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LOGARITHMIC BARRIER METHOD
VIA MINORANT FUNCTION

FOR LINEAR SEMIDEFINITE PROGRAMMING

Assma Leulmi

Abstract. We propose in this study, a new logarithmic barrier approach to
solve linear semidefinite programming problem. We are interested in computa-
tion of the direction by Newton’s method and of the displacement step using
minorant functions instead of line search methods in order to reduce the com-
putation cost.

Our new approach is even more beneficial than classical line search meth-
ods. This purpose is confirmed by some numerical simulations showing the
effectiveness of the algorithm developed in this work, which are presented in
the last section of this paper.

1. Introduction

Semidefinite programming (SDP) problem is an optimization model of
a linear function of a symmetric matrix subject to linear equality constraints
and the additional condition that the matrix be positive semidefinite. SDPs
include as special cases linear programmings (LP), when all the symmetric
matrices involved are diagonal. General SDP is perhaps one of the most pow-
erful forms of convex optimization. Semidefinite programming permits to solve
numerous problems, as non-linear programming (NLP) problems, quadratic
programming (QP) problems,....
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Many algorithms have been suggested to resolve linear SDP problem such
that, Interior-point methods (IPMs) for SDP have been pioneered by Nesterov
and Nemirovskii ([9]) as well as Alizadeh et al. ([1]).

Several methods have been proposed to solve SDP such that, projective
IPMs and their alternatives ([12, 7]), central trajectory methods ([13]), loga-
rithmic barrier methods ([4]).

Our work is based on the latter type of IPMs, the obstacle for establishing
an iteration is the determination and computation of the displacement step.
Unfortunately, the computation of the displacement step, especially when us-
ing line search methods, is costly and even more difficult in the case of semi-
definite problems ([4]).

In this paper, we are interested in solving SDP by IPMs. The idea of
this method consists to solve SDP with a new logarithmic barrier approach.
Then, we use Newton’s method to treat the associated perturbed equations to
obtain a descent direction. We propose an alternative ways to determine the
displacement step along the direction which are more efficient than classical
line searches.

We consider the following SDP problem

(1)


min bTx,
m∑
i=1

xiAi − C ∈ S+
n ,

x ∈ Rm.

Here S+
n designs the cone of the symmetrical semidefinite positive n×nmatrix,

matrices C, Ai, with i = 1, . . . ,m, are the given symmetrical matrices and
b ∈ Rm.

The problem (1) is the dual of the following semidefinite problem

(2)


max〈C, Y 〉,
〈Ai, Y 〉 = bi, ∀i = 1, . . . ,m,

Y ∈ S+
n .

We denote by 〈C, Y 〉 the trace of the matrix (CTY ), and recall that 〈·, ·〉
corresponds to an inner product on the space of n× n matrices.

Their feasible sets involving a non polyhedral convex cone of positive semi-
definite matrices are called linear semidefinite programs.

A priory, one of the advantages of the problem (1) with respect to its dual
problem (2) is that variable of the objective function is a vector instead to
be a matrix in the type problem (2). Furthermore, under certain convenient
hypothesis, the resolution of the problem (1) is equivalent to the problem (2)
in the sense that the optimal solution of one of the two problems can be
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reduced directly from the other through the application of the theorem of the
slackness complementary, see for instance [1, 6, 8].

In all which follows, we denote by
1. X = {x ∈ Rm :

∑m
i=1 xiAi − C ∈ S+

n }, the set of feasible solutions of (1).
2. X̂ = {x ∈ Rm :

∑m
i=1 xiAi − C ∈ int(S+

n )}, the set of strictly feasible
solutions of (1).

3. F = {Y ∈ S+
n : 〈Ai, Y 〉 = bi, ∀i = 1, . . . ,m}, the set of feasible solutions

of (2).
4. F̂ = {Y ∈ F : Y ∈ int(S+

n )}, the set of strictly feasible solutions of (2).
int(S+

n ) is the set of the symmetrical definite positive n× n matrices.
The problem (1) is approximated by the following problem (SDP )η

(SDP )η

{
min fη(x),

x ∈ Rm,

with the penalty parameter η > 0 and fη : Rm → ]−∞,+∞] is the barrier
function defined by

fη(x) =

 bTx+ nη ln η − η ln[det(
m∑
i=1

xiAi − C)] if x ∈ X̂,

+∞ if not.

The problem (SDP )η can be solved via a classical Newton descent method.
The difficulty with the line search is the presence of the determinant in

the definition of the logarithmic barrier function which leads to a very high
cost in the classical procedures of exact or approximate line search. In our
approach, instead of minimizing fη, along the descent direction at a current
point x, we propose minorants functions G for which the optimal solution of
the displacement step α is obtained explicitly.

