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SINE SUBTRACTION LAWS ON SEMIGROUPS

Bruce Ebanks

Abstract. We consider two variants of the sine subtraction law on a semi-
group S. The main objective is to solve f(xy∗) = f(x)g(y) − g(x)f(y) for
unknown functions f, g : S → C, where x 7→ x∗ is an anti-homomorphic invo-
lution. Until now this equation was not solved even when S is a non-Abelian
group and x∗ = x−1. We find the solutions assuming that f is central. A sec-
ondary objective is to solve f(xσ(y)) = f(x)g(y)− g(x)f(y), where σ : S → S
is a homomorphic involution. Until now this variant was solved assuming that
S has an identity element. We also find the continuous solutions of these equa-
tions on topological semigroups.

1. Introduction

In this article S is a semigroup equipped with an involution that may be
either homomorphic or anti-homomorphic. We consider two extensions of the
sine subtraction law to semigroups. For the anti-homomorphic case x 7→ x∗

denotes a self-mapping of S such that (x∗)∗ = x and (xy)∗ = y∗x∗ for all
x, y ∈ S. Our main goal is to solve the functional equation

f(xy∗) = f(x)g(y)− g(x)f(y), x, y ∈ S,(1.1)
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for unknown functions f, g : S → C. On groups an obvious candidate for the
involution is x∗ = x−1. We also discuss the variant

f(xσ(y)) = f(x)g(y)− g(x)f(y), x, y ∈ S,(1.2)

where σ : S → S is a homomorphic involution, that is σ(σ(x)) = x and
σ(xy) = σ(x)σ(y) for all x, y ∈ S. We will refer to both (1.1) and (1.2)
as sine subtraction laws, with the distinction evident from the notation used.
Clearly they are equivalent if S is commutative.

Both equations were solved more than a century ago by Wilson [8] for
the case that S is a 2-divisible Abelian group and the involution is the group
inverse. Later the condition of 2-divisibility was dropped (see [1, pp. 216-217]).
The general solution of the anti-homomorphic variant (1.1) is not known, even
on non-Abelian groups with x∗ = x−1. The homomorphic variant (1.2) was
solved in [4] for the case that S is a monoid generated by its squares, then
in [2] for all monoids.

Section 2 includes some notation, terminology, and known results about
the sine addition law on semigroups. In section 3 we solve (1.1) under the
assumption that f is central. In section 4 we make a small improvement to
the results about (1.2) by finding its solution on a general semigroup. The
main results are Theorems 3.2 and 4.2. We also give an example showing that
non-central solutions of (1.1) exist on non-Abelian groups. This contrasts
with the results about (1.2) which show that all solutions are central. Some
examples are given in section 5, and the final section includes the solutions of
some systems of equations.

Note that C can be replaced as co-domain by any quadratically closed
commutative field which is uniquely 2-divisible.

2. Notation, terminology, and preliminaries

For simplicity we shall use the term involution for both homomorphic and
anti-homomorphic involutions. There is no confusion since we always use the
notation σ for a homomorphic involution and x 7→ x∗ for an anti-homomorphic
involution.

For any function F : S → C, define F̌ : S → C by F̌ (x) := F (x∗) for all
x ∈ S.

A function F on S is said to be odd (with respect to the involution) if
F̌ = −F , resp. F ◦ σ = −F . Similarly F is even if F̌ = F , resp. F ◦ σ = F .

A function A : S → C is additive if A(xy) = A(x) +A(y) for all x, y ∈ S.
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A function m : S → C is multiplicative if m(xy) = m(x)m(y) for all x, y ∈
S. If in addition m 6= 0 then we call m an exponential. For a multiplicative
function m : S → C, define the subsets

Im := {x ∈ S | m(x) = 0}, and

Pm := {p ∈ Im \ I2m | up, pv, upv ∈ Im \ I2m for all u, v ∈ S \ Im},

where T 2 := {xy | x, y ∈ T} for any set T .
A function F on S is said to be central if F (xy) = F (yx) for all x, y ∈ S.
A monoid is a semigroup with an identity element. For a topological semi-

group S, let C(S) denote the algebra of continuous functions mapping S into
C. Let C∗ = C \ {0}.

