
Annales Mathematicae Silesianae 37 (2023), no. 1, 16–31
DOI: 10.2478/amsil-2023-0001

ON r-JACOBSTHAL AND r-JACOBSTHAL–LUCAS
NUMBERS

Göksal Bilgici , Dorota Bród

Abstract. Recently, Bród introduced a new Jacobsthal-type sequence which
is called r-Jacobsthal sequence in current study. After defining the appro-
priate r-Jacobsthal–Lucas sequence for the r-Jacobsthal sequence, we obtain
some properties of these two sequences. For simpler results, we define two
new sequences and examine their properties, too. Finally, we generalize some
well-known identities.

1. Introduction

The Lucas sequences generalize many famous integer sequences defined
by a second order linear recurrence relation such as the Fibonacci num-
bers, the Lucas numbers, the Pell numbers, the Pell–Lucas numbers, the
Jacobsthal numbers and the Jacobsthal–Lucas numbers. Let A and B be
integers. The roots of x2 − Ax + B = 0 are x1 = 1

2(A +
√
A2 − 4B) and

x2 = 1
2(A−

√
A2 − 4B). The Lucas sequences (see [3] for details) are defined

by the following Binet-like formula

Pn =
xn1 − xn2
x1 − x2

and Qn =
xn1 + xn2
x1 + x2

.
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For (A,B) = (1,−1), (2,−1) and (1,−2), the sequence {Pn} gives the Fi-
bonacci, the Pell and the Jacobsthal numbers, respectively. Similarly, for
(A,B) = (1,−1), (2,−1) and (1,−2), the sequence {Qn} gives the Lucas,
the Pell–Lucas and the Jacobsthal–Lucas numbers, respectively.

The Jacobsthal sequence {Jn} and the Jacobsthal–Lucas sequence {jn}
are defined by the same second order recurrence relation, namely

Tn = Tn−1 + 2Tn−2

except the initial conditions. While the initial conditions of the Jacobsthal
sequence are J0 = 0 and J1 = 1, the initial conditions of the Jacobsthal–
Lucas sequence are j0 = 2 and j1 = 1. Binet formulas for the Jacobsthal and
the Jacobsthal–Lucas numbers are

Jn =
γn − δn

γ − δ
and jn =

γn + δn

γ + δ
,

respectively, where γ = 2 and δ = −1 are roots of the characteristic equation
x2 − x− 2 = 0. Generating functions for the sequences {Jn} and {jn} are

∞∑
n=0

Jnx
n =

x

1− x− 2x2
and

∞∑
n=0

jnx
n =

2− x
1− x− 2x2

,

respectively. A comprehensive study about the Jacobsthal and the Jacobsthal–
Lucas numbers was made by Horadam ([7]). He gave a lot of interesting prop-
erties and beautiful identities of these numbers. We recall some of them.

Jn + jn = 2Jn+1,

j2n + 9J2
n = 2j2n,(1.1)

j2n − 9J2
n = (−1)n2n+2,(1.2)

Jmjn + Jnjm = 2Jn+m,(1.3)

Jmjn − Jnjm = (−1)n2n+1Jm−n.(1.4)

There are some generalizations of the Jacobsthal and the Jacobsthal–Lucas
numbers defined in different ways. Falcon ([5]) defined the k-Jacobsthal num-
bers, Jhala, Sisodiya and Rathore ([8]) gave another definition for the k-
Jacobsthal numbers, Dasdemir ([2]) defined the Jacobsthal p-numbers and
Uygun ([10]) introduced the (s, t)-Jacobsthal numbers. Similarly, Uygun and
Owusu ([11]) defined the bi-periodic Jacobsthal numbers. All of these authors
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changed the recurrence relation of the Jaconsthal sequence, slightly, while
preserving the initial conditions.

Some general sequences also generalize the Jacobsthal and the Jacobsthal-
-Lucas numbers. We can refer to the Horadam sequence ([6]) and the bi-
periodic generalized Fibonacci sequence ([4]) as examples of this approach.

