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REFINEMENTS OF SOME CLASSICAL INEQUALITIES
INVOLVING SINC AND HYPERBOLIC SINC FUNCTIONS

Yogesh J. Bagul, Sumedh B. Thool , Christophe Chesneau,
Ramkrishna M. Dhaigude

Abstract. Several bounds of trigonometric-exponential and hyperbolic-expo-
nential type for sinc and hyperbolic sinc functions are presented. In an attempt
to generalize the results, some known inequalities are sharpened and extended.
Hyperbolic versions are also established, along with extensions.

1. Introduction

Consider the sinc function defined by sincx = (sinx)/x, for x 6= 0 and
sincx = 1, for x = 0. A hyperbolic sinc function is defined similarly. Let us
now cite some inequalities for sinc and hyperbolic sinc functions pertaining to
the main results of this paper. First, the classical inequalities

cos

(
x√
3

)
<

sinx

x
< cos

(
2

π
arccos

(
2

π

)
· x
)
, 0 < x <

π

2
,(1.1)

were established by K.S.K. Iyengar, B.S. Madhava Rao and T.S. Nanjundiah
in a little-known paper [9]. See also [14]. Recently, J. Sándor ([18]) offered
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a new proof to the left inequality of (1.1) and proved its hyperbolic counterpart
as follows:

cosh

(
x√
3

)
<

sinhx

x
, x > 0.(1.2)

R. Klén, M. Visuri, and M. Vuorinen ([10]) found the following inequalities[
cos
(x
2

)]2
<

sinx

x
<
[
cos
(x
3

)]3
, 0 < x <

π

2
.(1.3)

Y. Lv, G. Wang, and Y. Chu ([11]) obtained the following:[
cos
(x
2

)]4/3
<

sinx

x
<
[
cos
(x
2

)]a
, 0 < x <

π

2
,(1.4)

where a = (ln(π/2))/(ln
√
2) ≈ 1.30299.

The left inequality of (1.4) is sharper than the corresponding left inequality
of (1.3), whereas the right inequality of (1.3) is better than that of (1.4). The
analogous inequality to (1.4) is the following one:[

cosh
(x
2

)]4/3
<

sinhx

x
< cosh3 x, x > 0,(1.5)

which can be seen in [15,16,20]. Exponential-type bounds for sinc and hyper-
bolic sinc functions were obtained by Chesneau and Bagul in [6]. They are
given below. We have

eγx
2

<
sinx

x
< e−x

2/6, 0 < x <
π

2
,(1.6)

where γ = 4 ln(2/π)/π2, and

eλx
2

<
sinhx

x
< ex

2/6, 0 < x < r,(1.7)

where r > 0 and λ = ln[(sinh r)/r]/r2.
For different refinements, generalizations, and recent developments regard-

ing inequalities involving the sinc and hyperbolic sinc functions, we refer the
reader to [2–5,7,12,13,17,21–26]. This article aims to present new generalized
bounds for sinc and hyperbolic sinc functions. Our bounds are trigonometric-
exponential and hyperbolic-exponential in nature and they refine some exist-
ing bounds in the literature.
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We consider the following plan: Section 2 presents some preliminaries and
lemmas. The main results are given in Section 3. Section 4 ends the article
with some particular cases and discussions.

2. Preliminaries and lemmas

The following power series expansions involving Bernoulli numbers can be
found in [8, 1.411]:

tanx =

∞∑
n=1

22n(22n − 1)

(2n)!
|B2n|x2n−1, |x| < π

2
,(2.1)

cotx =
1

x
−
∞∑
n=1

22n

(2n)!
|B2n|x2n−1, |x| < π,(2.2)

and

tanhx =

∞∑
n=1

22n(22n − 1)

(2n)!
B2nx

2n−1, |x| < π

2
,(2.3)

where B2n are the even indexed Bernoulli numbers.
We will also use the following l’Hôpital’s rule of monotonicity.

Lemma 1 (l’Hôpital’s rule of monotonicity [1]). Let f, g : [a, b] −→ R be two
continuous functions which are differentiable on (a, b) and g′ 6= 0 on (a, b).
If f ′/g′ is increasing (or decreasing) on (a, b), then the functions (f(x) −
f(a))/(g(x) − g(a)) and (f(x) − f(b))/(g(x) − g(b)) are also increasing (or
decreasing) on (a, b). If f ′/g′ is strictly monotone, then the monotonicity in
the conclusion is also strict.

