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EXISTENCE, DATA DEPENDENCE AND STABILITY
OF FIXED POINTS OF MULTIVALUED MAPS

IN INCOMPLETE METRIC SPACES

Binayak S. Choudhury, Nikhilesh Metiya ,
Sunirmal Kundu, Debashis Khatua

Abstract. In this paper we formulate a setvalued fixed point problem by
combining four prevalent trends of fixed point theory. We solve the problem
by showing that the set of fixed points is nonempty. Further we have a data
dependence result pertaining to the problem and also a stability result for the
fixed point sets. The main result is extended to metric spaces with a graph.
The results are obtained without the use of metric completeness assumption
which is replaced by some other conditions suitable for solving the fixed point
problem. There are some consequences of the main result. The main result is
illustrated with an example.

1. Introduction and mathematical preliminaries

The development of fixed point theory of contractive mappings following
the work of Banach has been very extensive and is carried into the recent
times even after about hundred years of its initiation. Works like [6, 13, 17,
20, 22, 33, 35] are some instances from this line of research. A very influential
form of contraction was proposed by Suzuki ([35]) who generalized the Banach
contraction and in the sequel initiated a new trend in fixed point theory. Such
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mappings defined in line with the idea in [35] came to be known as Suzuki
type contractions ([2, 16, 29]). Nadler ([28]) extended fixed point theory to the
domain of setvalued analysis with the help of the idea of Hausdorff distance.
Following the work of Nadler, fixed point studies of setvalued mappings have
flourished in a large way. Comprehensive accounts of this development are
obtainable in [3, 7, 24].

Again rational contractive inequalities occupy a prominent position in fixed
point theory. It was initiated by Dass et al ([14]). The use of rational terms
in contractive inequalities has been done in works like [4, 8, 21].

The use of admissibility conditions has come up prominently in fixed point
theory. These are certain conditions on the behaviour of the contractive map-
ping under consideration and are brought about through a prescribed function.
The advantage of using such conditions is that the contraction condition can
be restricted to certain suitable pairs of points in which case there is no need
to define contraction condition on the whole space. Recently, fixed point re-
sults using admissibility conditions have been developed in several works like
[12, 19, 33].

The above trends of research have individually contributed very substan-
tially to the development of fixed point theory. There are large scopes of
putting these ideas together in order to create new results in fixed point the-
ory. Accordingly we combine the above four existing trends to formulate a fixed
point problem in metric spaces. We do not assume completeness property of
the metric space. Rather we use an alternative condition on the metric space
which is brought about through a separate function. We establish existence,
data dependence and stability results relating to the fixed point problem for-
mulated here. We extend our result to the case of a metric space with a graphic
structure. Some of our results are illustrated with examples.

A data dependence problem is to estimate the distance between the fixed
point sets of two operators when the functional value of these mappings at
every point differs by a magnitude less than a given positive number. As mul-
tivalued mappings often have larger fixed point sets than their singlevalued
counterparts, the study of data dependence problem within the domain of
setvalued analysis assumes additional importance. It has important applica-
tions to differential and integral equations ([9, 32]). Several research papers on
data dependence have been published in recent literature of which we mention
a few in references [10, 12, 18].

Stability is a concept in dynamical systems related to limiting behaviors.
There are various notions of stability both in discrete and continuous dynam-
ical systems ([31]). In this article, stability is related limiting behaviour of the
fixed point sets associated with a sequence of multivalued mappings to that of
the limit function to which the sequence converges. There are several results
dealing with the stability of fixed point sets as for instance the works noted
in the references [5, 11, 12, 34].
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In the following we give the technical details required for deduction of our
results in the following sections.

Let (M,ρ) be a metric space and CLB(M) be the class of all non-empty
closed and bounded subsets of M . Define

D(a,B) = inf{ρ(a, b) : b ∈ B}, where a ∈M and B ∈ CLB(M),

D(A,B) = inf{ρ(a, b) : a ∈ A, b ∈ B}, where A,B ∈ CLB(M),

H(A,B) = max{sup
x∈A

D(x,B), sup
y∈B

D(y,A)}, where A,B ∈ CLB(M).

H is a metric on CLB(M) and is called the Hausdorff–Pompeiu metric
on CLB(M). Moreover, if (M,ρ) is complete then (CLB(M),H) is also com-
plete ([28]).