Let us minimize the function G such that

1

η
[fη(x+ αd)− fη(x)] = G(α) ≥ Ğ(α), ∀α > 0,

with G(0) = Ğ(0) = 0, G′(0) = Ğ′(0) < 0.

The best quality of the approximations Ğ of G is ensured by the condition
G′′(0) = Ğ′′(0).

The idea of this new approach is to introduce one original process to
calculate the displacement step based on minorants functions. Then, we obtain
an explicit approximation which leads to reducing the objective, adding to
this, it is economical and robust, contrary to the traditional methods of line
search.
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Backdrop and brief information in linear semidefinite programming. Let us
state the following necessary assumptions
(A1) The system of equations 〈Ai, Y 〉 = bi, i = 1, . . . ,m is of rank m.
(A2) The sets X̂ and F̂ are not empty.

We know that (see [1, 2])
1. The sets of optimal solutions of problems (2) and (1) are non empty convex

and compact.
2. If x̄ is an optimal solution of (1), then Ȳ is an optimal solution of (2) if

and only if Ȳ ∈ F and
( m∑
i=1

x̄iAi − C
)
Ȳ = 0.

3. If Ȳ is an optimal solution of (2), then x̄ is an optimal solution of (1) if

and only if x̄ ∈ X and
( m∑
i=1

x̄iAi − C
)
Ȳ = 0.

According to the assumptions (A1) and (A2), the solution of problem (1)
permits to give the one of problem (2) and vice-versa.

We study in the next section, existence and uniqueness of optimal solution
of the problem (SDP )η and its convergence to problem (2), in particular the
behaviour of its optimal value and its optimal solutions when η → 0. The
solution of this problem is of descent type, defined by xk+1 = xk + αkdk,
where dk is the descent direction and αk is the displacement step.

Then, we show in section 3, how to compute the Newton descent direc-
tion d. In section 4, we present new three different approximations of G, to
compute the displacement step. These approximations are deduced from in-
equalities shown in section 4. In section 5, we describe the obtained algorithm.
In section 6, we present numerical tests with commentaries on some different
examples to illustrate the effectiveness of the three proposed approaches and
we compare them with the standard line search method. The paper is finished
by conclusions in the last section.

The main advantage of (SDP )η resides in the strict convexity of its ob-
jective function and the convexity of its feasible domain. Consequently, the
conditions of optimality are necessary and sufficient. This, fosters theoretical
and numerical studies of the problem.

Before this, it is necessary to show that (SDP )η has at least an optimal
solution.
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2. Existence and uniqueness of optimal solution of
problem (SDP )η and its convergence to problem (1)

2.1. Fundamental properties of fη

For x ∈ X̂, let us introduce the symmetrical definite positive matrix B(x)
of rank m, and the lower triangular matrix L(x), such that

B(x) =

m∑
i=1

xiAi − C = L(x)LT (x),

and let us define, for i, j = 1, . . . ,m

Âi(x) = [L(x)]−1Ai[L
T (x)]−1,

bi(x) = trace(Âi(x)) = trace(AiB−1(x)),

∆ij(x) = trace(B−1(x)AiB
−1(x)Aj) = trace(Âi(x)Âj(x)).

Thus, b(x) = (bi(x))i=1,...,m is a vector of Rm and ∆(x) = (∆ij(x))i,j=1,...,m

is a symmetrical matrix of rank m.
The previous notation will be used in the expressions of the gradient and

the Hessian H of fη. To show that problem (SDP )η has a solution, it is
sufficient to show that fη is inf-compact.

Theorem 1 ([4]). The function fη is twice continuously differentiable on
X̂. Actually, for all x ∈ X̂ we have:
(a) ∇fη(x) = b− ηb(x).
(b) H = ∇2fη(x) = η∆(x).
(c) The matrix ∆(x) is definite positive.

Since fη is strictly convex, (SDP )η has at most one optimal solution.

2.2. Problem (SDP )η has one unique optimal solution

Firstly, we start with the following definition

Definition 1. Let f be a function defined from Rm to R ∪ {∞}, f is
called inf-compact if for all η > 0, the set Sη(f) = {x ∈ Rm : f(x) ≤ η} is
compact, which comes in particular to say that its cone of recession is reduced
to zero.
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As the function fη takes the value +∞ on the boundary of X and is
differentiable on X̂, then it is lower semi-continuous. In order to prove that
(SDP )η has one optimal solution, it suffices to prove that recession cone of fη

S0

(
(fη)∞

)
= {d ∈ Rm : (fη)∞(d) ≤ 0} ,

is reduced to zero i.e.,

d = 0 if (fη)∞(d) ≤ 0,

where (fη)∞ is defined for x ∈ X̂ as

(fη)∞ (d) = lim
α→+∞

[
fη (x+ αd)− fη (x)

α

]
.