It is not surprising that the sine addition law

(2.1) f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ S,

plays a key role in our work. The following is [3, Theorem 3.1].

Proposition 2.1. Let S be a semigroup, and suppose f, g : S → C sat-
isfy the sine addition law (2.1) with f 6= 0. Then there exist multiplicative
functions m1,m2 : S → C such that

g =
m1 +m2

2

and f has one of the following three forms.
(i) For m1 6= m2 there exists c ∈ C∗ such that f = c(m1 −m2).
(ii) For m1 = m2 =: m 6= 0 we have

(2.2) f(x) =


A(x)m(x) for x ∈ S \ Im,
0 for x ∈ Im \ Pm,
fP (x) for x ∈ Pm,

where A : S \ Im → C is additive and fP is the restriction of f to Pm.
In addition we have
(a) f(sx) = f(xs) = 0 for all s ∈ Im \ Pm and x ∈ S \ Im; and
(b) if x ∈ {up, pv, upv} for p ∈ Pm and u, v ∈ S \ Im, then x ∈ Pm

and we have respectively fP (x) = fP (p)m(u), fP (x) = fP (p)m(v),
or fP (x) = fP (p)m(uv).



52 Bruce Ebanks

(iii) For S 6= S2 we have g = m1 = m2 = 0 and

(2.3) f(x) =

{
f0(x) for x ∈ S \ S2,

0 for x ∈ S2,

where f0 : S \ S2 → C (the restriction of f to S \ S2) is an arbitrary
nonzero function.

Conversely the functions f, g described above are solutions of (2.1).
Furthermore, if S is a topological semigroup and f ∈ C(S), then m1,m2,

m ∈ C(S).

Note that it is possible for some values of fP to be chosen arbitrarily (see
[3, Remark 3.2] for details). Note also that solution class (iii) does not arise
on monoids, semigroups generated by their squares, or regular semigroups.

We introduce the following notation for convenience.

Notation 2.2. Let S be a semigroup and m : S → C an exponential. The
symbol φm shall denote a function of the form (2.2) as described in case (ii)
of Proposition 2.1. Thus φm satisfies the special sine addition formula

φm(xy) = φm(x)m(y) +m(x)φm(y), x, y ∈ S.

As a reminder we sometimes write “φm has companion m”.
Note that if Im = ∅, for example if S is a group, then φm = Am for some

additive A : S → C.

3. Sine subtraction law with an anti-homomorphic involution

In this section S is a semigroup with anti-homomorphic involution x 7→ x∗.

Lemma 3.1. Suppose f, g : S → C satisfy (1.1) with {f, g} linearly inde-
pendent. Then f is odd.

Proof. Computing f(x(yz)∗) in two ways, we have

f(x(yz)∗) = f(x)g(yz)− g(x)f(yz)

= f(x)g(yz)− g(x)[f(y)g(z∗)− g(y)f(z∗)],
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and

f(x(yz)∗) = f(xz∗y∗) = f(xz∗)g(y)− g(xz∗)f(y)

= [f(x)g(z)− g(x)f(z)]g(y)− g(xz∗)f(y)

for all x, y, z ∈ S. Comparing these results we find that

f(x)[g(yz)− g(y)g(z)] + g(x)g(y)(f + f̌)(z)(3.1)

= [g(x)g(z∗)− g(xz∗)]f(y)

for all x, y, z ∈ S. Taking x = x0 such that f(x0) 6= 0 (which exists by the
independence assumption), we get

g(yz)− g(y)g(z) = f(y)h(z) + λg(y)(f + f̌)(z), y, z ∈ S,

for some function h : S → C and λ ∈ C. Using this relation in (3.1), we get
after some rearrangement that

f(x)f(y)(h+ ȟ)(z)

= −
(
λf(x)g(y) + g(x)g(y) + λg(x)f(y)

)
(f + f̌)(z).