Lemma 1.1 ([28]). Let A,B ∈ CLB(M) and q > 1. Then for every x ∈ A
there exists y ∈ B satisfying ρ(x, y) ≤ qH(A,B).

Definition 1.1 ([28]). A point u ∈ M is called a fixed point of a multi-
valued mapping T : M → CLB(M) if u ∈ Tu.

The fixed point set of T is denoted by FT .

Definition 1.2 ([11]). A multivalued mapping T : M → CLB(M) is
called continuous at x ∈ M if H(Txn, Tx) → 0 as n → ∞ for any sequence
{xn} in M with xn → x as n→∞.

The following ideas involve a function α : M×M → [0,∞). The idea of the
α-continuity of multivalued mappings has been introduced recently by Kutbi
and Sintunavarat ([25]).

Definition 1.3 ([25]). A multivalued mapping T : M → CLB(M) is
called α-continuous at x ∈ M if limn→∞H(Txn, Tx) = 0, whenever {xn}
is a sequence in M with xn → x as n→∞ and α(xn, xn+1) ≥ 1 for all n > 0.

Remark 1.1 ([25]). The continuity of a mapping guarantees its α-continuity
but the converse may not be true.

Recently, the idea of α-completeness of a metric space has been introduced
by Hussain et al ([19]).

Definition 1.4 ([19]). The metric space M is called α-complete if every
Cauchy sequence {xn} in M satisfying α(xn, xn+1) ≥ 1 for all n > 0 is
convergent in M .



Existence, data dependence and stability of fixed points of multivalued maps ... 35

Remark 1.2 ([19]). The completeness of a metric space M guarantees its
α-completeness but the converse is not true.

Definition 1.5 ([12]). We say that a metric space M has α-regular prop-
erty if α(xn, x) ≥ 1 for all n > 0 whenever {xn} is a convergent sequence
in M having limit x ∈M and satisfying α(xn, xn+1) ≥ 1 for all n > 0.

Definition 1.6 ([11]). A multivalued mapping T : M → CLB(M) is
called α-admissible if α(x, y) ≥ 1, for x, y ∈ M implies α(u, v) ≥ 1, where
u ∈ Tx and v ∈ Ty.

In the following we define a multivalued contraction of Suzuki-type which
unifies and generalizes many Suzuki type contractions in the existing literature
[23, 27, 30, 35].

Definition 1.7. A multivalued mapping T : M → CLB(M) is said to be
a Suzuki-type α-contraction if for u, v ∈M with α(u, v) ≥ 1,

1

2
D(u, Tu) ≤ ρ(u, v) implies H(Tu, Tv) ≤ qQ(u, v),

where

Q(u, v) = max

{
ρ(u, v),D(u, Tu),D(v, Tv),

1

2
[D(u, Tv) +D(v, Tu)],

√
q
D(u, Tu)D(v, Tv)

p+H(Tu, Tv)
,
√
q
D(u, Tv)D(v, Tu)

r +H(Tu, Tv)

}
and q ∈ (0, 1), p, r > 0.

2. Existence of nonempty fixed point set

Theorem 2.1. Let (M,ρ) be a metric space and α : M ×M → [0,∞) be
a mapping such thatM is α-complete and has α-regular property. Let T : M →
CLB(M) be such that (i) T is α-admissible, (ii) there exist x0 ∈ M and
x1 ∈ Tx0 such that α(x0, x1) ≥ 1, (iii) T is a Suzuki-type α-contraction. Then
FT is nonempty.
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Proof. By assumption (ii), there exists x0 ∈M and x1 ∈ Tx0 such that
α(x0, x1) ≥ 1. Since q ∈ (0, 1), we have 1√

q > 1. As Tx0, Tx1 ∈ CLB(M) and
x1 ∈ Tx0, by Lemma 1.1, we find x2 ∈ Tx1 such that

ρ(x1, x2) ≤
1
√
q
H(Tx0, Tx1).

As α(x0, x1) ≥ 1, by assumption (i), we have α(x1, x2) ≥ 1. As Tx1, Tx2 ∈
CLB(M), x2 ∈ Tx1 and 1√

q > 1, there exists x3 ∈ Tx2 such that

ρ(x2, x3) ≤
1
√
q
H(Tx1, Tx2).