This leads to the following proposition.

Proposition 1 ([4]). If bTd ≤ 0 and
m∑
i=1

diAi ∈ X̂ then d = 0.

As fη is inf-compact and strictly convex, therefore the problem (SDP )η
admits a unique optimal solution.

We denote by x(η) or xη the unique optimal solution of (SDP )η .

2.3. Behavior of the solution when η → 0

In what follows, we will be interested by the behavior of the optimal value
and the optimal solution x(η) of the problem (SDP )η. For that, let us intro-
duce the function f : Rm × R→ ]−∞,+∞] , defined by

f(x, η) =


fη(x) if η > 0,

bTx if η = 0, x ∈ X,
+∞ if not.

It is easy to verify that the function f is convex and lower semi-continuous
on Rm × R, see for instance R.T. Rockafellar ([10]).

Let us, then, define m : R→ ]−∞,+∞] by

m(η) = inf [f (x, η) : x ∈ Rm] .

This function is convex. Furthermore, we have m(0) = (1) and m(η) is the
optimal value of (SDP )η for η > 0.
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It is clear that for η > 0, we get

m(η) = fη(x(η)) = f (x(η), η) ,

and

0 = ∇fη(x(η)) = ∇xf(x(η), η) = b− ηb(xη).

We are now interested in the differentiability of the functions m and x over
]0,+∞[.

Proposition 2 ([4]). The functions m and x are continuously differen-
tiable over ]0,+∞[. For any η > 0, we have

η∆(xη)x′(η)− b(xη) = 0,

m′(η) = n+ n ln(η)− ln det(B(xη)).

Besides

m(0) ≤ bTx(η) ≤ m(0) + nη.

Denote by SD the set of the optimal solutions of the problem (1). We,
already, know that this set is non-empty compact convex. The distance of the
point x to SD is defined by

d(x, SD) = inf[‖x− z‖ : z ∈ SD].

The following result concerns the behavior of xη and m(η) when η → 0.

Theorem 2 ([4]). When η → 0, d(x, SD)→ 0 and m(η)→ m(0).

Remark 1. We know that if one of the problems (1) and (2) has an
optimal solution, and the values of their objective functions are equal and
finite, the other problem has an optimal solution.
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3. Newton descent direction and line search

With the presence of the barrier function, the problem (SDP )η can be
considered as without constraints. So, one can solve it by a classical slope
method. As fη takes the +∞ value on the boundary of X, then the iterates
x are in X̂. Thus, the new proposed method is an interior point method.

Let x ∈ X̂ be the actual iterate. As a slope direction in x, let us take the
Newton’s direction d as a solution of the linear system

∇2fη(x)d = −∇fη(x).

By virtue of Theorem 1, the precedent linear system is equivalent to the system

(3) ∆(x)d = b(x)− 1

η
b,

where b(x) and ∆(x) are defined in section 2.1.
Since the matrix ∆(x) being symmetrical, positive definite, the linear sys-

tem (3) can be effectively solved through the Cholesky decomposition.
Evidently, one can admit ∇f(x) 6= 0 (otherwise, the optimum is reached).

It follows that d 6= 0. With calculated direction d, we search ᾱ > 0 such that it
induces a scharp decrease of fη on the semi-line x+αd, α > 0, and conserving
positive definiteness of the matrix B(x + ᾱd). Then, the next iterate will be
taken equal to x+ ᾱd. Thus, we can consider the function

G(α) =
1

η
[fη(x+ αd)− fη(x)], x+ αd ∈ X̂,

G(α) =
1

η
bTdα− ln det(B(x+ αd)) + ln det(B(x)).

Since ∇2[fη(x)]d = −∇fη(x), we have

dT∇2fη(x)d = −dT∇fη(x) = dT b(x)− ηdT b.

To simplify the notations, we consider

B = B(x) =

m∑
i=1

xiAi − C and H =

m∑
i=1

diAi.

Since B is symmetrical and positive definite, there is a lower triangular matrix
L so that B = LLt.
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Next, let us put E = L−1H(L−1)T , since d 6= 0, the assumption (A1)
implies that H 6= 0 and then E 6= 0.

With this notation, for any α > 0, such that I + αE is positive definite,

(4) G(α) = α[trace(E)− trace(E2)]− ln det(I + αE).

Denote by λi the eigenvalues of the symmetric matrix E, then

(5) G(α) =

n∑
i=1

[α(λi − λ2i )− ln(1 + αλi)], α ∈ [0, α̂[ ,

with

(6) α̂ = sup[α : 1 + αλi > 0 for all i ] = sup[α : x+ αd ∈ X̂].