Putting x = y = x0 here we see that h + ȟ = µ(f + f̌) for some µ ∈ C, and
with this the preceding equation can be written as

0 =
(
f(x)[λg(y) + µf(y)] + g(x)[λf(y) + g(y)]

)
(f + f̌)(z),

for all x, y, z ∈ S. Thus by the linear independence of {f, g} we see that
f + f̌ = 0. �

The following is the primary result of the paper.

Theorem 3.2. Let S be a semigroup with involution x 7→ x∗, and suppose
f, g : S → C are solutions of the sine subtraction law (1.1) with f central.
Then f, g belong to one of the following families, where m : S → C is an
exponential, b ∈ C∗, and c ∈ C.
(a) f = 0 and g is arbitrary.
(b) S 6= S2, g = λf for some λ ∈ C, and f has the form (2.3) with arbitrary

nonzero function f0 : S \ S2 → C.
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(c) For m 6= m̌ we have

f = b(m− m̌), g =
m+ m̌

2
+ c

m− m̌
2

.

(d) For m = m̌ and φm = −φ̌m 6= 0, we have f = φm and g = m+ cφm.
Conversely the pairs (f, g) so described are solutions of (1.1) with f cen-

tral.
Furthermore if S is a topological semigroup and f, g ∈ C(S), then m, m̌ ∈

C(S).

Proof. Clearly if f = 0 then g is arbitrary, and this is case (a). Henceforth
we assume f 6= 0.

Next suppose g = λf for some λ ∈ C. Then (1.1) reduces to f(xy∗) = 0
for all x, y ∈ S, so f vanishes everywhere on S2. This contradicts f 6= 0 if
S = S2, so we must have S 6= S2 and hence case (b). From now on we assume
that g and f are linearly independent.

By Lemma 3.1 we see that f is odd. Replacing y by y∗ in (1.1) we have
f(xy) = f(x)g(y∗)− g(x)f(y∗), thus

(3.2) f(xy) = f(x)g(y∗) + g(x)f(y), x, y ∈ S.

Since f is central this yields

f(y)g(x∗) + g(y)f(x) = f(yx) = f(xy) = f(x)g(y∗) + g(x)f(y),

so
f(y)[g(x∗)− g(x)] = f(x)[g(y∗)− g(y)], x, y ∈ S.

Because f 6= 0 it follows that

ǧ − g = δf

for some δ ∈ C. Using this relation in (3.2) we have

f(xy) = f(x)g(y) + g(x)f(y) + δf(x)f(y), x, y ∈ S.

Defining g′ : S → C by

(3.3) g′ := g +
δ

2
f,

the preceding equation becomes the sine addition formula

f(xy) = f(x)g′(y) + g′(x)f(y), x, y ∈ S,
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with solutions provided by Proposition 2.1. Note also that g′ 6= 0 by the
independence of {f, g}, so case (iii) of Proposition 2.1 is ruled out.

From Proposition 2.1 case (i) we get f = b(m1−m2) and g′ = (m1+m2)/2
for some b ∈ C∗ and distinct multiplicative m1,m2 : S → C. Thus by (3.3) we
have

g =
m1 +m2

2
+ c

m1 −m2

2

where c := −δb. Furthermore since f is odd and b 6= 0 we see that

m̌1 − m̌2 = −(m1 −m2).

By [5, Corollary 3.19], since m1 6= m2 it follows that m̌2 = m1 and m̌1 = m2.
Defining m := m1 we have m2 = m̌ 6= m, and this is our family (c).

From Proposition 2.1 case (ii) we get f = φm and g′ = m, where m is an
exponential and φm has companion m. Since f is odd and nonzero we have
φ̌m = −φm 6= 0. Using the fact that the pair (φm,m) is a solution of (2.1)
with φm odd, we find that this pair satisfies (1.1) if and only if

φm(x)m(y)−m(x)φm(y) = φm(xy∗)

= φm(x)m(y∗) +m(x)φm(y∗)

= φm(x)m(y∗)−m(x)φm(y)

for all x, y ∈ S. Since φm 6= 0 this implies m̌ = m and we have family (d).
The converses are straightforward verifications.
The topological statement follows from Proposition 2.1 and the construc-

tion. �

The following example (based on [6, Example 1]) shows that there exist
non-central solutions of (1.1), even on non-Abelian groups with x∗ = x−1.