As α(x1, x2) ≥ 1, by assumption (i), we have α(x2, x3) ≥ 1. Arguing in this
way we construct a sequence {xn} in X such that

xn+1 ∈ Txn, for all n ≥ 0,(2.1)

α(xn, xn+1) ≥ 1, for all n ≥ 0,(2.2)

ρ(xn+1, xn+2) ≤
1
√
q
H(Txn, Txn+1), for all n ≥ 0.(2.3)

Now,

1

2
D(xn, Txn) ≤

1

2
ρ(xn, xn+1) ≤ ρ(xn, xn+1), for all n ≥ 0.(2.4)

Let

Rn = ρ(xn, xn+1), for all n ≥ 0.

By (2.2), (2.3) and (2.4), we have

ρ(xn+1, xn+2) ≤
1
√
q
H(Txn, Txn+1)(2.5)

≤ 1
√
q
q Q(xn, xn+1)

=
√
q Q(xn, xn+1).
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Now,

Q(xn, xn+1) = max
{
ρ(xn, xn+1),D(xn, Txn),D(xn+1, Txn+1),

1

2
[D(xn, Txn+1) +D(xn+1, Txn)],

√
q
D(xn, Txn)D(xn+1, Txn+1)

p+H(Txn, Txn+1)
,

√
q
D(xn, Txn+1)D(xn+1, Txn)

r +H(Txn, Txn+1)

}
≤ max

{
ρ(xn, xn+1), ρ(xn, xn+1), ρ(xn+1, xn+2),

1

2
[ρ(xn, xn+2) + ρ(xn+1, xn+1)],

√
q
ρ(xn, xn+1)ρ(xn+1, xn+2)

p+
√
qρ(xn+1, xn+2)

,
√
q
ρ(xn, xn+2)ρ(xn+1, xn+1)

r +
√
qρ(xn+1, xn+2)

}
≤ max

{
ρ(xn, xn+1), ρ(xn, xn+1), ρ(xn+1, xn+2),

1

2
[ρ(xn, xn+1) + ρ(xn+1, xn+2)],

ρ(xn, xn+1)ρ(xn+1, xn+2)
p√
q + ρ(xn+1, xn+2)

, 0
}

≤ max
{
ρ(xn, xn+1), ρ(xn, xn+1), ρ(xn+1, xn+2),

1

2
[ρ(xn, xn+1) + ρ(xn+1, xn+2)], ρ(xn, xn+1), 0

}
= max

{
Rn, Rn, Rn+1,

1

2
[Rn +Rn+1], Rn, 0

}
= max{Rn, Rn+1},

[
since

1

2
[Rn +Rn+1] ≤ max{Rn, Rn+1}

]
.(2.6)

If possible, suppose that Rn+1 > Rn ≥ 0. From (2.5) and the above inequality,
we have

Rn+1 ≤
√
qmax{Rn, Rn+1} =

√
q Rn+1 < Rn+1,

which is a contradiction. Therefore, we have

Rn+1 ≤ Rn, for all n.(2.7)
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From (2.5), (2.6) and (2.7), we get

Rn+1 ≤
√
qmax{Rn, Rn+1} =

√
q Rn.

Applying the above inequality repeatedly, we have

Rn+1 ≤
√
q Rn ≤ (

√
q)2Rn−1 ≤ (

√
q)3Rn−2 ≤ . . . ≤ (

√
q)n+1R0.

Now,

∞∑
n=1

ρ(xn, xn+1) =

∞∑
n=1

Rn ≤
∞∑
n=1

(
√
q)nR0 =

√
qR0

1−√q
<∞.

Then {xn} is a Cauchy sequence in X with α(xn, xn+1) ≥ 1, for all n ≥ 0.
Using the α-completeness property of M we have a point x ∈M such that

lim
n→∞

xn = x.(2.8)

Using (2.2) and α-regularity assumption of M , we get

α(xn, x) ≥ 1, for all n.(2.9)

If possible, suppose that for some n ∈ N,

1

2
D(xn, Txn) > ρ(xn, x) and

1

2
D(xn+1, Txn+1) > ρ(xn+1, x).

Then

1

2
ρ(xn, xn+1) > ρ(xn, x) and

1

2
ρ(xn+1, xn+2) > ρ(xn+1, x).

