¢j* if
s1 > k and Gg(n) = 0 if s; < k. We recall that ¢ is the greatest prime
factor of n. For example, as(19%1155%) = 191 | a5(19%1155%) = 115 + 55,
az(19*1155%) = 0, A4(19*11°5%) = 19* + 11° + 5°, A3(19*1155%) = 19* +
11° + 5%, Ag(19*11°5%) = 0, g4(19*11555) = 194, ¢;,(19%11°5%) = 0 (h # 4),
G2(19*11°5°) = 194, G7(19%1155%) = 0.
Alladi and Erdés ([I]) proved that

(1.4) Y Gn) C(; 1§w+0< “’z )

e log” x

Jakimczuk (J6]) proved the following generalization

m 4+ 1) zmH!
3 Gy~ S EDE
n<u m + ogx
where m is an arbitrary fixed positive integer.
In Theorem [2.4] we obtain a more precise result.

2. Main Results

THEOREM 2.1. Let s > 1 be an arbitrary fixed integer. Let Gs(x) denote
the cardinality of the set of s-full numbers ng not exceeding x such that the
greatest prime factor of ng has multiplicity s in the prime factorization of n.
Then Gs(x) ~ As(x). That is, in almost all s-full numbers the greatest prime
factor has multiplicity s. If s = 1 then in almost all integers the greatest prime
factor has multiplicity 1.

THEOREM 2.2. Let k > 3 be an arbitrary fized integer. Let Hy(z) denote
the cardinality of the set of k-free numbers s, not exceeding x such that the
greatest prime factor of si has multiplicity 1 in the prime factorization of sy.
Then Hy(z) ~ Qk(x). That is, in almost all k-free numbers sy, the greatest
prime factor has multiplicity 1.
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THEOREM 2.3. Let k and N be arbitrary fived positive integers. We have
the following asymptotic formulas

. o e bh i o 1%
(2.1) Zak(n) ~ logx hzz;) (log z)" + (logz)N+1 |7

n<z

- A B pl+i N1 bk o o1+%
(2:2) Z k() = log z Z::o (log z)h + (logz)N+1 |’

n<z

$1+% = bh k LL‘lJr%
2.3 = : O| ——
(2.3) ng(”> log ; (log z)h + (logz)N+1 |7

n<x =0
2 b zt
2.4 G = : O +———
(24) ; k() log hzo (log z)" * (logz)N+1 |7

where the error terms depend at most on k and N and where by, j, depends on
the zeta function ((s) = ¢(O(s) and its successive derivatives (()(s) in the
point s =1+ %, as it is showed by the following formula

(2.5) _h'z( ' ¢ (1+5)

1+ )h+1 i’

The first coefficient is

1 1
bo.x = 14+-.
0,k 1_’_;((4’]{:)

Therefore we have

S am) ~ Y arm) ~ S k() ~ ;Gk(n) ~ 1+1,1< <1+ ;) g

log x
n<lx n<x n<x

THEOREM 2.4. Let m be an arbitrary fized positive integer. Then

m + )merl merl
2. = .
(26) Z Gln m+1 logx 0 < 2

n<w log” x

If m =1 then equation ([2.6) becomes equation (1.4)).
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3. Proofs

PROOF OF THEOREM [2.1l If the s-full number n, is of the form ¢*, where
q is a square-free, then clearly the greatest prime factor of n; has multiplicity
s. The cardinality of the set of the numbers ng = ¢° not exceeding x, that is,
q° <z, is (see (1.1))

(3.1) %ml/s +o0 <$1/8> :

s

Let us consider the prime factorization of a (s + 1)-full number @, that is,
Q =4q|"---q;"*. Let us consider the s-full numbers n; of the form ¢°Q, where
q is a square-free, gcd(q, Q) = 1 and @Q is fixed. Except by a finite number of
cases, the greatest prime factor in ¢°Q is in the prime factorization of ¢ and
consequently it has multiplicity s. Therefore the number of these numbers ¢*@
not exceeding x (¢°Q) < x) such that the greatest prime factor has multiplicity
s will be (see Lemma

% @ zt/s +0<x1/s>‘
T (g + 1) (g +1) QY

(3.2)

Let € > 0. We choose B such that (see Lemma

(3.3) Z Ql o175 <

Q>B

Therefore we have (see (3.1)), (3.2), (3.3) and Lemma

6 a1 -G 1 1 1
Golx) == 1+ /e )+ F
NS RPN Iorey Fo )+ )
(3.4) = Ecsxl/s _ Z Qe 1 Yo (x1/5> + F(),
72 5 ((r+1) (¢ +1)QVs

where (see (3.3)))

(3.5) 0<Fz)< > {QUSJ

z>Q>B

pDE

Q>B
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Note that

q-q 1 < p ( 1 1 ))
1+ =T (1+ e =
%(Q1+1)"'(Qt+1)Qi 1;[ p+1\pF P

Consequently (see (3.4) and (3.5]))

xl/s T2

<e+ete=3e (x > x).