Example 3.3. Let G be the (ax+ b)-group

G :=

{(
a b
0 1

)
| a > 0, b ∈ R

}
,

with involution X∗ = X−1 for all X ∈ G. Define f, g : G→ C by

f

(
a b
0 1

)
=

b√
a
, g

(
a b
0 1

)
=
√
a, for all

(
a b
0 1

)
∈ G.

Then it is easy to check that (f, g) is a solution of (1.1) and f is not central.
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As we will see in the next section, all solutions of (1.2) are central. This
example shows that the same is not true of (1.1).

4. Sine subtraction law with a homomorphic involution

In this section S is a semigroup with a homomorphic involution σ. As noted
earlier the general solution of (1.2) is known on monoids. Here we extend the
results to a general semigroup. For any function F : S → C let

Fe :=
F + F ◦ σ

2
and Fo :=

F − F ◦ σ
2

denote the even and odd parts of F , respectively.

Lemma 4.1. Suppose f, g : S → C satisfy (1.2) with {f, g} linearly inde-
pendent. Then f is odd and go = cf for some constant c ∈ C.

Proof. We start by calculating f(xσ(yz)) in two different ways. By (1.2)
we have

f(xσ(yz)) = f(x)g(yz)− g(x)f(yz)

= f(x)g(yz)− g(x)[f(y)g(σ(z))− g(y)f(σ(z))],

and

f(xσ(y)σ(z)) = f(xσ(y))g(z)− g(xσ(y))f(z)

= [f(x)g(y)− g(x)f(y)]g(z)− g(xσ(y))f(z),

for all x, y, z ∈ S. It follows that

f(x)[g(yz)− g(y)g(z)](4.1)

= −g(x)[f(y)g(z)− f(y)g ◦ σ(z) + g(y)f ◦ σ(z)]− g(xσ(y))f(z)

= −g(x)[2f(y)go(z) + g(y)f ◦ σ(z)]− g(xσ(y))f(z)
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for all x, y, z ∈ S. Choosing x = x0 such that f(x0) 6= 0 (which exists by
linear independence), we find that

(4.2) g(yz)− g(y)g(z)

= α[2f(y)go(z) + g(y)f ◦ σ(z)] + h(y)f(z), y, z ∈ S,

for some α ∈ C and h : S → C. Using (4.2) in (4.1) we get after some re-
arrangement

(g + αf)(x)[2f(y)go(z) + g(y)f ◦ σ(z)] = −[g(xσ(y)) + f(x)h(y)]f(z).(4.3)

Putting z = x0 here we get

g(xσ(y)) + f(x)h(y) = (g + αf)(x)(β1f + β2g)(y), x, y ∈ S,

for some β1, β2 ∈ C. Putting this back into (4.3) we arrive at

(g + αf)(x)[2f(y)go(z) + g(y)f ◦ σ(z) + (β1f + β2g)(y)f(z)] = 0.

By the linearly independence of {f, g} we can choose x = x1 such that (g +
αf)(x1) 6= 0, and the preceding equation simplifies to

f(y)[2go(z) + β1f(z)] + g(y)[f ◦ σ(z) + β2f(z)] = 0, y, z ∈ S.