Lemma 2 ([2, Lemma 4]). For x > 0, the function

k(x) =
sinhx− x coshx

x2 sinhx

is strictly increasing.

Additionally, we prove the following auxiliary results which can be of in-
dependent interest.
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Lemma 3 (Sharp upper bound for hyperbolic sinc). For x 6= 0, it is
true that

sinhx

x
<

√
(x+ sinhx)(1 + coshx)

4x
.(2.4)

Proof. Due to the symmetry of the functions involved at both sides, it
suffices to prove (2.4) for x > 0. We first consider

f(x) = x2 + x sinhx− 4 coshx+ 4.

Then
f ′(x) = 2x+ x coshx− 3 sinhx > 0,

due to well-known Cusa–Huygens inequality ([2]). Therefore, f(x) is increasing
for x > 0 and we get f(x) > f(0), i.e.,

x2 + x sinhx− 4(coshx− 1) > 0,

which can be written as

4(coshx− 1)(coshx+ 1) < x(x+ sinhx)(1 + coshx)

or

4 sinh2 x < x(x+ sinhx)(1 + coshx).

This gives the required inequality (2.4). �

Remark 1. For x 6= 0, it is not difficult to prove√
(x+ sinhx)(1 + coshx)

4x
<

2 + coshx

3
.

Thus, we have

sinhx

x
<

√
(x+ sinhx)(1 + coshx)

4x
<

2 + coshx

3
, x 6= 0.(2.5)

Remark 2. A double inequality analogous to (2.5) also holds in the case
of trigonometric functions. It is stated as

sinx

x
<

√
(x+ sinx)(1 + cosx)

4x
<

2 + cosx

3
, x 6= 0.(2.6)

We skip the proof of (2.6) because it is very similar to that of (2.5).



Refinements of some classical inequalities involving sinc and hyperbolic sinc functions 5

Lemma 4 (Refined lower bound for Wilker-type inequality). For x 6= 0, it
is true that ( x

sinhx

)2
+

x

tanhx
> 2 +

x(coshx− 1)(sinhx− x)
2 sinh2 x

(2.7)

= 2 +
x(sinhx− x)
2(1 + coshx)

> 2.

Proof. It is enough to prove that( x

sinhx

)2
+

x

tanhx
> 2 +

x(coshx− 1)(sinhx− x)
2 sinh2 x

.

Equivalently, it corresponds to

2x2 + 2x sinhx coshx > 4 sinh2 x+ x(coshx− 1)(sinhx− x)

or

x2 + x sinhx coshx− 4 sinh2 x+ x sinhx+ x2 coshx > 0,

i.e.,

x(x+ sinhx)(1 + coshx) > 4 sinh2 x,

which is true by Lemma 3. �

Remark 3. The inequality (2.7) is a refinement of the Wilker-type in-
equality for hyperbolic functions established by Wu and Debnath ([19]).

Remark 4. It is interesting to see that the circular counterpart of (2.7)
is also true for all non-zero real numbers. It is stated as follows:( x

sinx

)2
+

x

tanx
> 2 +

x(cosx− 1)(sinx− x)
2 sin2 x

(2.8)

= 2 +
x(x− sinx)

2(1 + cosx)
> 2, x 6= 0.

The proof of (2.8) is quite similar to that of (2.7). The importance of (2.7)
lies in the fact that it is the sharpest Wilker-type inequality of its kind so
far in the literature, and it holds for all non-zero real numbers, although its
sharpness can be observed in (0, π) and (−π, 0) only.
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Lemma 5. For x 6= 0, it is true that( x

sinhx

)2
+

x

tanhx
> 2 +

x[cosh(2x/p)− 1][sinh(2x/p)− 2x/p]

p · sinh2(2x/p)

if p ≥ 2.

Proof. Let

g(x) = 2 + x tanhx− (x sechx)2.

Differentiation yields

g′(x) = tanhx+ 2x2 sech2 x tanhx− x sech2 x

=
x

coshx

(
sinhx

x
− 1

coshx

)
+ 2x2 sech2 x tanhx > 0.

Hence, g(x) is increasing and we have that g(x/2) ≥ g(x/p) if x/2 ≥ x/p, i.e.,
p ≥ 2. Now, we have

g
(x
2

)
= 2 +

x

2
tanh

(x
2

)
−
(x
2
sech

(x
2

))2
= 2− x2

4 cosh2(x/2)
+
x sinh(x/2)

2 cosh(x/2)

= 2− x2

2(1 + coshx)
+

x sinhx

2(1 + coshx)

= 2 +
x(sinhx− x)
2(1 + coshx)

= 2 +
x(coshx− 1)(sinhx− x)

2 sinh2 x
.