In [1], Bród defined another one parameter Jacobsthal sequence {Jr,n}
(for integers n ≥ 0 and r ≥ 0) which is called r-Jacobsthal sequence, by the
recurrence relation

(1.5) Jr,n = 2rJr,n−1 + (2r + 4r)Jr,n−2, n ≥ 2

with the initial conditions Jr,0 = 1 and Jr,n = 1 + 2r+1. It is clear that
Jn = J0,n−2.

The r-Jacobsthal sequence has an application in the theory of graphs
(see [1]). Recall this graph interpretation of the r-Jacobsthal numbers.

Let G be a finite, undirected, simple graph with vertex set V (G) and edge
set E(G). A set S ⊂ V (G) is an independent set of G if for any two distinct
vertices x, y ∈ S holds xy 6∈ E(G). A subset of V (G) containing only one
vertex and the empty set are independent sets of G, too. The number of inde-
pendent sets of a graph G is denoted by NI(G). The parameter NI(G) was
studied not only in mathematical literature. In 1989, Merrifield and Simmons
([9]) introduced the number of independent sets into the chemical literature
as the index σ. They showed a correlation between this index in a molecular
graph and some chemical properties. The parameter NI(G) is often repre-
sented by the Fibonacci numbers and the Lucas numbers. This fact may be
a motivation to ask the following question: Are there any generalizations of
the Fibonacci numbers that have graph interpretations due to the number of
independent sets in the graph?

Consider a graph Gn,r (Figure 1), where n ≥ 1, r ≥ 0.
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Figure 1. A graph Gn,r

In [1], the following result was proved.

Theorem 1.1 ([1]). Let n, r be integers such that n ≥ 1, r ≥ 0. Then

NI(Gn,r) = Jr,n.
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The graph interpretation of the r-Jacobsthal numbers can be used for
proving some identities.

Theorem 1.2 ([1] convolution identity). Let n,m, r be integers such that
m ≥ 3, n ≥ 2, r ≥ 0. Then

Jr,n = 2rJr,m−1Jr,n + (4r + 8r)Jr,m−2Jr,n−1.

Corollary 1.3 ([1]). Jm+n = JmJn+1 + 2Jm−1Jn.

Bród gave the following Binet formula for the r-Jacobsthal numbers

Jr,n =
(
√
4 · 2r + 5 · 4r + 3 · 2r + 2)λn1 + (

√
4 · 2r + 5 · 4r − 3 · 3r − 2)λn2

2
√
4 · 2r + 5 · 4r

,

where λ1 and λ2 are roots of the characteristic equation λ2−2rλ−(2r+4r) = 0,
namely

λ1 =
2r +

√
4 · 2r + 5 · 4r

2
and λ2 =

2r −
√
4 · 2r + 5 · 4r

2
.

We can change this Binet formula easily with

(1.6) Jr,n =
λ∗1λ

n
1 − λ∗2λn2
λ1 − λ2

,

where λ∗1 = 2r + 1 + λ1 and λ∗2 = 2r + 1 + λ2.
Now we define the r-Jacobsthal–Lucas sequence {Kr,n}∞n=0 with the same

recurrence relation

Kr,n = 2rKr,n−1 + (2r + 4r)Kr,n−2, n ≥ 2,

with the initial conditions Kr,0 = 3+21−r and Kr,1 = 3+4 ·2r. It is easily seen
that jn = K0,n−2. Some initials terms of the r-Jacobsthal–Lucas sequence are

Kr,0 = 3 + 21−r,

Kr,1 = 3 + 4 · 2r,

Kr,2 = 2 + 8 · 2r + 7 · 4r,

Kr,3 = 5 · 2r + 15 · 4r + 11 · 8r,

Kr,4 = 2 · 2r + 15 · 4r + 30 · 8r + 18 · 16r.
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Binet formula for the r-Jacobsthal–Lucas numbers is given in the following
theorem.

Theorem 1.4. For any nonnegative integer n, the nth r-Jacobsthal–Lucas
number is

Kr,n =
λ∗1λ

n
1 + λ∗2λ

n
2

λ1 + λ2
.

