Annales Mathematicae Silesianae 37 (2023), no. 1, 82–94

DOI: 10.2478/amsil-2023-0003

## STRONG m-CONVEXITY OF SET-VALUED FUNCTIONS

Teodoro Lara<sup>®</sup>, Nelson Merentes, Roy Quintero, Edgar Rosales

**Abstract.** In this research we introduce the concept of strong m-convexity for set-valued functions defined on m-convex subsets of real linear normed spaces, a variety of properties and examples of these functions are shown, an inclusion of Jensen type is also exhibited.

### 1. Introduction

In this research we introduce the notion of a strongly m-convex set-valued function, which represents a generalization of the usual concept of m-convexity for the real case that can be found in [3] and references therein. The idea of this new approach involves the concepts of strong convexity and m-convexity of set-valued functions. This is the main reason for which we start off by recalling both definitions. Along this paper X, Y will denote any real normed linear spaces, D an m-convex subset of X ([1]), B the closed unit ball in Y and n(Y) the family of all nonempty subsets of Y.

Received: 11.10.2022. Accepted: 24.01.2023. Published online: 07.02.2023. (2020) Mathematics Subject Classification: 26A51, 52A30.

Key words and phrases: m-convex set, strongly m-convex set-valued function, Jensen type inclusion, normed space.

<sup>©2023</sup> The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

DEFINITION 1.1 ([4]). Let c > 0. A set-valued function  $F: D \to n(Y)$  is called *strongly convex with modulus* c if it satisfies the inclusion

$$tF(x) + (1-t)F(y) + ct(1-t)\|x - y\|^2 B \subseteq F(tx + (1-t)y),$$

for all  $x, y \in D$  and  $t \in [0, 1]$ .

DEFINITION 1.2 ([3]). Let  $m \in [0,1]$ . A set-valued function  $F: D \to n(Y)$  is called m-convex if the inclusion

$$tF(x) + m(1-t)F(y) \subseteq F(tx + m(1-t)y),$$

holds for all  $x, y \in D$  and  $t \in [0, 1]$ .

Our first definition runs as follows:

DEFINITION 1.3. Let c > 0 and  $m \in [0, 1]$ . A set-valued function  $F: D \to n(Y)$  is called *strongly m-convex with modulus c* if

(1.1) 
$$tF(x) + m(1-t)F(y) + cmt(1-t)||x-y||^2 B \subseteq F(tx+m(1-t)y),$$
  
for any  $x, y \in D$ ,  $t \in [0, 1].$ 

Remark 1.4. Notice that (1.1) is equivalent to

$$mtF(x) + (1-t)F(y) + cmt(1-t)||x-y||^2B \subseteq F(mtx + (1-t)y),$$

with x, y, t as before.

Remark 1.5. If a set-valued function F is strongly m-convex with modulus c, then it is also m-convex. It follows immediately from the fact that  $0 \in B$ .

The converse in the foregoing remark is not true. Namely, we have the following.

EXAMPLE 1.1. The set-valued function  $F: [0,1] \subseteq \mathbb{R} \to n(\mathbb{R})$ , given by F(x) = [0,x], is m-convex ([3, Example 2.17]). But for all  $x,y,t \in [0,1]$ 

$$tF(x)+m(1-t)F(y)+cmt(1-t)\|x-y\|^2B$$

$$= \left[-cmt(1-t)\|x-y\|^2, tx+m(1-t)y+cmt(1-t)\|x-y\|^2\right],$$

while that

$$F(tx + m(1 - t)y) = [0, tx + m(1 - t)y],$$

so F can not be a strongly m-convex function.

EXAMPLE 1.2. If b > 0 and  $f, g: [0, b] \to \mathbb{R}$  are two real functions, f and -g being strongly m-convex with the same modulus ([2]) and  $f \leq g$  on [0, b], it is not difficult to verify (by reasoning as in Example 2.2 from [3]) that the set-valued functions  $F_1, F_2, F_3: [0, b] \subseteq \mathbb{R} \to n(\mathbb{R})$  given by

$$F_1(x) = [f(x), g(x)], \quad F_2(x) = [f(x), +\infty), \quad F_3(x) = (-\infty, g(x)]$$

are strongly m-convex (with the same modulus). So, for example, functions  $f_1, g_1 \colon [0,1] \to \mathbb{R}$  defined as  $f_1(x) = 0$  and  $g_1(x) = -1$  are clearly m-convex ([5, 6]), while functions  $f(x) = \frac{1}{2}x^2$ ,  $g(x) = 1 - \frac{1}{2}x^2$  are such that f and -g are strongly m-convex with modulus  $c = \frac{1}{2}$ ; moreover  $f \leq g$  on [0, 1]. Consequently the set-valued function  $F \colon [0,1] \to n(\mathbb{R})$  defined by  $F(x) = \left[\frac{1}{2}x^2, 1 - \frac{1}{2}x^2\right]$  is strongly m-convex with modulus  $\frac{1}{2}$ , and so is  $G(x) = \left[\frac{1}{2}x^2 - 1, -\frac{1}{2}x^2\right]$ . The graphs of F and G are shown in Figures 1 and 2, respectively.