Applying the independence to this equation we see that go = cf for some
c ∈ C, and

f ◦ σ = −β2f.(4.4)

It only remains to show that f is odd. By (4.4) we have

f = f ◦ σ ◦ σ = −β2f ◦ σ = β2
2f,

so β2 = ±1. If β2 = 1 then f is odd and we are finished.
To complete the proof we show that β2 = −1 is impossible. If β2 = −1

then (4.4) shows that f is even. Since f is even and go = cf we see that g is
also even. Now (1.2) with y replaced by σ(y) becomes

f(xy) = f(x)g(y)− g(x)f(y), x, y ∈ S.(4.5)

This shows that f(xy) = −f(yx), therefore

f(x(yz)) = −f((yz)x) = −f(y(zx)) = f((zx)y) = f(z(xy)) = −f(xyz),
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so f(xyz) = 0 for all x, y, z ∈ S. Using this together with (4.5) and (4.2) we
get

0 = f(x(yz)) = f(x)g(yz)− g(x)f(yz)

= f(x)[g(y)g(z) + αg(y)f(z) + h(y)f(z)]− g(x)[f(y)g(z)− g(y)f(z)]

for all x, y, z ∈ S. This contradicts the linear independence of {f, g}. �

Now we come to the secondary main result, which generalizes [2, Corol-
lary 4.3] by dropping the requirement that S contains an identity element.

Theorem 4.2. Let S be a semigroup with involution σ, and suppose
f, g : S → C are solutions of the sine subtraction law (1.2). Then f, g be-
long to one of the following families, where m : S → C is an exponential,
b ∈ C∗, and c ∈ C.
(a) f = 0 and g is arbitrary.
(b) S 6= S2, g = λf for some λ ∈ C, and f is given by (2.3) with arbitrary

nonzero function f0 : S \ S2 → C.
(c) For m 6= m ◦ σ we have

f = b(m−m ◦ σ), g =
m+m ◦ σ

2
+ c

m−m ◦ σ
2

.

(d) For m = m◦σ and φm = −φm◦σ 6= 0, we have f = φm and g = m+cφm.
Conversely the pairs (f, g) so described are solutions of (1.2).
Moreover, if S is a topological semigroup and f, g ∈ C(S), then m,m◦σ ∈

C(S).

Proof. The proof is accomplished by using Lemma 4.1 to replace part of
the proof of [2, Corollary 4.3]. That proof is an adaptation of [5, Theorem 4.12],
which gave the solutions of (1.2) on groups.

If f = 0 then g is arbitrary and we have solution (a). Henceforth we assume
f 6= 0.

Next suppose g = λf for some λ ∈ C. Then (1.2) yields f(xσ(y)) = 0 for
all x, y ∈ S. Thus f vanishes everywhere on S2. Since f 6= 0 we have S 6= S2

and the restriction of f to S \ S2 is a nonzero function, so we are in case (b).
It remains to treat the case that {f, g} is linearly independent. By

Lemma 4.1 we see that f is odd and go = cf for some c ∈ C. Since the
existence of an identity element in S was needed in the proof of [5, Theo-
rem 4.12] only to show that f is odd and go = cf , the rest follows almost
unchanged from that proof. You just substitute Proposition 2.1 for [5, Corol-
lary 4.4] when the solutions of the sine addition formula are needed. That
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causes a modification in family (d), where we replace the form f = Am (with
A additive and m exponential) by the form f = φm as described in Proposi-
tion 2.1 part (ii). �

5. Examples

The examples in this section are for semigroups with anti-homomorphic
involutions x 7→ x∗. (Examples for homomorphic involutions can be found in
[4, 2].) For each semigroup we identify the forms of exponential m and the
corresponding φm to be used in Theorem 3.2.

As noted earlier, an exponential m on a group never takes the value 0, so
Im = ∅ and we have φm = Am for some additive function A on the group.
Also S = S2 for every monoid, including groups.

Let M(n,C) denote the monoid of n × n complex matrices under mul-
tiplication and the usual topology, and GL(n,C) its subgroup of invertible
elements. Let R(α) be the real part of a complex number α. For the matrix
groups in our first three examples we take X∗ := X−1 for all X.