Proof. For the r-Jacobsthal–Lucas sequence {Kr,n}∞n=0, we have

(1.7) Kr,n = A1λ
n
1 +A2λ

n
2 .

By using the initial conditions of r-Jacobsthal–Lucas sequence, we get the
following system of equations{

A1 +A2 = 3 + 21−r,

A1λ1 +A2λ2 = 3 + 4 · 2r.

Solutions of the system are

A1 =
1 + 2r + λ1

2r
and A2 =

1 + 2r + λ2
2r

.

After substitution A1 and A2 into (1.7), we obtain the theorem. �

Now we present generating function for the r-Jacobsthal–Lucas sequence
{Kr,n}∞n=0.

Theorem 1.5. The generating function for the r-Jacobsthal–Lucas se-
quence is

∞∑
n=0

Kr,nx
n =

3 + 21−r + (2r + 1)x

1− 2rx− (2r + 4r)x2
.

Proof. Let us define K(x) =
∑∞

n=0Kr,nx
n. Then we obtain

(1.8) K(x) = 3 + 21−r + (3 + 4 · 2r)x+

∞∑
n=2

Kr,nx
n.
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By multiplying both sides of (1.8) by −2rx and −(2r + 4r)x2, we have

(1.9) − 2rxK(x) = −(2 + 3 · 2r)x−
∞∑

n=2

2rKr,n−1x
n

and

(1.10) − (2r + 4r)x2K(x) = −
∞∑

n=2

(2r + 4r)Kr,nx
n,

respectively. Adding side by side equalities (1.8), (1.9) and (1.10) gives[
1− 2rx− (2r + 4r)x2

]
K(x)

= 3 + 21−r + (2r + 1)x+

∞∑
n=2

[
Kr,n − 2rKr,n−1 − (2r + 4r)Kr,n−2

]
xn.

The last equation and the recurrence relation for the r-Jacobsthal–Lucas num-
bers complete the proof. �

It should be noted that we need the following equation for later use

λ∗1 · λ∗2 = (2r + 1)2.

2. Second type of r-Jacobsthal and r-Jacobsthal–Lucas numbers

For simpler results, we need a new type of the r-Jacobsthal and the r-
Jacobsthal–Lucas numbers. We preserve the recurrence relation but change
the initial conditions. Namely, the second type of the r-Jacobsthal numbers
satisfies the recurrence relation

J ′r,n = 2rJ ′r,n−1 + (2r + 4r)J ′r,n−2, n ≥ 2

with the initial conditions J ′r,0 = 0 and J ′r,1 = 1, and the second type of the
r-Jacobsthal–Lucas numbers satisfies the recurrence relation

(2.1) K′r,n = 2rK′r,n−1 + (2r + 4r)K′r,n−2, n ≥ 2

with the initial conditions K′r,0 = 21−r and K′r,1 = 1.
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Binet formula for the r-Jacobsthal and the r-Jacobsthal–Lucas numbers
can be found in the following theorem.

Theorem 2.1. For any nonnegative integer n, the nth second type of the
r-Jacobsthal and the r-Jacobsthal–Lucas numbers are

(2.2) J ′r,n =
λn1 − λn2
λ1 − λ2

and

K′r,n =
λn1 + λn2
λ1 + λ2

,

respectively.

Proof. Proofs can be done with the similar way to the proof of Theo-
rem 1.4. �

Theorem 2.2. The generating functions for the sequences {J ′r,n}∞n=0 and
{K′r,n}∞n=0 are

∞∑
n=0

J ′r,nxn =
x

1− 2rx− (2r + 4r)x2

and
∞∑

n=0

K′r,nxn =
21−r − x

1− 2rx− (2r + 4r)x2
,

respectively.

Proof. Proofs can be done by using the similar way to the proof of The-
orem 1.5. �

The following lemma presents some connections between the r-Jacobsthal
and the r-Jacobsthal–Lucas numbers.