Observe that α̂ = +∞ if E is positive semidefinite, and 0 < α̂ < ∞
otherwise. It is clear that G is convex on [0, α̂[ , G(0) = 0 and

0 <
∑
i

λ2i = G′′(0) = −G′(0).

Besides, G(α)→ +∞ when α→ α̂. It follows that, it exists a unique point
αopt such that, G′(αopt) = 0, where G reaches its minimum in this point.

Unfortunately, it does not exist an explicit formula that gives αopt, and
the resolution of the equation G′(αopt) = 0 through iterative methods needs
at each iteration the computation of G and G′. These computations are too
expensive because the expression of G in (4) contains the determinant which
is difficult to calculate and the expression of (5) necessitates the knowledge of
the eigenvalues of E. It is a numerical problem of large size. These difficulties
conduct us to look for other new alternatives approaches.

Once E is calculated, it is easy to calculate the following quantities

trace(E) =
∑
i

eii =
∑
i

λi and trace(E2) =
∑
i,j

e2ij =
∑
i

λ2i .

The following result is caused by H. Wolkowicz et al. ([14]), see also J.P.
Crouzeix et al. ([5]) for additional results.

Proposition 3 ([14]).

x̄− σx
√
n− 1 ≤ min

i
xi ≤ x̄−

σx√
n− 1

,

x̄+
σx√
n− 1

≤ max
i
xi ≤ x̄+ σx

√
n− 1.
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Let us recall that, B. Merikhi et al. ([4]) proposed some useful inequalities
related to the maximum and to the minimum of xi > 0 for any i = 1, . . . , n,

(7) n ln(x̄− σx
√
n− 1) ≤ A ≤

n∑
i=1

ln(xi) ≤ B ≤ n ln(x̄),

with

A = (n− 1) ln(x̄+
σx√
n− 1

) + ln(x̄− σx
√
n− 1),

B = ln(x̄+ σx
√
n− 1) + (n− 1) ln(x̄− σx√

n− 1
),

where x̄ and σx are respectively, the mean and the standard deviation of
a statistical series {x1, x2, . . . , xn} of n real numbers. These quantities are
defined as follows

x̄ =
1

n

n∑
i=1

xi and σ2
x =

1

n

n∑
i=1

x2i − x̄2 =
1

n

n∑
i=1

(xi − x̄)2.

The computation of the displacement step by classical line search methods
is undesirable and in general impossible.

Based on this proposition, we give in the following section new notions of
non-expensive minorant functions for G, that offer some variable displacement
steps to every iteration with a simple technique.

Thanks to definite positivity results in linear algebra, we propose three
different alternative minorant functions that offer some variable displacement
steps to every iteration.

The efficacy of one minorant function compared to the other can be ex-
pressed by numerical tests that we will present at the end of this work.

4. Computation of the displacement step

Let us go back to the equations (5) and (6) and denote by λ̄ and σλ
respectively, the mean and the standard deviation of λi, respectively, and by
‖λ‖ the Euclidean norm of the vector λ. So

‖λ‖2 = n(λ̄2 + σ2
λ) = G′′(0) = −G′(0)

and

(8) G(α) = nλ̄α− ‖λ‖2α−
n∑
i=1

ln(1 + αλi).
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Our purpose is to search ᾱ ∈ ]0, α̂[ that induces a significant decrease of
the convex function G. It is to be noted that the best choice with ᾱ = αopt,
where G′(αopt) = 0, causes numerical complications. However, one can find
approximately ᾱ, but this procedure necessitates, also, too many computations
of G and G′. However, if we use a line search, it becomes convenient to know
the upper bound α̂ of the G domain, which is numerically difficult to solve.
Consequently, we will take the upper bound of α̂ given in Proposition 3.

α̂i = sup[α : 1 + αβi > 0] with i = 1, 2,

and β1 = λ̄− σλ√
n− 1

, β2 = ‖λ‖ .

4.1. First minorant function

This strategy consists to minimize a minorant approximation Ğ of G in-
stead to minimize G over [0, α̂[ . To be efficient, this minorant approximation
needs to be simple and sufficiently near G. In our case, it requires

0 = Ğ(0), ‖λ‖2 = Ğ′′(0) = −Ğ′(0).

So, for any xi = 1 + αλi, i = 1, . . . ,m, we have x̄ = 1 + αλ̄ and σx = ασλ.
By applying inequalities (7), we get

n∑
i=1

ln(1 + λiα) ≤ (n− 1) ln(1 + β1α) + ln(1 + γ1α),

with β1 = λ̄− σλ√
n−1 and γ1 = λ̄+ σλ

√
n− 1. Then

−
n∑
i=1

ln(1 + λiα)− ‖λ‖2α ≥ −(n− 1) ln(1 + β1α)− ln(1 + γ1α)− ‖λ‖2α,

and

nλ̄α−‖λ‖2α−
n∑
i=1

ln(1+λiα) ≥ nλ̄α−‖λ‖2α−(n−1) ln(1+β1α)−ln(1+γ1α).