Similarly, we establish that

g

(
x

p

)
= 2 +

x[cosh(2x/p)− 1][sinh(2x/p)− 2x/p]

p · sinh2(2x/p)
.

By making use of Lemma 4, the conclusion of Lemma 5 follows. �
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3. Main results

We are now in a position to state and prove our main results.

Theorem 1. For p > 1, we define φp : (0, π/2] −→ R by

φp(x) =
ln
[

sin x
x cos(x/p)

]
x2

.

Then
1. φp is strictly increasing if p ≤

√
3,

2. φp is strictly decreasing if p ≥ 2.

Proof. We write

φp(x) =
ln [(sinx)/x]− ln[cos(x/p)]

x2
=

(φ1)p(x)

φ2(x)
,

where (φ1)p(x) = ln [(sinx)/x]−ln[cos(x/p)] and φ2(x) = x2, with (φ1)p(0+) =
0 = φ2(0). By differentiation, we get

(φ1)
′
p(x)

φ′2(x)
=

1

2p

[
p
x cosx− sinx

x2 sinx
+

tan(x/p)

x

]

=
1

2p

[
tan(x/p)

x
+ p

cotx

x
− p

x2

]
.

Utilizing (2.1) and (2.2), we obtain

(φ1)
′
p(x)

φ′2(x)
=

1

2p

[ ∞∑
n=1

22n(22n − 1)

p2n−1 · (2n)!
|B2n|x2n−2 −

∞∑
n=1

p · 22n

(2n)!
|B2n|x2n−2

]

=
1

2p

∞∑
n=1

22n

(2n)!

(
22n − 1

p2n−1
− p
)
|B2n|x2n−2.

By Lemma 1, φp will be strictly increasing if (22n−1)/p2n−1− p > 0, i.e.,
22n−1 > p2n or p < h(n) := (22n − 1)1/2n. And it is easy to show that
h(n) is strictly increasing for n = 1, 2, · · · . This implies that p ≤ inf{h(n) :
n = 1, 2, · · · } = h(1) =

√
3. Similarly, we can say that φp will be strictly

decreasing if we have (22n − 1)/p2n−1 − p < 0, or p > h(n). So, we get
p ≥ sup {h(n) : n = 1, 2, · · · } = limn→∞ h(n) = 2. This completes the proof
of Theorem 1. �



8 Yogesh J. Bagul, Sumedh B. Thool, Christophe Chesneau, Ramkrishna M. Dhaigude

Next, by l’Hôpital’s rule, φp(0+) = limx→0 φp(x) = 1/(2p2) − 1/6, and
φp(π/2) = (4/π2) ln [2/[π cos(π/(2p))]] . Hence, we immediately deduce the
following corollaries:

Corollary 1. If 1 < p ≤
√
3 and 0 < x ≤ π/2, then the best possible

constants α1 and β1 such that the inequalities

cos

(
x

p

)
eα1x

2

<
sinx

x
< cos

(
x

p

)
eβ1x

2

hold are 1/(2p2)− 1/6 and (4/π2) ln [2/[π cos(π/(2p))]], respectively.

Corollary 2. If p ≥ 2 and 0 < x ≤ π/2, then the inequalities

cos

(
x

p

)
eβ1x

2

<
sinx

x
< cos

(
x

p

)
eα1x

2

hold with the best possible constants α1 and β1 which are as defined in the
Corollary 1.

An analogous result involving hyperbolic functions is formulated in the
following theorem.

Theorem 2. For p > 0 and r > 0, we define a function ψp : (0, r) −→ R by

ψp(x) =
ln
[

sinh x
x cosh(x/p)

]
x2

.

Then ψp is strictly decreasing if p ≥ 2. In particular, if p ≥ 2, then the best
possible constants α2 and β2 such that the inequalities

cosh

(
x

p

)
eα2x

2

<
sinhx

x
< cosh

(
x

p

)
eβ2x

2

, 0 < x < r,(3.1)

hold are ln ((sinh r)/[r cosh(r/p)]) /r2 and 1/6− 1/(2p2), respectively.