Figure 1. Graph of F

Figure 2. Graph of G

1

## 2. Results

In this section we present some set-properties of the unit ball B. At the same time, a characterization of the family of all the strongly m-convex functions is given and illustrate with an interesting example. We begin with

a lemma related to two well-known properties of convexity whose proofs are omitted.

LEMMA 2.1. (1) If 
$$0 \le \alpha_1 \le \alpha_2$$
, then  $\alpha_1 B \subseteq \alpha_2 B$ .  
(2) If  $\alpha_1 \alpha_2 \ge 0$ , then  $(\alpha_1 + \alpha_2)B = \alpha_1 B + \alpha_2 B$ .

PROPOSITION 2.2. A set-valued function  $F: D \to n(Y)$  is strongly m-convex with modulus c if and only if

$$(2.1) tF(A_1) + m(1-t)F(A_2) + cmt(1-t)\|A_1 - A_2\|^2 B \subseteq F(A_1 + m(1-t)A_2)$$

for all  $A_1, A_2 \subseteq D$  and  $t \in [0,1]$ , where  $F(A_i) = \{F(x) : x \in A_i\}$  (i = 1, 2) and  $||A_1 - A_2|| = \inf\{||x - y|| : x \in A_1, y \in A_2\}.$ 

PROOF. ( $\Rightarrow$ ) Let  $A_1, A_2$  be two fixed but arbitrary subsets of D and  $z \in tF(A_1) + m(1-t)F(A_2) + cmt(1-t)\|A_1 - A_2\|^2B$ . Then

$$(2.2) z \in tF(a) + m(1-t)F(b) + cmt(1-t)||A_1 - A_2||^2B$$

for some  $a \in A_1$  and  $b \in A_2$ . Since  $0 \le ||A_1 - A_2|| \le ||a - b||$ ,  $0 \le cmt(1 - t)||A_1 - A_2||^2 \le cmt(1 - t)||a - b||^2$  and from Lemma 2.1(1), the inclusion  $cmt(1 - t)||A_1 - A_2||^2B \subseteq cmt(1 - t)||a - b||^2B$  takes place. Hence,

(2.3) 
$$tF(a) + m(1-t)F(b) + cmt(1-t)\|A_1 - A_2\|^2 B$$
  

$$\subseteq tF(a) + m(1-t)F(b) + cmt(1-t)\|a - b\|^2 B.$$

Furthermore, since  $ta + m(1-t)b \in tA_1 + m(1-t)A_2$ , it is clear that

(2.4) 
$$F(ta + m(1-t)b) \subseteq F(tA_1 + m(1-t)A_2).$$

So, (2.1) follows from (2.2), (2.3), the strong m-convexity of F and (2.4). ( $\Leftarrow$ ) Let  $x, y \in D$  and  $t \in [0, 1]$ . The strong m-convexity with modulus c of F is obtained by considering in (2.1) the singletons  $A_1 = \{x\}$  and  $A_2 = \{y\}$ .

PROPOSITION 2.3. Let  $b \in \mathbb{R} \setminus \{0\}$  and  $D = [\min\{0, b\}, \max\{0, b\}] \subseteq \mathbb{R}$ . If  $F \colon D \to n(Y)$  is strongly m-convex with modulus c, and  $0 < n \le m < 1$ , then F is strongly n-convex with modulus c.

PROOF. If b < 0, then D = [b,0]. Let  $t \in [0,1]$  and  $x,y \in D$  with  $x \le y$ . So,  $x - \frac{n}{m}y \le x - y \le 0$  and therefore,  $\|x - y\|^2 \le \|x - \frac{n}{m}y\|^2$ . Since F is strongly m-convex with modulus c, F is m-convex (Remark 1.5). Thus, from [3, Proposition 2.11], Lemma 2.1(1), and the strong m-convexity of F,

$$tF(x) + n(1-t)F(y) + cnt(1-t)\|x - y\|^{2}B$$

$$= tF(x) + m(1-t)\left(\frac{n}{m}\right)F(y) + cmt(1-t)\left(\frac{n}{m}\right)\|x - y\|^{2}B$$