The logarithms are well defined when α < α̂1 with

α̂1 =

{
− 1
β1

if β1 < 0,

+∞ if not.
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Then, we deduce the following minorant function

Ğ1(α) = δ1α− (n− 1) ln(1 + β1α)− ln(1 + γ1α),

for any α ∈ [0, α̂1[ , with δ1 = nλ̄− ‖λ‖2.
Ğ1 verifies the following proprieties Ğ′′1(0) = −Ğ′1(0) = trace(E2) and

Ğ1(0) = 0, besides Ğ1(α) < 0, ∀α ∈ [0, α̂1[.
Ğ1 is convex and admits a unique minimum over [0, α̂1[, which can be

obtained by resolving the equation Ğ′1(α) = 0, then we get

ᾱ1 = b−
√
b2 − c,

where b = 1
2

(
n
δ1
− 1

β1
− 1

γ1

)
and c = −‖λ‖2

β1γ1δ1
.

4.2. Second minorant function

We can also think of another more simple functions than Ğ1, that involve
only one logarithm. For this, we consider functions of the following type

Ğ(α) = δ̆α− γ̆ ln(1 + β̆α), α ∈ [0, ᾰ[ .

The logarithm is well defined over α ∈ [0, ᾰ[, with ᾰ = sup[α : 1 + αβ̆ > 0].
Then, we have the following minorat function

Ğ2 (α) = δ2α− γ2 ln(1 + β1α),

Ğ2 (α) =
(
‖λ‖2
β1
− ‖λ‖2

)
α− ‖λ‖

2

β2
1

ln(1 + β1α),

for any α ∈ [0, α̂1[, where β1 = λ̄ − σλ√
n−1 , δ2 = γ2β1 − ‖λ‖2 and we take

γ2 = ‖λ‖2
β2
1

which fulfils the following condition

‖λ‖2 = γ2β
2
1 = γ2β1 − δ2.

Ğ2 verifies the following proprieties Ğ′′2(0) = −Ğ′2(0) = trace(E2) and
Ğ2(0) = 0, besides Ğ2(α) < 0, ∀α ∈ [0, α̂1[.

Ğ2 is convex and admits a unique minimum over [0, α̂1[, which can be
obtained by resolving the equation Ğ′2(α) = 0, then we get

ᾱ2 =
γ2
δ2
− 1

β1
.
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4.3. Third minorant function

Another minorant function simpler than Ğ1 can be extracted from the
following known inequality(

‖λ‖ −
n∑
i=1

λi

)
α− ln(1 + α‖λ‖) +

n∑
i=1

ln(1 + αλi) ≤ 0.

Then, we obtain the following minorat function

Ğ3(α) = δ3α− ln(1 + β2α), α ∈ [0, α̂2[ ,

with α̂2 = −1
β2
, δ3 = −‖λ‖(‖λ‖ − 1) and β2 = ‖λ‖.

Ğ3 verifies the following proprieties Ğ′′3(0) = −Ğ′3(0) = trace(E2) and
Ğ3(0) = 0, besides Ğ3(α) < 0, ∀α ∈ [0, α̂2[ .

Ğ3 is convex and admits a unique minimum over [0, α̂2[, which can be
obtained by resolving the equation Ğ′3(α) = 0, then we get

ᾱ3 = − (‖λ‖ − 1)
−1
.

Proposition 4. Gi, i = 1, . . . , 3, is strictly convex over α ∈ [0, α∗[ ,
with α∗ = min (α̂, α̂1, α̂2) . So we have

Ğ3(α) ≤ Ğ2(α) ≤ Ğ1(α) ≤ G(α), ∀α ∈ [0, α∗[ .

Proof. The first inequality is obvious. The inequality G(α) ≥ Ğ1(α) is a
direct consequence of (7). Let’s consider g(α) = Ğ2 (α)−Ğ1 (α). Since β1 = β2
and β1 ≤ γ1, we have for any α ∈ [0, α∗[

g′′(α) =
γ2β

2
2 − (n− 1)β2

1

(1 + β1α)2
− γ21

(1 + γ1α)2
≤ γ21

(1 + β1α)2
− γ21

(1 + γ1α)2
≤ 0.

Since g(0) = g′(0) = 0, it becomes g(α) ≤ 0 for any α > 0.
Then, let’s put h(α) = Ğ3 (α)− Ğ2 (α), so

h(0) = h′(0) = 0 and h′′(α) =
β2
2

(1 + β2α)2
− γ2β

2
1

(1 + β1α)2
.