Proof. Set (ψ1)p(x) = ln [(sinhx)/x] − ln [cosh(x/p)] and ψ2(x) = x2.
Clearly (ψ1)p(0+) = 0 = ψ2(0) and ψp(x) = (ψ1)p(x)/ψ2(x). In view of using
Lemma 1, we differentiate and obtain

(ψ1)
′
p(x)

ψ′2(x)
=

1

2p

[
p
cothx

x
− p

x2
− tanh(x/p)

x

]
:=

1

2p
(ψ3)p(x).
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Then, we get

(ψ3)
′
p(x) = −

p

x
cosech2 x− p

x2
cothx+

2p

x3
− 1

px
sech2

(
x

p

)
+

1

x2
tanh

(
x

p

)

= − p

x3

[( x

sinhx

)2
+

x

tanhx
− 2 +

(
x

p
sech

(
x

p

))2

− x

p
tanh

(
x

p

)]

= − p

x3

[( x

sinhx

)2
+

x

tanhx
− 2

− x[cosh(2x/p)− 1][sinh(2x/p)− 2x/p]

p · sinh2(2x/p)

]
.

By Lemma 1 and Lemma 5, we conclude that ψp is strictly decreasing if p ≥ 2.
Consequently,

ψp(0+) > ψp(x) > ψp(r−), 0 < x < r.

The desired inequalities (3.1) follow due to the limits ψp(0+) = 1/6− 1/(2p2)
and ψp(r−) = ln [(sinh r)/[r cosh(r/p)]] /r2. �

Theorem 3. For p > 1, we define ϕp : (0, π/2] −→ R by

ϕp(x) =
ln
[

sin x
x cosh(x/p)

]
x2

.

Then ϕp is strictly decreasing if p ≥ 2. In particular, if p ≥ 2, then the best
possible constants α3 and β3 such that the inequalities

cosh

(
x

p

)
eα3x

2

<
sinx

x
< cosh

(
x

p

)
eβ3x

2

, 0 < x ≤ π

2
(3.2)

hold are (4/π2) ln [2/[π cosh(π/(2p))]] and −
[
1/(2p2) + 1/6

]
, respectively.

Proof. We begin with

ϕp(x) =
ln (sinx/x)− ln(coshx/p)

x2
=

(ϕ1)p(x)

ϕ2(x)
,
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where (ϕ1)p(x) = ln [(sinx)/x]−ln[cosh(x/p)] and ϕ2(x) = x2 with (ϕ1)p(0+) =
0 = ϕ2(0). Differentiation gives

(ϕ1)
′
p(x)

ϕ′2(x)
=

1

2p

[
p
x cosx− sinx

x2 sinx
− tanh(x/p)

x

]

=
1

2p

[
p
cotx

x
− p

x2
− tanh(x/p)

x

]
.

Utilizing (2.1) and (2.3), we obtain

(ϕ1)
′
p(x)

ϕ′2(x)
=

1

2p

[
−
∞∑
n=1

p · 22n

(2n)!
|B2n|x2n−2 −

∞∑
n=1

22n(22n − 1)

p2n−1 · (2n)!
B2nx

2n−2

]

= − 1

2p

∞∑
n=1

22n

(2n)!

[
p · |B2n| −

(22n − 1)

p2n−1
B2n

]
x2n−2

:= − 1

2p

∞∑
n=1

22n

(2n)!
anx

2n−2,

where an = p · |B2n| − [(22n − 1)/p2n−1]B2n. By Lemma 1, ϕp will be strictly
decreasing if an > 0. But, an is always positive for B2n < 0 irrespective of
p. So we consider the case when B2n > 0. In this case, an > 0 implies that
|B2n| > [(22n − 1)/p2n]B2n or p2n > (22n−1), i.e., p > (22n−1)1/(2n) := h(n)
and h(n) being strictly increasing, we write p ≥ sup {h(n) : n = 1, 2, · · · } =
limn→∞ h(n) = 2. Finally, ϕp(0+) > ϕp(x) > ϕp(π/2−), and the limits
ϕp(0+) = −

[
1/(2p2) + 1/6

]
and ϕp(π/2−) = (4/π2) ln [2/[π cosh(π/(2p))]]

give the inequalities (3.2). �

Theorem 4. For p ≥ 1 and r < πp/2, we define χp : (0, r) −→ R by

χp(x) =
ln
[

x
sinh x cos(x/p)

]
x2

.