Using (2.7), we have

Rn = ρ(xn, xn+1) ≤ ρ(xn, x) + ρ(x, xn+1) <
1

2
[ρ(xn, xn+1) + ρ(xn+1, xn+2)]

=
1

2
[Rn +Rn+1] ≤

1

2
[Rn +Rn] = Rn,

which leads to a contradiction. Therefore, for each n ∈ N, we have

either
1

2
D(xn, Txn) ≤ ρ(xn, x) or

1

2
D(xn+1, Txn+1) ≤ ρ(xn+1, x).
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Hence, we have a subsequence {xn(k)} of {xn} for which

1

2
D(xn(k), Txn(k)) ≤ ρ(xn(k), x).

By (2.8), (2.9) and the above inequality, we have

xn(k) → x as k →∞ and α(xn(k), x) ≥ 1 for all k.

Applying (iii), we get

D(xn(k)+1, Tx) ≤ H(Txn(k), Tx) ≤ qQ(xn(k), x).(2.10)

Using (2.1), we have

Q(xn(k), x) = max
{
ρ(xn(k), x),D(xn(k), Txn(k)),D(x, Tx),

1

2
[D(x, Txn(k)) +D(xn(k), Tx)],

√
q
D(xn(k), Txn(k))D(x, Tx)

p+H(Txn(k), Tx)
,

√
q
D(xn(k), Tx)D(x, Txn(k))

r +H(Txn(k), Tx)

}
≤ max

{
ρ(xn(k), x), ρ(xn(k), xn(k)+1),D(x, Tx),

1

2
[ρ(x, xn(k)+1) +D(xn(k), Tx)],

√
q
ρ(xn(k), xn(k)+1)D(x, Tx)

p+D(xn(k)+1, Tx)
,

√
q
D(xn(k), Tx)ρ(x, xn(k)+1)

r +D(xn(k)+1, Tx)

}
.

Now,

lim sup
k→∞

Q(xn(k), x) ≤ max
{
0, 0,D(x, Tx),

D(x, Tx)

2
, 0, 0

}
(2.11)

= D(x, Tx).

Taking lim sup as k →∞ in (2.10) and applying (2.11), we have D(x, Tx) ≤
qD(x, Tx), which implies that D(x, Tx) = 0. Now, D(x, Tx) = 0 implies that
x ∈ Tx, where Tx is the closure of Tx. Since Tx is closed, we have Tx = Tx.
Therefore, x ∈ Tx, that is, x ∈ FT , and so, FT is non-empty. �

We have the following observations on Theorem 2.1.
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Note 2.1. The conclusion of Theorem 2.1 is still true if one takes the
assumption that T is α-continuous instead of taking the α- regularity as-
sumption of the space. Then the portion just after (2.8) of the proof of above
theorem is changed in the following way:

D(x, Tx) = lim
n→∞

D(xn+1, Tx) ≤ lim
n→∞

H(Txn, Tx) = 0.

Therefore, we have D(x, Tx) = 0, which implies that x ∈ Tx = Tx, where Tx
is the closure of Tx. Hence FT is nonempty.

Note 2.2. The conclusion of Theorem 2.1 is still true if one considers
that T is continuous instead of taking the α-regularity assumption of the
spaces. Since every continuous mapping is α-continuous, the result follows
from Note 2.1 and Theorem 2.1.

Note 2.3. The conclusion of Theorem 2.1 is still true if one considers
that M is complete instead of taking the α-completeness assumption of M .
Since every complete metric space is α-complete, the result follows from The-
orem 2.1.

Example 2.1. Let M = (−10, 10] and ρ(x, y) = |x− y|, for x, y ∈M . Let
T : M → CLB(M) be defined as

Tu =


{u
2

}
, if − 10 < u < 0,[

0,
u

16

]
, if 0 ≤ u ≤ 1,

{u}, if u > 1.

Take q = 1
4 . Let α : M ×M → [0,∞) be defined as

α(a, b) =

{
ea+b, for a ∈ [0, 1] and b ∈

[
0, 1

16

]
,

0, otherwise.

Suppose {un} is a convergent sequence inM with limit u and α(un, un+1) ≥ 1,
for all n. Then u1 ∈ [0, 1] and un ∈

[
0, 1

16

]
⊆ [0, 1], for n ≥ 2. It follows that

u ∈
[
0, 1

16

]
and α(un, u) ≥ 1, for all n. Hence M has α-regular property.