Since ‖λ‖2 = γ2β
2
1 and so β2 = ‖λ‖ , then

h′′(α) = ‖λ‖2
(

1

(1 + β2α)2
− 1

(1 + β1α)2

)
≤ 0,

because β1 ≤ β2. Therefore h(α) ≤ 0 for any α ∈ [0, α∗[. �
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Let us recall that the functions Ği reach their minimum at a unique point
ᾱi which is the root of Ğ′i(α) = 0. Thus, the three roots are explicitly calcu-
lated, for i = 1, . . . , 3. So, we have

ᾱ1 = b−
√
b2 − c with b =

1

2

(
n

δ1
− 1

β1
− 1

γ1

)
and c =

−‖λ‖2

β1γ1δ1
,

ᾱ2 =
γ2
δ2
− 1

β1
, ᾱ3 = − (‖λ‖ − 1)

−1
.

Thus, the three values ᾱi, i = 1, . . . , 3 are explicitly computed, then, we take
ᾱ1, ᾱ2 and ᾱ3 belonging to the interval [0, α∗ − ε[ and G′(α) < 0, with ε > 0
being a fixed precision.

Remark 2. The computation of ᾱ is performed by a dichotomous proce-
dure, in the cases where ᾱi /∈ (0, α̂− ε), and G′(α) > 0, as follows:
1. Put a = 0, b = α̂− ε.
2. While |b− a| > 10−4 do

if G′(a+b2 ) < 0 then b = a+b
2 , else a = a+b

2 , so ᾱ = b.
This computation guarantees a better approximation of the minimizer of
G′(α) while remaining in the domain of G.

5. Description of the algorithm

In this section, we present the algorithm of our approach to obtain an
optimal solution x̄ of the problem (1).

Begin algorithm
Initialization
We have to decide for the strategy of the displacement step. ε > 0 is a

given precision, η > 0, ρ > 0 and σ ∈ ]0, 1[ are fixed parameters. Start with
xk ∈ X̂ and k = 0.

Iteration

1. Take B = B(xk) =
m∑
i=1

xkiAi − C and L such that B = LLT .

2. Compute

Âi(x
k) = [L(xk)]−1Ai[L

T (xk)]−1,

b(xk) = trace(Âi(x
k)),

∆ij(x
k) = trace(Âi(x

k)Âj(x
k)),

H = η∆(xk).



Logarithmic barrier method via minorant function... 109

3. Solve the linear system Hd = ηb(x)− b.
4. Calculate E = L−1H(L−1)T , trace(E) and trace(E2).
5. Take the new iterate xk+1 = xk + ᾱd, such that ᾱ is obtained by the use

of the displacement step strategy of Ği, i = 1, . . . , 3.
6. If nη > ε, do xk = xk+1, η = ση and go to 1.
7. If |bTxk+1 − bTxk| > nρη, do xk = xk+1 and go to 1.
8. Take k = k + 1.
9. Stop: xk+1 is an approximate solution of the problem (1).

End algorithm
We know that the optimal solution of (SDP )η is an approximation of the

solution of problem (1). More η is closer to zero, more the approximation will
be good. Unfortunately, when η approaches zero, the problem (SDP )η be-
comes ill-conditioned. For this reason, we use at the beginning of the iteration
the values of η that are not near to zero, and verify nη < ε. We can explain
the interpretation of the update η as follows: if x(η) is an exact solution of
(SDP )η, so bTx(η) ∈ [m (0) ,m (0) + nη]. It is then not necessary to keep on
the calculus of the iterates when |bTxk+1 − bTxk| ≤ nρη.

The displacement step ᾱ will be determined by classical line search of
Armijo-Goldstein-Price type or by one of the three following strategies St i,
by minimizing the minorant functions Ği, i = 1, . . . , 3.

In the next section, we present comparative numerical tests to prove the
effectiveness of our approach over line search method.

6. Numerical tests

The following examples are taken from the literature (see for instance
[3, 4, 11]) and implemented in MATLAB R2013a on Pentium(R). We have
taken ε = 1.0e− 006, σ = 0.125 and two values of ρ, ρ = 1 or ρ = 2.

In the table of results, (exp (m,n)) represents the size of the example,
(Itrat) represents the number of iterations necessary to obtain an optimal
solution, (Time) represents the time of computation in seconds (s), (LS) rep-
resents the classical line search of Armijo–Goldstein method and (St i) repre-
sents the strategy which uses the minorant function Ği, with i = 1, . . . , 3.

