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ON THE ZEROS OF POLYNOMIALS
WITH RESTRICTED COEFFICIENTS

B. A. ZARGAR, M. H. GULZAR, M. ALI

Abstract. Let P(z) = >0 a;z7 be a polynomial of degree n such that
an > Ap—1 > ... > a1 > ag > 0. Then according to Enestrom-Kakeya theorem
all the zeros of P(z) lie in |z| < 1. This result has been generalized in various
ways (see [I}, 3, 4} [6], [7]). In this paper we shall prove some generalizations of
the results due to Aziz and Zargar [I, 2] and Nwaeze [7].

1. Introduction

In 1829, Cauchy [5] proved that if P(z) = Z;L:O ajz’ is a polynomial of
degree n then all the zeros of P(z) lie in

(1) lz| <14 M, WhereM—maX{;aﬂ:j—O,l,Q,...,n—l}.
Qnp

The following result due to Enestrom and Kakeya [5] is well known in the
theory of distribution of zeros of polynomials:

If P(z) =37 a;2’ is a polynomial of degree n such that
(2) Up > Gp—1 > ... 2 a1 > ag >0,

then P(z) has all its zeros in |z| < 1.
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Aziz and Zargar [1] relaxed the hypothesis of inequality in several ways
and improved some of the bounds and among other things they proved the
following result:

THEOREM A. If P(z) = Z?:o a;z’ is a polynomial of degree n such that
either

ap > Ap—2 > ... 2 a3 > a3 >0

and
Gp_1>Ap_3>...2 a2 > a9 >0, ifnisodd

or

ap = Ap-2 > ... 2 az > ag >0
and

Gp—1 > Qp—3 > ...> a3 >a1 >0, ifn is even,
then all the zeros of P(z) lie in the circle

Ap—
‘ S 1+_ n 1.
Gnp,

an—1

‘z+
n

Aziz and Zargar [2] further relaxed the hypothesis and among other things
proved the following result:

THEOREM B. If P(z) = Z?:o a;jz? is a polynomial of degree n with real
coefficients such that for some positive numbers k and n with k > 1 and
0<n<1, ka,>an_1>...>a1 >nag >0, then all the zeros of P(z) lie in
the closed disk

k-] < kay, + 2a0(1 —n)
= a, .

Nwaeze [7] proved the following result:

THEOREM C. If P(z) = Z;l:o ajzl is a polynomial of degree n such that
for some real numbers A and p, N+ an > an_1 > ... > a1 > ag — p, then all
the zeros of polynomial P(z) lie in

1
< —{an+/\—a0+p+ o] + \aoy}.
|an|

A
‘erf
an

In this paper we shall present some extensions of the above results.
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2. Main Results
THEOREM 1. If P(z) = Z?:o a;jz?, where aj = aj +ifBj,a,B; € R, is a
polynomial of degree n such that for some real numbers k, A\, 7 and p,
Adap>op_12>...201 200 p

and
K+/Bn25n712-~261250_7—7

then all the zeros of polynomial P(z) lie in

A+ ik

’z+ (< &m+ﬂn+A+&—@m+ﬁw

Jan|

+ 7+ p+ |7l + ol + laol + 160 }-
If we take kK = 7 = 0 in Theorem [I} we get the following result:

COROLLARY 1. If P(z) = 2?20 a;jz?, where a; = o +ifj, aj,B; € R, is
a polynomial of degree n, such that for some real numbers A and p,

)\+Oén204n—12--~20412a0_l)7 and BnZﬂn712-~2512,607
then all the zeros of polynomial P(z) lie in

A

‘z—k —

QA

{an +Bu+ 2= (a0 + Bo) + p+ o] + o] + 160l .

= Tau]

REMARK. If we take 8; =0, j =0,1,...,n in Corollary [T} we get Theo-
rem [Cl

If we take A = (k — 1), and p = (1 — n)ag in Corollary (1, we get the
following result:

COROLLARY 2. If P(z) = Z?:o ajzd, where a; = a; +iBj, o, Bj € R, is a
polynomial of degree n such that for some positive numbers k > 1 and n with
0<n<l,

koap > o1 > ... 2> 00 2 nog, and  Bp > Bp1 > ... = B = Bo,

then all the zeros of polynomial P(z) lie in

1
2k = 1 < o e = g+ B = B+ (2= )l + [l .
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REMARK. If we take 8; = 0,7 =0,1...,n and ap > 0 in Corollary|2|7 we
get Theorem [B]