Lemma 2.3. For any positive integers r and n, we have

Kr,n = 21−rJr,n+1 − Jr,n

and

K′r,n = 21−rJ ′r,n+1 − J ′r,n.
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Proof. From the Binet formula for the r-Jacobsthal numbers (1.6), we
have

21−rJr,n+1 − Jr,n =
21−r(λ∗1λ

n+1
1 − λ∗2λn+1

2 )− λ∗1λn1 + λ∗2λ
n
2√

4 · 2r + 5 · 4r

=
λ∗1λ

n
1 (2

1−rλ1 − 1)− λ∗2λn2 (21−rλ2 − 1)√
4 · 2r + 5 · 4r

.

If we substitute the identities 21−rλ1−1 = 2−r
√
4 · 2r + 5 · 4r and 21−rλ2−1 =

−2−r
√
4 · 2r + 5 · 4r into the last expression, we obtain the first identity in the

theorem. The second identity can be proved similarly. �

The connections between both types of the r-Jacobsthal numbers and be-
tween both types of the r-Jacobsthal–Lucas numbers are given in the following
lemma.

Lemma 2.4. For any positive integers r and n, we have

Jr,n = J ′r,n+1 + (2r + 1)J ′r,n

and

Kr,n = K′r,n+1 + (2r + 1)K′r,n.

Proof. The proofs can be done, easily, by using the Binet formulas for
the r-Jacobsthal and the r-Jacobsthal–Lucas numbers. �

The next lemma gives the second type of the r-Jacobsthal–Lucas and the
r-Jacobsthal–Lucas numbers with negative indices.

Lemma 2.5. For any positive integers r and n, we have

J ′r,−n =
(−1)n+1

(2r + 4r)n
J ′r,n

and

K′r,−n =
(−1)n

(2r + 4r)n
K′r,n.
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Proof. From the Binet formula (2.2) for the second type of the
r-Jacobsthal numbers, we have

J ′r,−n =
λ−n1 − λ−n2√
4 · 2r + 5 · 4r

=
1√

4 · 2r + 5 · 4r

[
1

λn1
− 1

λn2

]

= − 1√
4 · 2r + 5 · 4r

[
λn1 − λn2
(λ1 · λ2)n

]
.

The equality λ1 ·λ2 = −(2r+4r) gives the first identity in lemma. The second
identity can be obtained in a similar way. �

Similarly, the first type of the r-Jacobsthal and the r-Jacobsthal–Lucas
numbers with negative indices can be obtained as in the following by the help
of Lemma 2.4 and Lemma 2.5.

Lemma 2.6. For any positive integers r and n, we have

Jr,−n =
(−1)n+1

(2r + 4r)n−1
[
2−rJ ′r,n − J ′r,n−1

]
and

Kr,−n =
(−1)n

(2r + 4r)n−1
[
2−rK′r,n −K′r,n−1

]
.

Lemma 2.6 provides us to expand all the results about the r-Jacobsthal-
-Lucas and the r-Jacobsthal–Lucas numbers to integers. Although Bród re-
stricted r to nonnegative integers, we should emphasize that there is no need
such a restriction. Namely, r can be an arbitrary integer.

3. Some properties of r-Jacobsthal and r-Jacobsthal–Lucas
numbers

In this section, we give some results for the r-Jacobsthal and the
r-Jacobsthal–Lucas numbers starting with Vajda’s identities.
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Theorem 3.1. For any integers, r, n,m and k, we have

Jr,n+mJr,n+k − Jr,nJr,n+m+k(3.1)

= (2r + 1)2
[
J ′r,n+mJ ′r,n+k − J ′r,nJ ′r,n+m+k

]
= (2r + 1)2(−1)n(2r + 4r)nJ ′r,mJ ′r,k

and

Kr,n+mKr,n+k −Kr,nKr,n+m+k

= (2r + 1)2
[
K′r,n+mK′r,n+k −K′r,nK′r,n+m+k

]
=

(2r + 1)2(−1)n+1(2r + 4r)n(4 · 2r + 5 · 4r)
4r

J ′r,mJ ′r,k.