Example 5.1. Let G be the general linear group GL(n,C). By [4,
Lemma 5.4] the continuous exponentials m ∈ C(G) have the form

mn,λ(X) = |det(X)|λ−n(det(X))n, X ∈ GL(n,C),

where n ∈ Z and λ ∈ C, and the continuous additive functions A ∈ C(G) are
given by

Aδ(X) = δ log |det(X)|, X ∈ GL(n,C),(5.1)

where δ ∈ C.
An exponential mn,λ is even if and only if mn,λ = m0,0 = 1. For m = 1

we find that the corresponding φm = Aδ is odd for every δ ∈ C.

The second example is the group of affine motions of R.

Example 5.2. Consider the (ax+b)-group G defined in Example 3.3, with
the topology inherited from M(2,C). By [5, Example 3.13] the continuous
exponentials m ∈ C(G) have the form

mλ

(
a b
0 1

)
= aλ,

(
a b
0 1

)
∈ G,
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where λ ∈ C, and by [5, Example 2.10] the continuous additive functions
A ∈ C(G) are of the form

Aγ

(
a b
0 1

)
= γa,

(
a b
0 1

)
∈ G,

where γ ∈ C.
An exponential mλ is even if and only

a−λ = mλ

(
a−1 −ba−1
0 1

)
= mλ

(
a b
0 1

)
= aλ

for all a > 0, so λ = 0 and thus mλ = m0 = 1. For this exponential the
corresponding φm = Aγ is odd if and only if

γa−1 = Aγ

(
a−1 −ba−1
0 1

)
= −Aγ

(
a b
0 1

)
= −γa

for all a > 0, so γ = 0 and therefore φm = 0.

The third example is the Heisenberg group

H3 :=


1 x z

0 1 y
0 0 1

 | x, y, z ∈ R

 .

Example 5.3. Let G = H3 with the topology inherited from M(3,C). By
[5, Example 3.14] the continuous exponentials m ∈ C(G) have the form

mα,β

1 x z
0 1 y
0 0 1

 = eαx+βy, x, y, z ∈ R,

and by [5, Example 2.11] the continuous additive functions A ∈ C(G) are
given by

Aλ,µ

1 x z
0 1 y
0 0 1

 = λx+ µy, x, y, z ∈ R,

where α, β, λ, µ ∈ C.
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An exponential mα,β is even if and only

e−αx−βy = mα,β

1 −x −z + xy
0 1 −y
0 0 1

 = mα,β

1 x z
0 1 y
0 0 1

 = eαx+βy

for all x, y, z ∈ R, so α = β = 0. For an even exponential m = m0,0 = 1 we
find that φm = Aλ,µ is odd if and only if

−λx− µy = Aλ,µ

1 −x −z + xy
0 1 −y
0 0 1

 = −Aλ,µ

1 x z
0 1 y
0 0 1

 = −(λx+ µy)

for all x, y, z ∈ R. This is true for every λ, µ ∈ C.

For the next example let X∗ = X
t
be the adjoint matrix of X ∈M(2,C).

Note that the non-commutative monoid S = M(2,C) is generated by its
squares (see [4, p. 192]). We claim that Pm is empty for any multiplicative
m : S → C. Indeed, given any X ∈ Im there exist n ∈ N and Y1, . . . , Yn ∈ S
such thatX = Y 2

1 · · ·Y 2
n . Hence 0 = m(X) = m(Y 2

1 · · ·Y 2
n ) = m(Y1)2· · ·m(Yn)2,

so m(Yj) = 0 for some j. It follows that X = (Y 2
1 · · ·Y 2

j−1Yj) · (YjY 2
j+1· · ·Y 2

n ) ∈
I2m, therefore Im = I2m and so Pm = ∅.

Example 5.4. Let S = M(2,C). By [4, Lemma 5.4] the continuous expo-
nentials m ∈ C(S) have the form m = 1 or

(5.2) m(X) =

{
|det(X)|λ−n(det(X))n if det(X) 6= 0,

0 if det(X) = 0,

where n ∈ Z and λ ∈ C with R(λ) > 0. As we saw in Example 5.1 the
continuous additive functions on GL(2,C) have the form (5.1), and all of
them are odd. The only additive function on the whole monoid S is A = 0,
since S contains a zero.