Recall that the considered problem is
min bTx,
m∑
i=1

xiAi − C ∈ S+
n ,

x ∈ Rm.
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6.1. Examples with fixed size

In the following examples, diag(x) is the n × n diagonal matrix with the
components of x as the diagonal entries.

Example 1.

C = diag
(

5 8 8 5
)T
, A4 = I, b =

(
1 1 1 2

)T
,

and the matrices Ak, k = 1, . . . , 3, are defined as follows

Ak[i, j] =


1 if i = j = k or i = j = k + 1,

−1 if i = k, j = k + 1 or i = k + 1, j = k,

0 otherwise.

We start with an initial point x0 =
(

1.5 1.5 1.5 1.5
)T
.

The optimal solution is x∗ =
(

0 1.5 0 5
)T
.

The optimal value is bTx∗ = 11.5.

Table 1. The optimal solution obtained with the differ-
ent approaches is

St 1
(
0 1.500011 0 5

)T
St 2

(
0.000011 1.499992 0 4.999981

)T
St 3

(
0.000061 1.499982 0 4.999871

)T
LR

(
0.000003 1.499563 0.000011 4.999968

)T

Example 2.

C = diag
(
−4 −2 −2 0 0 0

)T
,

A1 = diag
(

1 −1 1 1 0 0
)T
, A2 = diag

(
1 1 1 0 1 0

)T
,

A3 = diag
(

2 2 1 0 0 1
)T
, b =

(
6 2 4

)T
.

We start with an initial point x0 =
(
−1 −1 −2

)T
.

The optimal solution is x∗ =
(

0 −2.41354 −0.79323
)T
.

The optimal value is bTx∗ = −8.



Logarithmic barrier method via minorant function... 111

Table 2. The optimal solution obtained with the
different approaches is

St 1
(
0 −2.413012 −0.793232

)T
St 2

(
0.000001 −2.413542 −0.794323

)T
St 3

(
0.000015 −2.426911 −0.794995

)T
LR

(
0.000003 −2.413613 −0.7943256

)T
Example 3.

C = diag
(
−4 −5 0 0 0

)T
, A1 = diag

(
2 1 1 0 0

)T
,

A2 = diag
(

1 2 0 1 0
)T
, A3 = diag

(
0 1 0 0 1

)T
,

b =
(

8 7 3
)T
.

We start with an initial point x0 =
(
−2 −1 −2

)T
.

The optimal solution is x∗ =
(
−1 −2 0

)T
.

The optimal value is bTx∗ = −22.

Table 3. The optimal solution obtained with the
different approaches is

St 1
(
−1 −2.000001 0

)T
St 2

(
−0.999968 −1.999952 0.000011

)T
St 3

(
−1.000015 −2.000011 0.000112

)T
LR

(
−0.999863 −2.000113 0.000321

)T

Example 4.

C =

(
−1 −1
−1 −1

)
, A1 =

(
1 −1
−1 1

)
, A2 =

(
1 0
0 1

)
,

b =
(

1 1
)T
.

We start with an initial point x0 =
(

0 −3
)T
.

The optimal solution is x∗ =
(

1 −2
)T
.

The optimal value is bTx∗ = −2.



112 Assma Leulmi

Table 4. The optimal solution ob-
tained with the different approaches is

St 1
(
0.999999 −2

)T
St 2

(
0.999985 −1.999952

)T
St 3

(
1.000155 −2.000021

)T
LR

(
0.998603 −2.000113

)T
Example 5.

C = diag
(

1 1 0
)T
, A1 = diag

(
1 −1 0

)T
,

A2 = diag
(

1 1 1
)T
, b =

(
0 1

)T
.

We start with an initial point x0 =
(
−1 −1

)T
.

The optimal solution is x∗ =
(
−0.4 0

)T
.

The optimal value is bTx∗ = 0.

Table 5. The optimal solu-
tion obtained with the differ-
ent approaches is

St 1
(
−0.399993 0

)T
St 2

(
−0.399903 0

)T
St 3

(
−0.399855 0

)T
LR

(
−0.399603 0

)T
Table 6. The obtained results

exp (m,n) St 1 St 2 St 3 LS
Itrat Time Itrat Time Itrat Time Itrat Time

exp 1(4, 4) 3 0.012 3 0.014 4 0.19 5 0.25
exp 2(3, 6) 1 0.0016 1 0.0022 1 0.0025 7 0.36
exp 3(3, 5) 4 0.0014 4 0.0023 5 0.0032 6 0.36
exp 4(2, 2) 3 0.0001 4 0.0003 4 0.0006 3 0.068
exp 5(2, 3) 2 0.0001 2 0.0028 3 0.0041 3 0.087
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6.2. Example with variable size

Example 6 (Example Cube). n = 2m, C is the n × n identity matrix,
b = (2, . . . , 2)T ∈ Rm, a ∈ R and the entries of the n × n matrix Ak, k =
1, . . . ,m, are given by

Ak[i, j] =



1 if i = j = k or i = j = k +m,

a2 if i = j = k + 1 or i = j = k +m+ 1,

−a if i = k, j = k + 1 or i = k +m, j = k +m+ 1,

−a if i = k + 1, j = k or i = k +m+ 1, j = k +m,

0 otherwise.