Proof. Using the Binet formula (1.6) for the r-Jacobsthal numbers, we
have

Jr,n+mJr,n+k − Jr,nJr,n+m+k

=
1

(4 · 2r + 5 · 4r)2
[
(λ∗1λ

n+m
1 − λ∗2λn+m

2 )(λ∗1λ
n+k
1 − λ∗2λn+k

2 )

− (λ∗1λ
n
1 − λ∗2λn2 )(λ∗1λn+m+k

1 − λ∗2λn+m+k
2 )

]
=

(2r + 1)2(λ1λ2)
n

(4 · 2r + 5 · 4r)2
[
− λm1 λk2 − λk1λm2 + λm+k

1 + λm+k
2

]
=

(2r + 1)2(−1)n(2r + 4r)n

(4 · 2r + 5 · 4r)2
[
(λm1 − λm2 )(λk1 − λk2)

]
.

The last equality gives the first identity in (3.1). The others can be obtained
similarly. �

If we take k → −m, Theorem 3.1 gives Catalan’s identities

Jr,n+mJr,n−m −
[
Jr,n

]2(3.2)

= (2r + 1)2
[
J ′r,n+mJ ′r,n−m −

[
J ′r,n

]2]
= (2r + 1)2(−1)n+m+1(2r + 4r)n−m

[
J ′r,m

]2
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and

Kr,n+mKr,n−m −
[
Kr,n

]2(3.3)

= (2r + 1)2
[
K′r,n+mK′r,n−m −

[
K′r,n

]2]
=

(2r + 1)2(−1)n+m(2r + 4r)n−m(4 · 2r + 5 · 4r)
4r

[
J ′r,m

]2
.

If we take m→ 1, Catalan’s identities (3.2) and (3.3) give Cassini’s iden-
tities

Jr,n+1Jr,n−1 −
[
Jr,n

]2(3.4)

= (2r + 1)2
[
J ′r,n+1J ′r,n−1 −

[
J ′r,n

]2]
= (2r + 1)2(−1)n(2r + 4r)n−1

and

Kr,n+1Kr,n−1 −
[
Kr,n

]2
= (2r + 1)2

[
K′r,n+1K′r,n−1 −

[
K′r,n

]2]
=

(2r + 1)2(−1)n+1(2r + 4r)n−1(4 · 2r + 5 · 4r)
4r

.

In the next theorem d’Ocagne’s identities for the r-Jacobsthal and the
r-Jacobsthal–Lucas numbers are given.

Theorem 3.2. For any integers, r,m and n, we have

Jr,mJr,n+1 − Jr,m+1Jr,n(3.5)

= (2r + 1)2
[
J ′r,mJ ′r,n+1 − J ′r,m+1J ′r,n

]
= (2r + 1)2(−1)m+1(2r + 4r)mJ ′r,n−m

and

Kr,mKr,n+1 −Kr,m+1Kr,n

= (2r + 1)2
[
K′r,mK′r,n+1 −K′r,m+1K′r,n

]
= (2r + 1)22−2r(4 · 2r + 5 · 4r)(−1)m(2r + 4r)mJ ′r,n−m.
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Proof. From the Binet formula (1.6) for the r-Jacobsthal numbers, we
have

Jr,mJr,n+1 − Jr,m+1Jr,n

=
λ∗1λ

∗
2(−λm1 λn+1

2 − λn+1
1 λm2 + λm+1

1 λn2 + λn1λ
m+1
2 )

4 · 2r + 5 · 4r

= −
(2r + 1)2

[
λm1 λ

n
2 (λ1 − λ2)− λn1λm2 (λ1 − λ2)

]
4 · 2r + 5 · 4r

= −(2r + 1)2(λ1λ2)
m(λn−m1 − λn−m2 )√

4 · 2r + 5 · 4r
.

From the last equality, we obtain the first identity in (3.5). The other identities
can be obtained similarly. �

Some connections between the r-Jacobsthal and the r-Jacobsthal–Lucas
numbers are presented in the next theorem.