The only φm with companion m = 1 is the zero function, since φm = A is
additive on S. If m ∈ C(S) is given by (5.2), then (since Pm = ∅) the form of
φm with companion m simplifies to

(5.3) φm(X) =

{
A(X)m(X) if det(X) 6= 0,

0 if det(X) = 0,

where A has the form (5.1).
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The exponential m = 1 is clearly even. An exponential m of the form (5.2)
is even if and only n = 0. For m = 1 we see that φm = 0 is odd. If an m of
the form (5.2) is even, then by (5.1), (5.3), and (5.2) with n = 0, we see that
φm of the form (5.3) is odd if and only if

δ log |det(X)||det(X)|λ= −δ log |det(X∗)||det(X∗)|λ, for all X ∈ GL(n,C).

Thus δ = 0 and we have φm = 0.

The final example is a semigroup for which S 6= S2.

Example 5.5. Let S = N × N equipped with (vector) addition and the
discrete topology. Define

(x, y)∗ := (y, x), for all (x, y) ∈ S.

By [7, Example 8.3] the exponentials m : S → C have the form

mb1,b2(x, y) = bx1b
y
2, for all x, y ∈ N,

for some b1, b2 ∈ C∗, and the additive functions A : S → C are given by

Ac1,c2(x, y) = c1x+ c2y, for all x, y ∈ N,

where c1, c2 ∈ C.
Clearly an exponential m = mb1,b2 never takes the value zero at any point

of S, so φm = Ac1,c2m for some additive c1, c2 ∈ C.
An exponential mb1,b2 is even if and only if bx1b

y
2 = by1b

x
2 for all x, y ∈ N,

which implies that b1 = b2. For an even m = mb,b, the corresponding φm =
Ac1,c2m is odd if and only if c1x + c2y = −(c1y + c2x) for all x, y ∈ N. Thus
c2 = −c1, so φm = Ac,−cm for some c ∈ C.

Since S 6= S2 it remains to describe the form of f given by (2.3) in Propo-
sition 2.1(iii). Here

S2 = {(x1, y1) + (x2, y2) | x1, x2, y1, y2 ∈ N} = {(m,n) ∈ S | m ≥ 2, n ≥ 2},

so S \ S2 = ({1} ×N) ∪ (N× {1}) and f0 is an arbitrary nonzero function on
this set.
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6. Systems of equations

We close the paper by giving the general solutions of systems of equations
combining each pair of (1.1), (2.1), and the cosine addition law

(6.1) g(xy) = g(x)g(y)− f(x)f(y), x, y ∈ S.

For the latter equation we have the following, which is [2, Theorem 3.2] sup-
plemented with further details in family (iii) as recorded in Proposition 2.1
case (ii).

Proposition 6.1. Let S be a semigroup. The solutions g, f : S → C of the
cosine addition law (6.1) are the following families, where m,m1,m2 : S → C
are multiplicative functions with m 6= 0 and m1 6= m2.
(a) g = f = 0.
(b) S 6= S2, g = ±f , and f has the form (2.3) with arbitrary nonzero function

f0 : S \ S2 → C.

(c) g =
c−1m1 + cm2

c−1 + c
and f =

m1 −m2

i(c−1 + c)
, where c ∈ C∗ \ {±i}.

(d) g = m± φm and f = φm with companion m.
Furthermore, if S is a topological semigroup and g, f ∈ C(S), then m,m1,

m2 ∈ C(S).

For the systems below we need not assume any form of commutativity
(i.e. that any function is central), since all solutions of either addition law
(2.1) or (6.1) are central. While the results are stated for the case of an
anti-homomorphic involution, the obvious parallels hold for a homomorphic
involution.

The first system consists of the sine addition and subtraction laws.