Test 1: a = 0 and C = I.
We know that the vector x∗ = (1, . . . , 1)T ∈ Rm is the optimal solution.
We start with an initial point x0 = (1.5, . . . , 1.5)T ∈ Rm.
The following table resumes the obtained results.

Table 7. The obtained results in test 1
Size (m,n) St 1 St 2 St 3 LS

Itrat Time Itrat Time Itrat Time Itrat Time
(50, 100) 1 16 1 17 1 19 dvg
(100, 200) 1 89 1 104 1 112 dvg
(200, 400) 1 473 1 545 1 554 dvg

dvg means that the algorithm does not terminate within a finite time.

Commentary: The results of these tests show that LS do not compete with
St 1, St 2 and St 3. In the next experiments, we continue only with St 1, St 2
and St 3.

Test 2: a = 2, C = −2I.
We start with an initial point x0 = (0, 0, .., 0)T ∈ Rm.
The optimal solution is x∗ = (1, . . . , 1)

T ∈ Rm.
The following table resumes the obtained results.

Table 8. The obtained results in test 2
Size (m,n) St 1 St 2 St 3

Itrat Time Itrat Time Itrat Time
(50, 100) 1 16 1 18 2 24
(100, 200) 1 72 1 114 2 325
(200, 400) 1 258 1 435 2 623
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Test 3: a = 5 and C = −2I.
We start with an initial point x0 = (0, 0, . . . , 0)T ∈ Rm.
The optimal solution is x∗ = (1, . . . , 1)

T ∈ Rm.
The following table resumes the obtained results.

Table 9. The obtained results in test 3
Size (m,n) St 1 St 2 St 3

Itrat Time Itrat Time Itrat Time
(50, 100) 1 19 1 19 2 21
(100, 200) 1 91 1 102 2 117
(200, 400) 1 235 1 490 2 512

Example 7. C = −I, Ak, k = 1, . . . ,m, are defined as

Ak[i, j] =


1 if i = j = k,

1 if i = j and i = k +m,

0 otherwise,

and bi = 2, i = 1, . . . ,m.
We start with an initial point x0i = −2, i = 1, . . . ,m.

The optimal solution is x∗ = (−1, . . . ,−1)
T ∈ Rm.

The optimal value is bTx∗ = −n = −2m.
The following table resumes the obtained results.

Table 10. The obtained results
Size (m,n) St 1 St 2 St 3

Itrat Time Itrat Time Itrat Time
(50, 100) 1 17 1 17 2 25
(100, 200) 1 35 1 89 2 354
(200, 400) 1 223 1 234 2 565

Commentary: We notice that the three strategies converge to the optimal
solution. These tests show, clearly, the impact of our three strategies offer an
optimal solution of (1) and (2) in a reasonable time and with a small number
of iterations.

We also note that the 1st strategy is the best. The obtained comparative
numerical results favor this last strategy moreover, it requires a computing
time largely low vis-a-vis the other two strategies. This seems to be quite
expected, because theoretically the strategy St 1 uses the function Ğ1 that is
the closest (best approximation) of the function G.
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7. Conclusion

In this paper, we have proposed a new logarithmic barrier approach for
solving semidefinite programming problem (SDP), since problem (SDP )η is
strictly convex, the KKT conditions are necessary and sufficient. For this, we
use Newton’s method that allows us to calculate a good descent direction and
determine a new iterate, better than the current iterate.

To compute the displacement step, several methods have been proposed
by scientists and researchers. Including, line search methods, which are very
expensive and unworkable. To overcome this problem, we have proposed in
this work a new approach, based on the notion of minorant functions, which
allows us to determine the displacement step by a simple, easy and much less
costly technique.

To improve our contribution, we presented numerical simulations to illus-
trate the effectiveness of our approach and the convergence of strategies to the
optimal solution of the problem (1). These simulations confirm that the first
and second strategies are better in terms of number of iterations, computation
time and then reduce the computational cost. Therefore, this work has a very
interesting theoretical and numerical value. The digital aspect can be pushed
to a level of performance very appreciable for the practice.

The technique of minorant functions to determine the displacement step
in the direction of descent is a very reliable alternative that is confirmed as
the technique of choice for (SDP) and other classes of optimization problems:
Quadratic Programming (QP) and Non-Linear Programming (NLP)....
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