Theorem 3.3. For any integers, r,m and n, we have

4rK2
r,n + (4 · 2r + 5 · 4r)J 2

r,n = 2Kr,2n+2,(3.6)

2r(K′r,n)2 + (5 · 2r + 4)(J ′r,n)2 = 2K′r,2n,

4rK2
r,n − (4 · 2r + 5 · 4r)J 2

r,n = 4(2r + 1)2(−1)n(2r + 4r)n,

2r(K′r,n)2 − (5 · 2r + 4)(J ′r,n)2 = 4(−1)n(2r + 4r)n,

Jr,mKr,n + Jr,nKr,m = 21−2rJr,m+n+2,(3.7)

J ′r,mK′r,n + J ′r,nK′r,m = 21−rJ ′r,m+n,

Jr,mKr,n − Jr,nKr,m = 21−r(2r + 1)2(−1)n(2r + 4r)2J ′r,m−n,

J ′r,mK′r,n − J ′r,nK′r,m = 21−r(−1)n(2r + 4r)2J ′r,m−n.

Proof. All the proofs are based on the Binet formula and we prove two
of them. We have

4rK2
r,n + (4 · 2r + 5 · 4r)J 2

r,n

= (λ∗1λ
n
1 + λ∗2λ

n
2 )

2 + (λ∗1λ
n
1 − λ∗2λn2 )2

= 2(λ∗1)
2λ2n1 + 2(λ∗2)

2λ2n2



28 Göksal Bilgici, Dorota Bród

= 2
[
(2r + 1 + λ1)λ

∗
1λ

2n
1 + (2r + 1 + λ2)λ

∗
2λ

2n
2

]
= 2
[
(2r + 1)(λ∗1λ

2n
1 + λ∗2λ

2n
2 ) + (λ∗1λ

2n+1
1 + λ∗2λ

2n+1
2 )

]
= 2r+1

[
(2r + 1)Kr,2n +Kr,2n+1

]
.

The recurrence relation (2.1) gives (3.6).
Now we prove (3.7). From Binet formula for the r-Jacobsthal and the

r-Jacobsthal–Lucas numbers, we have

Jr,mKr,n + Jr,nKr,m

=
1

2r
√
4 · 2r + 5 · 4r

[
(λ∗1λ

m
1 − λ∗2λm2 )(λ∗1λ

n
1 + λ∗2λ

n
2 )

+ (λ∗1λ
n
1 − λ∗2λn2 )(λ∗1λm1 + λ∗2λ

m
2 )
]

=
1

2r
√
4 · 2r + 5 · 4r

[
2(λ∗1)

2λm+n
1 − 2(λ∗2)

2λm+n
2

]
=

2

2r
√
4 · 2r + 5 · 4r

[
(2r + 1 + λ1)λ

∗
1λ

m+n
1

− (2r + 1 + λ2)λ
∗
2λ

m+n
2

]
=

1

2r
√
4 · 2r + 5 · 4r

[
(2r + 1)(λ∗1λ

m+n
1 + λ∗2λ

m+n
2 )

+ (λ∗1λ
m+n+1
1 + λ∗2λ

m+n+1
2 )

]
=

2

2r
[
Jr,m+n+1 + (2r + 1)Jr,m+n

]
.

From the recurrence relation (1.5), we obtain (3.7). The other identities can
be proved similarly. �

By Theorem 3.3, for r = 0, we obtain known identities (1.1), (1.2), (1.3),
(1.4) for the classical Jacobsthal and Jacobsthal–Lucas numbers.

In the next theorem we give summation formulas for the r-Jacobsthal-
-Lucas numbers and the second types of the r-Jacobsthal and the r-Jacobsthal-
-Lucas numbers.

Theorem 3.4. Let n, r be integers. Then

n−1∑
i=0

Kr,i =
Kr,n + (2r + 4r)Kr,n−1 − 2r − 21−r − 4

2r+1 + 4r − 1
,(3.8)

n−1∑
i=0

J ′r,i =
J ′r,n + (2r + 4r)J ′r,n−1 − 1

2r+1 + 4r − 1
,(3.9)
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n−1∑
i=0

K′r,i =
K′r,n + (2r + 4r)K′r,n−1 + 1− 21−r

2r+1 + 4r − 1
.(3.10)

Proof. For (3.8), on account of (1.7) we get

n−1∑
i=0

Kr,i =

n−1∑
i=0

(A1λ
i
1 +A2λ

i
2) = A1

1− λn1
1− λ1

+A2
1− λn2
1− λ2

=
A1 +A2 − (A1λ2 +A2λ1)− (A1λ

n
1 +A2λ

n
2 ) + λ1λ2(A1λ

n−1
1 +A2λ

n−1
2 )

1− (λ1 + λ2) + λ1λ2

=
A1 +A2 − (λ1λ2 − λ2λ1)−Kr,n − (2r + 4r)Kr,n−1

1− 2r − (2r + 4r)
.