That is, since € > 0 can be arbitrarily small,
G St na
s(w) ~ 2 st /%~ Ag().
The theorem is proved. ([l

PROOF OF THEOREM [2.2l The proof is identical to the proof of Theo-
rem If the k-free number is a square-free ¢ then clearly the greatest prime
factor of ¢ has multiplicity 1. The number of these numbers not exceeding =z,

that is, ¢ < x, is (see (|1.1))
6

Let us consider the prime factorization of a square-full number @), that is,
Q=4q{* - -q, where 2 < r; < k—1(i=1,...,t). Let us consider the k-
free numbers sy of the form ¢@Q, where ¢ is a square-free, ged(g, Q) = 1 and
Q is fixed. Except for a finite number of cases the greatest prime factor in
sk = q@ is in the prime factorization of ¢ and consequently it has multiplicity
1. Therefore the number of these numbers s = ¢@ not exceeding z (¢Q < x)
such that the greatest prime factor has multiplicity 1 will be (see Lemma

6 qi--- G z
™ (1) (¢ +1)Q

+o(x).
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Now, the proof follows as the proof of Theorem [2.1] Note that

6 q G 1

2 1+;(Q1+1)“'(Qt+1)Q
_ 1 p 1
_1;[<1 2>1;[<1+p+1( +p’“‘1>>

21 1 1 1
:1;[<pp2 >g<1+p2—1<1_p’“‘2>):1;[<1_p’€>
_ 1
(k)
The theorem is proved. [l

PROOF OF THEOREM [2.3] It is well-known the asymptotic formula

N-1

| . B! z
(3.6) Li(z) = log hz:;) (log )" +On ((logm)N“>

We have (Lemma Lemma Lemma and equality (3.6]))

> ot 2 (% J )

I

8
/‘\

8

=
N—
% \H

i s )

p<

el

p<z + p<lx

(1) +0 (15, (+))
(e

—x(loglog;vk +M—|—O<5c Tr )))

951+’1“ Qa1,h,k,k a1 tE
log = hZ: (log x)h (log x)N+1

N—1
€ a1,h,k,k+1 x
yIbylvy O
+ (log:c hz_:o (log z)" + ((logm)N“))
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Li (ot 2 R an 0 pti
= k) — kAL [ —
. z(a: ) log x Z (log x )" + (log x)N+1

h=0
21T o1+
3.7 = d ol ——
(3:7) log z hz:% (log )" + (logz)N+1 |7

where

> {u} (log u)"

(3.8) bh k= kh+1h! — 1. hkk = kh+1h! — T
El s lly vy ’U,2+E

du.
1

Now, by application of Euler-Maclaurin summation formula (|2]), we obtain

—1)h * {u}log"tu
(M (s) = (S( _li)ﬁl + (_1)hh/l { };51 du

o) 1 h
htlg {u}log Ud

+ (_1) ustl

1

Therefore by mathematical induction we find that
s = {u}
O e

—{'(s) = _@ + S _ S/oo {u} logudu,

us+1

and in general

(3.9) /100 {uflog"u, _  h! ’“Z(_Qm ¢0(s)

us-l—l (S _ 1)h-|—1 +

Substituting s = 1 + % into (3.9) and by application of (3.8)) we obtain for-
mula (2.5)). Therefore equality ([2.1]) is proved.

We have
> Axtn) = 3 (|2] - 5]) + re
(3.10) S ) + Fla)

n<z
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Note that the inequality p" > x holds for h = UgigJ +1> igig > }gii and

therefore we have

0< F(z) < Zl (pk“ {pkﬁlJ +ptt? L,Z;QJ ot B;J)

pgm k+1

log = TR M
3.11 <h 1 ——— =0 —— .
( ) < Z <1og2 + )xcloga:k}fl ((log:c)N“>
e

Properties (3.10)), (3.11) and (2.1]) give equality (2.2]).