$$\subseteq tF(x) + m(1-t)F\left(\frac{n}{m}y\right) + cmt(1-t)\left\|x - \frac{n}{m}y\right\|^{2}B$$

$$\subseteq F(tx + n(1-t)y).$$

And for 
$$y < x$$
,  $||x - y||^2 \le \left\| \frac{n}{m} x - y \right\|^2$ , hence

$$ntF(x) + (1 - t)F(y) + cnt(1 - t)\|x - y\|^{2}B$$

$$= mt\left(\frac{n}{m}\right)F(x) + (1 - t)F(y) + cmt(1 - t)\left(\frac{n}{m}\right)\|x - y\|^{2}B$$

$$\subseteq mtF\left(\frac{n}{m}x\right) + (1 - t)F(y) + cmt(1 - t)\left\|\frac{n}{m}x - y\right\|^{2}B$$

$$\subseteq F(ntx + (1 - t)y),$$

where the last inclusion arises from the strong m-convexity of F and Remark 1.4.

If b > 0, D = [0, b] and the proof runs in a similar way, this time for  $x \le y$ , we obtain  $||x-y||^2 \le \left\|\frac{n}{m}x - y\right\|^2$ , and the result follows from Remark 1.4; while for y < x,  $||x-y||^2 \le \left\||x - \frac{n}{m}y\right\|^2$  and the conclusion follows from (1.1).

For the next proposition, X is a real inner product space, cc(Y) denotes the subfamily of n(Y) of all convex closed sets. We also recall the cancellation law of Rådström ([4]):

Lemma 2.4. Let A, B, C be subsets of X such that  $A + C \subseteq B + C$ . If B is convex closed and C is nonempty bounded, then  $A \subseteq B$ .

PROPOSITION 2.5. If  $F: D \subseteq X \to n(Y)$  is m-convex, c > 0, and there exists a function  $G: D \to cc(Y)$  such  $F(x) = G(x) + c||x||^2 B$  for all  $x \in D$ , then G is strongly m-convex with modulus c.

PROOF. Let  $x, y \in D$  and  $t \in [0, 1]$ . By the m-convexity of F,

$$t[G(x) + c||x||^2 B] + m(1-t)[G(y) + c||y||^2 B]$$

$$\subseteq G(tx + m(1-t)y) + c||tx + m(1-t)y||^2 B,$$

which in turn implies, multiplying by t+m(1-t) and applying Lemma 2.1(1),

$$(2.5) \quad [t+m(1-t)](tG(x)+m(1-t)G(y))$$

$$+ [t+m(1-t)](ct||x||^2B+cm(1-t)||y||^2B)$$

$$\subseteq [t+m(1-t)]G(tx+m(1-t)y)+c||tx+m(1-t)y||^2B;$$

or

$$[t + m(1 - t)](t||x||^2 + m(1 - t)||y||^2)$$
$$= mt(1 - t)||x - y||^2 + ||tx + m(1 - t)y||^2.$$

So, by this equality, (2.5), and Lemma 2.1(2), we obtain

$$[t+m(1-t)](tG(x)+m(1-t)G(y))+cmt(1-t)\|x-y\|^2B+c\|tx+m(1-t)y\|^2B$$

$$\subseteq [t+m(1-t)]G(tx+m(1-t)y)+c\|tx+m(1-t)y\|^2B.$$

On the other hand, Lemma 2.1(1) implies

$$(2.6) [t + m(1-t)]cmt(1-t)||x-y||^2B \subseteq cmt(1-t)||x-y||^2B.$$

Then, by Lemma 2.4 and (2.6),

$$[t + m(1-t)](tG(x) + m(1-t)G(y) + cmt(1-t)||x - y||^2B)$$

$$\subseteq [t + m(1-t)]G(tx + m(1-t)y);$$

or better,

$$tG(x) + m(1-t)G(y) + cmt(1-t)||x-y||^2B \subseteq G(tx+m(1-t)y).$$

EXAMPLE 2.1. The set-valued function  $F: [0,1] \subseteq \mathbb{R} \to n(\mathbb{R})$ , defined by F(x) = [0,1] is m-convex ([3, Example 2.2]). Moreover, the function  $G: [0,1] \subseteq \mathbb{R} \to cc(\mathbb{R})$  given by  $G(x) = \left[\frac{1}{2}x^2, 1 - \frac{1}{2}x^2\right]$ , is such that

$$F(x) = [0, 1] = G(x) + \frac{1}{2}x^{2}[-1, 1].$$

Hence, from Proposition 2.5, G is a strongly m-convex function with modulus 1/2. Note that this fact agrees with Example 1.2.