Corollary 6.2. Let S be a semigroup with involution x 7→ x∗, and sup-
pose f, g : S → C satisfy the system of equations (1.1), (2.1). The solutions
are the following families, where m : S → C is an exponential.
(a) f = 0 and g is arbitrary.
(b) S 6= S2, g = 0, and f has the form (2.3) where f0 : S \ S2 → C is an

arbitrary nonzero function.
(c) For m 6= m̌ and b ∈ C∗,

f = b(m− m̌), g =
m+ m̌

2
.
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(d) For m = m̌ and φ̌m = −φm 6= 0, we have f = φm and g = m.
Moreover, if S is a topological semigroup and f ∈ C(S), then m, m̌ ∈ C(S).

Proof. If f = 0 then g is arbitrary, and this is our family (a).
If f 6= 0 then f is central by Proposition 2.1, so we can apply Theorem 3.2.

It is straightforward to check that cases (b), (c), (d) of Theorem 3.2 form
solutions of (2.1) if and only if λ = 0, respectively c = 0. Thus we have the
present families (b), (c), and (d).

The converse is evident, and the topological statement follows from Propo-
sition 2.1. �

The next system pairs the sine subtraction law with the cosine addition
law.

Corollary 6.3. Let S be a semigroup with involution x 7→ x∗, and sup-
pose f, g : S → C satisfy the system of equations (1.1), (6.1). The solutions
are the following families, where m : S → C is multiplicative.
(a) f = 0 and g = m.
(b) S 6= S2, g = ±f , and f has the form (2.3) with arbitrary nonzero function

f0 : S \ S2 → C.
(c) For m 6= m̌ and b ∈ C∗,

f = b(m− m̌), g =
m+ m̌

2
±
√

1 + 4b2
m− m̌

2
.

(d) For m = m̌ 6= 0 and φ̌m = −φm 6= 0, we have f = φm and g = m± φm.
Moreover, if S is a topological semigroup and f, g ∈ C(S), then m, m̌ ∈

C(S).

Proof. By Proposition 6.1 we again have f central, so Theorem 3.2 ap-
plies. If f = 0 then (6.1) shows that g is multiplicative and we have family (a).

Henceforth we assume f 6= 0. Case (b) of Theorem 3.2 yields a solution
of (6.1) only if λ = ±1, and this is our family (b).

Substituting the formulas from case (c) of Theorem 3.2 into (6.1), we find
after simplification that

0 = (1− c2 + 4b2)[m(x)− m̌(x)][m(y)− m̌(y)], x, y ∈ S.

Since m 6= m̌ we have c2 = 1 + 4b2, therefore we are in solution family (c).
The remaining case (d) of Theorem 3.2 is f = φm and g = m + cφm

for some exponential m 6= m̌, nonzero φm = −φ̌m, and c ∈ C. This pair of
functions satisfies (6.1) only if c = ±1, and this is our family (d).
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Again the converse is clear, and the topological statement follows from
Theorem 3.2. �

The combination of the sine and cosine addition laws is the strongest of
the three systems in the sense that it has the shortest list of solution types.

Corollary 6.4. Let S be a semigroup. The functions f, g : S → C satisfy
the system of equations (2.1), (6.1) if and only if there exist multiplicative
functions m1,m2 : S → C such that

(6.2) f =
m1 −m2

2i
, g =

m1 +m2

2
.

Furthermore if S is a topological semigroup and f ∈ C(S), then m1,m2 ∈
C(S).

Proof. If f = 0, then f, g satisfy (6.1) only if g is multiplicative. This
is (6.2) with m1 = m2.

If f 6= 0 then we apply Proposition 2.1 and check its solution families
in (6.1). A small calculation reveals that the pair f = b(m1 − m2) and
g = (m1 + m2)/2, with m1 6= m2, satisfies (6.1) only if b2 = −1/4, thus
we have (6.2) with m1 6= m2. Case (ii) of Proposition 2.1, namely g = m and
f = φm, satisfies (6.1) only if φm = 0, contradicting f 6= 0. Finally case (iii)
of Proposition 2.1 is not a solution of (6.1), since g = 0 in (6.1) implies f = 0,
again contradicting f 6= 0.

The topological statement follows from Proposition 2.1. �
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