Note that gi(n) < ax(n) and hence formula (2.1]) gives

1+k

3.12 <« bh, gt E
(3.12) ng(n ~ logx EZ: (log z)" (logz)N+1 |~

n<z

Note that if 271 < p < z# then p* < 2 and p*+! > 2. Now, the multiples
of p* not exceeding = are p*,pF2, ..., pF { ’“J’ where [p%J < p. Therefore p is
the greatest prime factor of these numbers. Consequently, we have (see (3.7))

Sawz X o5 = (o) - Xk {5 ) -am (o)

n<z o cpeat pE<a

3.13 L g —_—

(3.13) " P {p’“} log » Z (log:v (logz)N+1 |7
p<zxk+1

since

-

1
p<w k1 p<lzxk+l p<zF+1

<o ® _o 2
- Clogm N (log x)N+1

1 14+ 1 CL’1+%
k k — —
xw(w +1)§x 1 =0 (log 2V | -

Inequalities (3.12)) and (3.13|) give formula (2.3]).

and
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Finally, we have

(3.14) > Gr(n) =" gr(n) + Fi(x),

n<lx n<x

where (see (3.11]))

!t
(3.15) 0< Fi(z) < F(x)=0 (W) .

Properties (2.3), (3.14) and (3.15) give equality (2.4), which completes the
proof. O

REMARK 3.1. If k = 1 then equalities (2.3]) and ( . ) give

22 N1 2
Z (n) Z bn €z
— g " loga (log z)" (logz)N+1 )’
2 N-1 b 2
A h,1 €T
T;C i(n) = log Z (log z)" <(logx)N+1) ’

where Aj(n) is the sum of the prime powers in the prime factorization of n,
that is, A1 (n) = ¢i* +¢5> +- - - + ¢ Therefore, since s,¢; < ¢;" (i=1,...,r),
we have

dYoan) <> Gn) <D An) <D A(n)

n<x n<x n<zx n<x

Therefore we obtain

2 N2y 2 2 .2
ZG Z h71h+0( mN+1>N7rx )
= log et (log x) (log x) 12 log x
= log:t (log:c (log z)N+1 12logz’

Consequently
sion.

n<e G(n) and >° _ A(n) have the same asymptotic expan-
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PROOF OF THEOREM [2.4] By the prime number theorem we have

X xr
ml@) = o+ 0 <10g2x) .

Abel’s summation gives

m+1 m+1
g p™ +0 * .
m + 1 logx log2 T

p<x

That is

(316)  Sule) =Y = T f()(m:) (2> 2),

m—|—1 log

p<z

where |f(z)| < M for x > 2. Note that M depends on m.
1
Let us consider the positive integer s = L(log x)EJ + 1 and a positive

integer k such that 1 < k < s — 1. Now, consider the primes p such that T <
k+1 < p < £. The numbers multiples of p not exceeding x are p,2p, 3p, ..., kp
and since p > k, if x is sufficiently large, we obtain that p is the greatest
prime factor of these k numbers. Hence if F'(z) is the contribution to the sum
Y n<e G(n)™ of the numbers not exceeding x such that their greatest prime
factor is in the interval [2, f] then we have

ZG(n)m = i Z kp™ + F(x)

n<x k=1 5 <p<%
_Sf S |+ F) —f(sm (%) =S (5)) + Fla)
=1 \ £<p<% =1

(3.17) - Ssm (%) — (s —1)Sm (f) ¥ F(a),

where

(3.18) (5= 1)Sh, (f) ~0 (xm:1> ,

(3.19) 0< Flz) < Zp {J: pmlzo(xm:),
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and (see (3.16))
s—1

020 Z5a()-Z (it () i () ) i)

Now, we have the formula 1 = 1+ g(t)t, where g(t) — 1 as t — 0. Therefore
we have (see (3.20))

s—1 s—1

m+l ] mtt o1 1 logi\ logi
m + (z) lo (z)zm—i—llo xzim+1 <1+g<lo a:)lo :c)
i=1 &% 8 i=1 8 g
C(m+ 1) .Tm+1 _ .’Ifm+1 Z 1
m+1 logz  (m+1)logz o+t
gt logi [ logi
> ()
(m+ 1)log? z <= i log =
(3 21) - C(m + 1) xm—l—l Lo Q?m+1
’ - m+1 logx logQ:g ’

and (see (3.16))

m+1 — m+1
6 |50 Ry
ogx
(3.22) <oMc(m+ )T
log” x

Substituting (3.21)) and (3.22 1nt0 and then substituting ([3.20) -

and (3.18]) into 13 17) we obtaln The theorem is proved.
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