### 3. More results

We finish the paper with this section, in which some properties of the union, intersection and sum of strongly m-convex set-valued functions are shown same as a Jensen type inclusion for this class of functions.

PROPOSITION 3.1. Let  $F_1, F_2 \colon D \to n(Y)$  be two strongly m-convex functions with modulus c, such that

$$(3.1) F_1(x) \subseteq F_2(x) (or F_2(x) \subseteq F_1(x))$$

for each  $x \in D$ . Then the union function ([3, Definition 2.18]) of  $F_1$  and  $F_2$  is also strongly m-convex function with modulus c.

Proof. It is straightforward from assumption 
$$(3.1)$$
.

The following example shows that the condition (3.1) can not be omitted.

EXAMPLE 3.1. In Example 1.2 was shown that the functions  $F, G: [0,1] \to n(\mathbb{R})$  defined by  $F(x) = [\frac{1}{2}x^2, 1 - \frac{1}{2}x^2]$  and  $G(x) = [\frac{1}{2}x^2 - 1, -\frac{1}{2}x^2]$ , are strongly m-convex with modulus  $\frac{1}{2}$ . Nevertheless, the function  $F \cup G$  is not, since it is not m-convex (Remark 1.5). We may notice that its graph (Figure 3) clearly is not an m-convex set ([3, Theorem 2.10]).

For any nonempty subsets A,B,C,D of a linear space and  $\alpha$  any scalar, the following properties hold:

- $\alpha(A \cap B) = (\alpha A) \cap (\alpha B)$ ,
- $A \cap B + C \cap D \subseteq (A + C) \cap (B + D)$ ,
- If  $A \subseteq B$  and  $C \subseteq D$ , then  $A \cap C \subseteq B \cap D$ ,

with these in mind, proof of following result comes out.



Figure 3. Graph of  $F \cup G$ 

PROPOSITION 3.2. Let  $F_1, F_2: D \to n(Y)$  be two set-valued functions, such that  $F_1$  is strongly m-convex with modulus  $c_1$  and  $F_2$  is strongly m-convex with modulus  $c_2$ . Then the intersection function ([3, Definition 2.18])  $F_1 \cap F_2$  is strongly m-convex with modulus c, where  $c = \min\{c_1, c_2\}$ .

PROOF. Let  $x, y \in D$  and  $t \in [0, 1]$ . From Lemma 2.1(1) it follows that if  $c = \min\{c_1, c_2\}$ , then  $cmt(1-t)\|x-y\|^2B \subseteq c_1mt(1-t)\|x-y\|^2B \cap c_2mt(1-t)\|x-y\|^2B$ . Hence,

$$t(F_{1} \cap F_{2})(x) + m(1-t)(F_{1} \cap F_{2})(y) + cmt(1-t)\|x - y\|^{2}B$$

$$\subseteq t[F_{1}(x) \cap F_{2}(x)] + m(1-t)[F_{1}(y) \cap F_{2}(y)]$$

$$+ c_{1}mt(1-t)\|x - y\|^{2}B \cap c_{2}mt(1-t)\|x - y\|^{2}B$$

$$= tF_{1}(x) \cap tF_{2}(x) + m(1-t)F_{1}(y) \cap m(1-t)F_{2}(y)$$

$$+ c_{1}mt(1-t)\|x - y\|^{2}B \cap c_{2}mt(1-t)\|x - y\|^{2}B$$

$$\subseteq [tF_{1}(x) + m(1-t)F_{1}(y) + c_{1}mt(1-t)\|x - y\|^{2}B]$$

$$\cap [tF_{2}(x) + m(1-t)F_{2}(y) + c_{2}mt(1-t)\|x - y\|^{2}B]$$

$$\subseteq F_{1}(tx + m(1-t)y) \cap F_{2}(tx + m(1-t)y)$$

$$= (F_{1} \cap F_{2})(tx + m(1-t)y).$$

PROPOSITION 3.3. Let  $F_1, F_2: D \to n(Y)$  be two strongly m-convex functions with modulus  $c_1$  and  $c_2$ , respectively. Then the sum function ([3, Definition 2.18])  $F_1 + F_2$  is strongly m-convex with modulus  $c_1 + c_2$ .