THEOREM 2. If P(z) = Z?:o ajz? is a polynomial of degree n with real
coefficients, such that for some positive numbers \, k, p and T
Adap>ap_o2>...2a3>a1—T
and

K+ap_1>0n_3>...2a2>a9—p, Iifnisodd

or

Atap>an22>...2a3>0a0—T
and

K+ap_1>ap_3>...2a3>a1—p, Iifniseven,

then all the zeros of polynomial P(z) lie in

Ay 1
o+ 222 < (o — a1 — a0 + 27+ p ot A+ )+ o] + fao)).

an " lan|
If we assume ag, a1 > 0, we get the following corollary:

COROLLARY 3. If P(z) = Z?:o a;jz? is a polynomial of degree n with real
coefficients and ag,a1 > 0, such that for some positive numbers X\, k, p and T

Atap>ap22>...2a3>a1—T
and

K+ap_1>0n_3>...20a3>0a9—p, Iifnisodd

or

Atan>ap2>...20a22>0a0—T
and

K+ap_1>ap_3>...2a3>a1—p, Iifniseven,

then all the zeros of polynomial P(z) lie in

o 1
L) < (an Han 1 +2r+p A+,

|z + <
G, |an]

REMARK. If we take A\ = k = 7 = p = 0 in Corollary [3| we get Theorem [A]
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Examples
EXAMPLE 1. Let
P(2) = (8 +7i)2° + (9 +8i)2* + (4 + 74)2® + (3 + 5i)2% + (2 + 3i)z + 1 + 2i.

Here the coefficients are as = 8, ay = 9, a3 = 4, as = 3, a1 = 2, ap = 1,
Bs =T,P4=28,83="7,032=5, 51 =3 and By = 2.

Theorems [A] [B] and [C] are not applicable to this example, but we can
apply Theorem |1} Taking A =1, xk =1, p =0 and 7 = 0, Theorem [l locates
the zeros of P(z) in the region |z+ 13 < 1.6, which is better than the bound
given by (1)), i.e, |2| < 2.13. In fact the region |z 4+ 22| < 1.6 is contained in

113
the region |z| < 2.13.

EXAMPLE 2. Let
P(2) = 402° + 52* + 412° + 62 + 302 — 1.
Here the coefficients are a5 = 40, a4 = 5, ag = 41, as = 6, a3 = 30, ag = —1.
Theorems [A] [B] [C] and [I] are not applicable to this example, but we can
apply Theorem [2| Taking A =1, k = 1, p = 0 and 7 = 0, Theorem [2] gives
the region containing the zeros as |z + %\ < 1.275, whereas Cauchy’s bound

(given by (1)) is |2| < 2.025. Thus the bound given by Theorem [2 is better
than the bound given by (). In fact {2 : |2+ 2| < 1.275} C {2 : |2] < 2.025}.

Proofs of Theorems

Proor oF THEOREM [1l Consider the polynomial
F(z)=(1-2)P(2)

= —a, 2" (o — oy 1)2" . (a1 — o)z + g

+i[(Bn = Bn-1)z" + ...+ (B1 — Bo)z + Bo

= (2 + A +iRr)2" + (@ + A= 1)2" + (Qp1 — ap_o)2"
+... 4+ (a1 —(wo—p))z—pz+ oo+ i[(Bn + K — Pn_1)z"
+ (Ba1 = Bn—2)2" M+ .+ (B1 — (Bo — 7))z — T2 + Bo)

=—2"(apz + A+ ik) +q(2)
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where
q(2) = (@n + X —n_1)2" + (Qp_1 — ap_o)2"
+... 4+ (a1 — (a0 —p))z —pz+ o+ i[(Bn + K — Pn_1)z"
+ (Bnor = Bu2)2" T+ (B — (Bo — 7))z — 72 + ol
Now, for |z| = 1, we have
9(2)] < o + A — 1] + |an_1 — 2|
+ .. 4 lar — a0+ pl + [p| + |ao] + |Br + K — Br-1]
+|Bn—1 = Bn—2| + ...+ |81 — Bo + [ + |7 + [ Bol
=ap+ B+ A+ K —(a0+ Bo) +7+p+ |7+ |pl + o] + |Bol.
Since this is true for all complex numbers with unit modulus, then for |z| = 1,
|2"q(1/2)] <an + B+ A+ K — (a0 + Bo) + 7+ p+[7| + |p| + o] + |Bol-