Suppose {un} is a Cauchy sequence in M for which α(un, un+1) ≥ 1, for
all n. Then u1 ∈ [0, 1] and un ∈

[
0, 1

16

]
, for all n ≥ 2. Then there exists

u ∈
[
0, 1

16

]
such that un → u as n→∞. Hence M is α-complete.

Take x, y ∈M for which α(x, y) ≥ 1. Then 0 ≤ x ≤ 1 and y ∈
[
0, 1

16

]
. So,

we have Tx =
[
0, x16

]
⊆ [0, 1] and Ty =

[
0, y16

]
⊆
[
0, 1

16

]
. Then α(u, v) ≥ 1,

whenever u ∈ Tx and v ∈ Ty. Hence, T is α-admissible.
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Here 0 ∈M , 0 ∈ T0 and α(0, 0) ≥ 1.
Take u, v ∈M for which α(u, v) ≥ 1 and D(u,Tu)

2 ≤ ρ(u, v). Then u ∈ [0, 1],
v ∈

[
0, 1

16

]
and H(Tu, Tv) =

∣∣u−v
16

∣∣ = ρ(u,v)
16 = 1

4
ρ(u,v)

4 ≤ 1
4Q(u, v). Therefore,

all the assumptions of Theorem 2.1 are satisfied and FT = {0} ∪ (1, 10].

Note 2.4. In the above example the metric space M is α-complete but
not complete. Also, the mapping T is α-continuous but not continuous.

If α(x, y) = 1, for all x, y ∈ M , we can obtain various Suzuki-type fixed
point theorems from Theorem 2.1.

Corollary 2.1. Let (M,ρ) be a complete metric space and 0 < q < 1.
Then T has a fixed point if for u, v ∈M , D(u,Tu)

2 ≤ ρ(u, v) implies one of the
following inequalities holds:

(i) H(Tu, Tv) ≤ q ρ(u, v);

(ii) H(Tu, Tv) ≤ q

2
[D(u, Tu) +D(v, Tv)];

(iii) H(Tu, Tv) ≤ q

2
[D(u, Tv) +D(v, Tu)];

(iv) H(Tu, Tv) ≤ qmax
{
ρ(u, v),

D(u, Tu)+D(v, Tv)

2
,
D(u, Tv)+D(v, Tu)

2

}
.

3. Data dependence result

Let T1, T2 : M → CLB(M) be such that H(T1x, T2x) ≤ η, for all x ∈ M ,
where η is some positive number. A data dependence problem is to estimate
the distance between the fixed point sets of these two mappings. The above
is meaningful only if we have an assurance of nonempty fixed point sets of
these two operators. There are also some variants of the problem. Our data
dependence theorem is the following.

Theorem 3.1. Let (M,ρ) be a metric space and α : M × M → [0,∞)
be a mapping such that M is α-complete and has α-regular property. Let
T1, T2 : M → CLB(M) be two multivalued mappings satisfying H(T1x, T2x) ≤
K, for all x ∈ M , where K > 0 is a fixed real number. Suppose that T2
satisfies the assumptions (i) and (iii) of Theorem 2.1. Assume that FT1

is
nonempty and α(x, u) ≥ 1, for all x ∈ FT1

and u ∈ T2x. Then FT2
6= ∅ and

sup
z∈FT1

D(z, FT2) ≤ K
q(1−√q) .
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Proof. Since FT1 6= ∅, we take y0 ∈ FT1 . Since T2y0 is non-empty and
α(y0, u) ≥ 1, for all u ∈ T2y0, T2 satisfies the assumptions (i), (ii) and (iii) of
Theorem 2.1 and hence by Theorem 2.1, FT2 is non-empty, that is, FT2 6= ∅.
Since q ∈ (0, 1), we have 1

q > 1. As T1y0 and T2y0 ∈ CLB(M), there exists
y1 ∈ T2y0 such that

ρ(y0, y1) ≤
1

q
H(T1y0, T2y0).(3.1)

Now, y0 ∈ M and y1 ∈ T2y0 such that α(y0, y1) ≥ 1. Arguing similarly as in
the proof of Theorem 2.1, we construct a sequence {yn} in M such that

(3.2)



yn+1 ∈ T2yn, α(yn, yn+1) ≥ 1,

ρ(yn+1, yn+2) ≤ 1√
qH(T2yn, T2yn+1)

and ρ(yn+1, yn+2) ≤
√
qρ(yn, yn+1) ≤ . . .