By simple calculations we have A1 + A2 = 3 + 21−r, A1λ2 + A2λ1 =
−(1 + 2r). Hence

n−1∑
i=0

Kr,i =
4 + 21−r + 2r −Kr,n − (2r + 4r)Kr,n−1

−(2r+1 + 4r − 1)

=
Kr,n + (2r + 4r)Kr,n−1 − 2r − 21−r − 4

2r+1 + 4r − 1
.

In the same way one can easily prove (3.9) and (3.10). �

4. Matrix generators

Now we give the matrix generators of the numbers Jr,n and Kr,n.

Theorem 4.1. Let n, r be integers. Then

(4.1)
[
Jr,n+1 Jr,n
Jr,n Jr,n−1

]
=

[
Jr,2 Jr,1
Jr,1 Jr,0

]
·
[
2r 1
2r + 4r 0

]n−1
.

Proof. (by induction on n) It is easily seen that for n = 1 the result is
obvious. Assuming that the formula (4.1) holds for n ≥ 1, we will prove it for
n+ 1.
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Using induction’s hypothesis and the recurrence formula for the
r-Jacobsthal numbers, we have[

Jr,2 Jr,1
Jr,1 Jr,0

]
·
[
2r 1
2r + 4r 0

]n−1
·
[
2r 1
2r + 4r 0

]

=

[
Jr,n+1 Jr,n
Jr,n Jr,n−1

]
·
[
2r 1
2r + 4r 0

]

=

[
2rJr,n+1 + (2r + 4r)Jr,n Jr,n+1

2rJr,n + (2r + 4r)Jr,n−1 Jr,n

]

=

[
Jr,n+2 Jr,n+1

Jr,n+1 Jr,n

]
,

which ends the proof. �

As a consequence of Theorem 4.1 we get Cassini’s identity (3.4) for the
r-Jacobsthal numbers.

Corollary 4.2. Let n, r be integers. Then

Jr,n+1Jr,n−1 − J 2
r,n = (−1)n(2r + 4r)n−1(2r + 1)2.

Proof. Calculating determinants in formula (4.1), we obtain∣∣∣∣Jr,n+1 Jr,n
Jr,n Jr,n−1

∣∣∣∣ = Jr,n+1Jr,n−1 − J 2
r,n,∣∣∣∣Jr,2 Jr,1

Jr,1 Jr,0

∣∣∣∣ = ∣∣∣∣3 · 4r + 2 · 2r 2 · 2r + 1
2 · 2r + 1 1

∣∣∣∣ = −(2r + 1)2,∣∣∣∣ 2r 1
2r + 4r 0

∣∣∣∣ = −(2r + 4r).

Hence we get

Jr,n+1Jr,n−1 − J 2
r,n = −(2r + 1)2(−1)n−1(2r + 4r)n−1

= (−1)n(2r + 4r)n−1(2r + 1)2,

which completes the proof. �

Similarly to Theorem 4.1 and Corollary 4.2, we can prove the following
results.
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Theorem 4.3. Let n, r be integers. Then[
Kr,n+1 Kr,n

Kr,n Kr,n−1

]
=

[
Kr,2 Kr,1

Kr,1 Kr,0

]
·
[
2r 1
2r + 4r 0

]n−1
.

Corollary 4.4. Let n, r be integers. Then

Kr,n+1Kr,n−1 −K2
r,n = (−1)n−1(2r + 4r)n−1(13 + 22−r + 14 · 2r + 5 · 4r).
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