Then χp is strictly increasing. In particular, if p ≥ 1, then the best possible
constants α4 and β4 such that the inequalities

eα4x
2

cos(x/p)
<

sinhx

x
<

eβ4x
2

cos(x/p)
, 0 < x < r(3.3)

hold are − ln [r/[(sinh r)(cos(r/p))]] /r2 and 1/6− 1/(2p2), respectively.
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Proof. We have

χp(x) =
(χ1)p(x)− (χ1)p(0+)

χ2(x)− χ2(0)
,

where (χ1)p(x) = ln (x/sinhx)−ln [cos(x/p)] and χ2(x) = x2 with (χ1)p(0+) =
0 = χ2(0). Differentiation yields

(χ1)
′
p(x)

χ′2(x)
=

1

2

sinhx− x coshx
x2 sinhx

+
1

2p2
tan(x/p)

(x/p)
,

which is strictly increasing because of Lemma 2 and the fact that (tanx)/x
is strictly increasing in (0, π/2). Applying Lemma 1, we conclude that χp is
strictly increasing in (0, r). Hence, χp(0+) < χp(x) < χp(r) and the desired
inequalities (3.3) can be obtained from this and the limits χp(0+) = 1/(2p2)−
1/6 and χp(r) = ln [r/[(sinh r)(cos(r/p))]] /r2. The proof is completed. �

4. Some particular cases

In this section, we obtain some sharp inequalities from our main results by
assigning appropriate values to a parameter p therein. We list the inequalities
for sinc and hyperbolic sinc function as follows.

Putting p =
√
3 in Corollary 1 gives

cos

(
x√
3

)
<

sinx

x
< cos

(
x√
3

)
eβ1x

2

, 0 < x ≤ π

2
,(4.1)

where β1 = (4/π2) ln
[
2/(π cos(π/2

√
3))
]
≈ 0.013219. This includes the left

inequality of (1.1). Putting p = 2 in Corollary 2, we obtain

cos
(x
2

)
eβ

∗
1x

2

<
sinx

x
< cos

(x
2

)
e−x

2/24, 0 < x ≤ π

2
,(4.2)

where β∗1 = (4/π2) ln
(
2
√
2/π

)
≈ −0.042558. Lower and upper bounds of (4.2)

are sharper than the corresponding lower and upper bounds of (1.1) in the
intervals (ς, π/2] and (0, ζ), respectively, where ζ ≈ 1.5204 and ς ≈ 0.4633. An
upper bound of (4.2) is sharper than that of (4.1) in (0, ζ1), where ζ1 ≈ 1.5346.
The double inequality (4.2) is a complete refinement of (1.3) and (1.6) and
it also refines corresponding lower and upper bound of (1.4) in the intervals
(ς1, π/2) and (0, ζ2), respectively, where ς1 ≈ 0.705 and ζ2 ≈ 1.4372. Some of
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Figure 1. Visual comparison of lower bounds for (sinx)/x with
x ∈ [0.8, 1]; the obtained lower bound is in lightblue color

these facts are illustrated in Figure 1 and Figure 2 for the lower and upper
bounds of (sinx)/x, respectively.
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Figure 2. Visual comparison of upper bounds for (sinx)/x with
x ∈ [0.8, 0.85]; the obtained upper bound is in light blue color
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From Figure 1 and Figure 2, it is clear that the obtained bounds for
(sinx)/x significantly improve some established bounds of the literature.

Putting p = 2 in Theorem 2 yields

cosh
(x
2

)
eα2x

2

<
sinhx

x
< cosh

(x
2

)
ex

2/24, 0 < x ≤ r,(4.3)

where α2 = ln [(sinh r)/(r cosh(r/2))] /r2. The inequalities (4.3) uniformly
refine (1.7). An upper bound of (4.3) is also a uniform refinement of (1.5).
The lower bound of (4.3) is better than the corresponding lower bounds in
(1.2) and (1.5) for smaller values of r. However, there is no strict comparison
in this case for (0, r). Several other inequalities can be obtained and compared
with existing inequalities.

Figure 3 illustrates the sharpness of the obtained upper bound. From Fig-
ure 3, we see that the gain of the obtained upper bound in the sharpness sense
is consequent.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1
.0

1
.5

2
.0

2
.5

3
.0

Visual comparison for upper bounds of (sinh x)/x

x

(sinh x)/x and the upper bounds

(sinh x)/x

(cosh x)
3

exp(x2
6)

cosh(x 2) exp(x2
24)

Figure 3. Visual comparison of lower bounds for (sinhx)/x with
x ∈ [0, 3]; the obtained upper bound is in blue color

Note. Due to the symmetry of the functions involved all the inequalities
which are true in (0, δ) are also true in (−δ, 0).
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