≤ (
√
q)n+1ρ(y0, y1), for all n ≥ 0.

Following the arguments as in the proof of Theorem 2.1, we prove {yn} is a
Cauchy sequence in M and there exists υ ∈M such that

yn → υ as n→∞

and also υ is a fixed point of T2, that is, υ ∈ T2υ. From (3.1), we have

ρ(y0, y1) ≤
1

q
H(T1y0, T2y0) ≤

K

q
.(3.3)

Using (3.2) and triangular property, we have

ρ(y0, υ) ≤
n∑
i=0

ρ(yi, yi+1) + ρ(yn+1, υ) ≤
n∑
i=0

(
√
q)iρ(y0, y1) + ρ(yn+1, υ).

Letting n→∞ in the above inequality and using (3.3), we obtain

ρ(y0, υ) ≤
∞∑
i=0

(
√
q)iρ(y0, y1) =

ρ(y0, y1)

(1−√q)
≤ K

q(1−√q)
,

which implies that D(y0, FT2) ≤ K
q(1−√q) . Since y0 ∈ FT1 is arbitrary, we

obtain sup
z∈FT1

D(z, FT2
) ≤ K

q(1−√q) . �
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4. Stability analysis

Stability is related limiting behavior of a system which, in this case, is
the relation of the fixed point sets associated with a sequence of multival-
ued mappings with the limit function to which the sequence converges. Let
{Tn : M → CLB(M)} be a sequence of multivalued mappings that converges
to a mapping T : M → CLB(M), that is, T = limn→∞ Tn. Suppose that
{FTn

} is the sequence of fixed point sets of the sequence of mappings {Tn}
and FT is the fixed point set of T . We say that the fixed point sets FTn

of
the sequence of multivalued mappings {Tn : M → CLB(M)} are stable if
H(FTn

, FT )→ 0 as n→∞.
In continuation of the data dependence result of the previous section, by

particularly considering a special case in which both the mappings are assumed
to satisfy the conditions of the main theorem in Section 2, we establish a
stability result for fixed point sets of these mappings.

Lemma 4.1. Let (M,ρ) be a metric space and α : M ×M → [0,∞). Let
{Tn : M → CLB(M) : n ∈ N} be a sequence of multivalued mappings con-
verging to a mapping T : M → CLB(M). If each Tn (n ∈ N) is a Suzuki-type
α-contraction, then T is also a Suzuki-type α-contraction.

Proof. Take x, y ∈ M for which α(x, y) ≥ 1. Since each Tn (n ∈ N) is a
Suzuki-type α- contraction, we have

1

2
D(x, Tnx) ≤ ρ(x, y) implies

H(Tnx, Tny) ≤ qmax
{
ρ(x, y),D(x, Tnx),D(y, Tny),

1

2
[D(x, Tny) +D(y, Tnx)],

√
q
D(x, Tnx)D(y, Tny)

p+H(Tnx, Tny)
,
√
q
D(x, Tny)D(y, Tnx)

r +H(Tnx, Tny)

}
.

Taking limit as n→∞ in the above inequalities, we get

1

2
D(x, Tx) ≤ ρ(x, y) implies

H(Tx, Ty) ≤ qmax
{
ρ(x, y),D(x, Tx),D(y, Ty),

1

2
[D(x, Ty) +D(y, Tx)],

√
q
D(x, Tx)D(y, Ty)

p+H(Tx, Ty)
,
√
q
D(x, Ty)D(y, Tx)

r +H(Tx, Ty)

}
.

This shows that T is a Suzuki-type α-contraction. �
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Theorem 4.1. Let (M,ρ) be a metric space and α : M × M → [0,∞)
be a mapping such that M is α-complete and has α-regular property. Let
{Tn : M → CLB(M) : n ∈ N} be a sequence of multivalued mappings converg-
ing to T : M → CLB(M) uniformly, that is, Tn → T uniformly as n → ∞.
Suppose that each Tn (n ∈ N) satisfies the assumptions (i), (ii) and (iii)
of Theorem 2.1 and also T satisfies the assumptions (i) and (ii) of Theo-
rem 2.1. Then FTn 6= ∅ for every n and FT 6= ∅. If α(x, u) ≥ 1, whenever
x ∈ FTn

(n ∈ N) and u ∈ Tx or x ∈ FT and u ∈ Tnx (n ∈ N), then the fixed
point sets of the sequence {Tn} are stable.