Also the function G(z) = 2"¢(1/z) is analytic in |z| < 1. Hence, by maximum
modulus theorem, for |z| < 1, we have

n 4+ B + X+ K — (o + Bo) + 7+ p+ |7| + |p| + || + |Bol
|2|m

lq(1/2)] <

Replacing z by 1/z, we get for |z] > 1
9(2)] <{an + B+ A4k — (a0 + o) + 7+ p+ 7|+ ol + lao| + 5ol 2]

Now, for |z| > 1, we get

|F(2)|=1]—2"(anz + A +ir) + q(2)|

> 2" (anz + N+ ik| — |q(2)]
> IZ”IIan2+>\+iml—{an+6n+>\+fc—(ao+6o)

74 p I+ Lol + lao] + 8ol 21"
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— |F(2)| 2 |2"|[Janz + A+ il = {an + B + A+ 5 — (00 + o)

+ 7+ p+ |7l + 1ol + lao| + |50l }
> 0,

if and only if

lanz + A+ ik| > {an + B + A+ 6 — (a0 + Bo)
+7+p+ 7|+ |p| + ool + |Bol}
or

)\+il<&‘ 1

‘z—i— {an+5n+)\+l€—(ao+ﬁo)

an [an]

74 p+ Il + ol + el + |5l }-

Therefore all the zeros of F(z), and hence of P(z), whose modulus is greater
or equal to 1 lie in

Ain] 1
o+ 2| < Lo+ B+ A5 — (a0 + fo)

an [an]

+ 7+ p+ |7l + ol + laol + 160 }-

Since any polynomial is an analytic function in |z| < 1 and by maximum
modulus theorem it attains its maximum on the boundary |z| = 1 (in our
case the polynomial may be taken as z + %) It follows that all the zeros
whose modulus is less than 1 lie in !

A+ ik

’24_ ‘gi{an+6n+)\+/@—(ao+f3o)

|an]

+ 7+ p+ |7l + o] + laol + 160 }-
Therefore all the zeros of P(z) lie in

A+ ik 1

Qn

’z—|— ‘< {an+6n+/\+n—(ao+,6’o)

Jan|

74 p |7+ ol + laol + 8ol }. D
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PRrOOF OF THEOREM [2l Let n be odd. Consider the polynomial
F(z) = (1 —2*)P(2).
Then
|F(2)| = ‘ — a2 =y 12" (ap — an2) 2" F (1 — Gp_g) 2"
+ .. 4 (a3 —a1) 2 + (ag — ag)z® + a1z + ag
= ‘ —(@nz + an_1)2"T 4+ (ap + A — ap_2)2"™ — A2"
+(an1 4+ kK —ap 3)2" ' — k2" V(a3 —ay + 1) — T2

+ (ag — ag + p)2* — pz? +a1z+ao‘

> |21 {lanz + anallzl = (Jan + X = an_af + A

lan_1+ K —an—3| |& lag —ay + 7| | 7]

" S T T R o
oot | ol ] ol
TR TR TRp T e

Now, for |z| > 1, by using hypothesis we get
F) 2 2" {Janz + an-ll2] = [an + A= an-z + A+ ano1 + £ = ans
+H+...+a3—a1+7+7+a2_a0+p+p+|al|+|a0|}}
> \z\”{|anz +an-1| — [an — Qp—9 + Ape1 — Ap—3 + Ao — Ap_s

—I—...+a3—a1+2(7‘+p+)\+/£)—|—a2—ao+]a1\+|a0]]}
>0,

if and only if

lanz + an—1] > |an + an—1 — ay —ao+2(r+p+A+/~:)+|a1|+|ao|]
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Thus all the zeros of F'(z) whose modulus is greater than or equal to 1 lie in

|z +

Ay 1
"L| < (an + anr = a1 = 0o + 27+ p A+ k) + a] + Jal).

an " |ay]

Since any polynomial is an analytic function in |z| < 1 and by maximum
modulus theorem it attains its maximum on the boundary |z| = 1 (in our
case the polynomial may be taken as z + %) It follows that all the zeros
whose modulus is less than 1 lie in !

|z +

Ay — 1
o Sm(an+an—1—al—a0+2(7+p+)\+l€)+|a1|+\ag|>.

Therefore all the zeros of F(z) of odd degree lie in

Ay 1
. 1| Sm(an+an_1—al—ao+2(’r+p+)\+/‘€)+|a1|+‘a0|>.

|2 +

Since all the zeros of P(z) are also zeros of F(z), then all the zeros of P(z) lie
in the disk defined above. This completes the proof of the theorem for odd n.
The proof for even n follows in the same way. O
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