Proof. By Theorem 2.1, FTn
6= ∅ for every n ∈ N. By Lemma 4.1 and

Theorem 2.1, FT 6= ∅. Let Kn = supx∈X H(Tnx, Tx), where n ∈ N. Since the
sequence {Tn} is uniformly convergent to T , we have

(4.1) lim
n→∞

Kn = lim
n→∞

sup
x∈X
H(Tnx, Tx) = 0.

By Theorem 3.1, we obtain

sup
z∈FT

D(z, FTn) ≤
Kn

q(1−√q)
and sup

z∈FTn

D(z, FT ) ≤
Kn

q(1−√q)
.

Therefore, we have

H(FTn , FT ) ≤
Kn

q(1−√q)
, for all n ∈ N.

Taking limit as n → ∞ in the above inequality and using (4.1), we get
limn→∞H(FTn , FT ) = 0. Therefore, the fixed point sets of mappings of the
sequence {Tn} are stable. �

5. Some results on graphic contraction

In the present section, we extend our results in metric spaces with an
additional structure of graph. Suppose that the metric space (M,ρ) is endowed
with a directed graph G(V,E), that is, G is a directed graph such that its
vertex set V (G) coincides with M and the edge set E(G) contains all loops.
Assume that G has no parallel edges.

Fixed point problem on the structures of metric spaces with a graph is a
recent development. Works like [1, 15, 20] are some instances.
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Definition 5.1. A multivalued mapping T : M → CLB(M) is called G-
admissible if (x, y) ∈ E for x, y ∈ M implies (u, v) ∈ E, whenever u ∈ Tx,
v ∈ Ty.

Definition 5.2. M is called G-regular if (xn, x) ∈ E for all n, whenever
{xn} is a convergent sequence in M with limit x and (xn, xn+1) ∈ E for all n.

Definition 5.3. A multivalued mapping T : M → CLB(M) is called
G-continuous at x ∈ M if limn→∞H(Txn, Tx) = 0, whenever {xn} is any
convergent sequence in M having limit x and (xn, xn+1) ∈ E for all n.

Definition 5.4. M is called G-complete if every Cauchy sequence {xn}
in M with (xn, xn+1) ∈ E for all n converges in M .

Definition 5.5. A multivalued mapping T : M → CLB(M) is said to be
a Suzuki-type graphic contraction if for all u, v ∈M with (u, v) ∈ E,

1

2
D(u, Tu) ≤ ρ(u, v) implies H(Tu, Tv) ≤ q Q(u, v),

where Q(u, v), q, p and r are as in Definition 1.7.

Theorem 5.1. Let (M,ρ) be a metric space endowed with a directed graph
G(V,E) such that M is G-complete and has G-regular property. Let T : M →
CLB(M) be such that (i) T is G-admissible, (ii) there exist x0 ∈ M and
x1 ∈ Tx0 such that (x0, x1) ∈ E, (iii) T is a Suzuki-type G-contraction. Then
FT is non-empty.

Proof. Define α : M ×M → [0,∞) as α(u, v) =
{

1, if (u, v) ∈ E,
0, if (u, v) /∈ E.

It can be easily verified that all the assumptions of Theorem 2.1 are sat-
isfied and hence FT is non-empty. �

Conclusion. In the expanding scenario of research on fixed point theory
it is worth seeing how different lines of study coalesce amongst themselves
to create new results. In the present paper we have made such an attempt.
We think that more of such efforts can enrich the theory of fixed points in a
substantial way.

The constant q which is taken in the Suzuki-type α-contraction considered
in Theorem 2.1 may be replaced by a Mizoguchi-Takahashi function ([26]).
Here we have not proceeded with it but this can be taken up as an immedi-
ate future work. The investigation of possible application of the corresponding
theorem to integral and differential inclusion problem is supposed to be of con-
siderable interest. The study of different types of stability such as Ulam–Hyers
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stability, asymptotic stability, etc., error estimation and rate of convergence
of fixed point sets in the current context or in similar contexts would be an
interesting topic for future study.
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