PROOF. If  $x, y \in D$  and  $t \in [0, 1]$ , then

$$t(F_1 + F_2)(x) + m(1 - t)(F_1 + F_2)(y) + (c_1 + c_2)mt(1 - t)||x - y||^2 B$$

$$= [tF_1(x) + m(1 - t)F_1(y) + c_1mt(1 - t)||x - y||^2 B]$$

$$+ [tF_2(x) + m(1 - t)F_2(y) + c_2mt(1 - t)||x - y||^2 B]$$

$$\subseteq F_1(tx + m(1 - t)y) + F_2(tx + m(1 - t)y)$$

$$= (F_1 + F_2)(tx + m(1 - t)y).$$

PROPOSITION 3.4. Let  $F_1: D \to n(Y)$  and  $F_2: D \to n(Z)$  be two strongly m-convex functions with modulus  $c_1$  and  $c_2$ , respectively. Then the Cartesian product function ([3, Definition 2.19])  $F_1 \times F_2$  is strongly m-convex with modulus c, where  $c = \min\{c_1, c_2\}$ ,  $B_Y$ ,  $B_Z$  are the closed unit balls in Y and Z, and  $B = \{(y, z) \in Y \times Z : \max\{\|y\|, \|z\|\} \le 1\} \subseteq B_Y \times B_Z$ .

PROOF. Let  $x, y \in D$  and  $t \in [0, 1]$ . Because  $c \leq c_1, c_2$ , Lemma 2.1(1) implies

(3.2) 
$$cmt(1-t)\|x-y\|^2 B_Y \subseteq c_1 mt(1-t)\|x-y\|^2 B_Y cmt(1-t)\|x-y\|^2 B_Z \subseteq c_2 mt(1-t)\|x-y\|^2 B_Z$$
 \right\}.

Taking into account (3.2) and properties of Cartesian product ([3]),

$$[cmt(1-t)||x-y||^2B_Y] \times [cmt(1-t)||x-y||^2B_Z]$$

$$\subseteq [c_1mt(1-t)||x-y||^2B_Y] \times [c_2mt(1-t)||x-y||^2B_Z].$$

Then,

$$t(F_1 \times F_2)(x) + m(1-t)(F_1 \times F_2)(y) + cmt(1-t)\|x - y\|^2 B$$

$$\subseteq t[F_1(x) \times F_2(x)] + m(1-t)[F_1(y) \times F_2(y)]$$

$$+ cmt(1-t)\|x - y\|^2 (B_Y \times B_Z)$$

$$= tF_1(x) \times tF_2(x) + m(1-t)F_1(y) \times m(1-t)F_2(y)$$

$$+ cmt(1-t)\|x - y\|^2 B_Y \times cmt(1-t)\|x - y\|^2 B_Z$$

$$\subseteq tF_1(x) \times tF_2(x) + m(1-t)F_1(y) \times m(1-t)F_2(y)$$

$$+ c_1mt(1-t)\|x - y\|^2 B_Y \times c_2mt(1-t)\|x - y\|^2 B_Z$$

$$= [tF_1(x) + m(1-t)F_1(y) + c_1mt(1-t)\|x - y\|^2 B_Y]$$

$$\times [tF_2(x) + m(1-t)F_2(y) + c_2mt(1-t)\|x - y\|^2 B_Z]$$

$$\subseteq F_1(tx + m(1-t)y) \times F_2(tx + m(1-t)y)$$

$$= (F_1 \times F_2)(tx + m(1-t)y).$$

We finish the work by presenting a Jensen type inclusion for strongly m-convex set-valued functions, for the discrete case. Thereon, we simplify the notation by employing the well-known Delta of Kronecker  $\delta_{ij} = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$ 

THEOREM 3.5. Let  $t_1, \ldots, t_n$  be positive real numbers  $(n \geq 2)$  such that  $T_n = \sum_{i=1}^n t_i \in (0,1]$ . If  $F: D \subseteq X \to n(Y)$  is a strongly m-convex function with modulus c, then

$$\sum_{i=1}^{n} m^{1-\delta_{i1}} t_i F(x_i) + cm \sum_{i=2}^{n} \frac{t_i}{T_{i-1} T_i} \Big\| \sum_{k=1}^{i-1} m^{1-\delta_{k1}} t_k x_k - T_{i-1} x_i \Big\|^2 B$$

$$\subseteq F\Big(\sum_{i=1}^{n} m^{1-\delta_{i1}} t_i x_i\Big),$$

for all  $x_1, \ldots, x_n \in D$ .

PROOF. The proof runs by induction on n. For n = 2,

$$\begin{split} \sum_{i=1}^{2} m^{1-\delta_{i1}} t_{i} F(x_{i}) + cm \sum_{i=2}^{2} \frac{t_{i}}{T_{i-1} T_{i}} \Big\| \sum_{k=1}^{i-1} m^{1-\delta_{k1}} t_{k} x_{k} - T_{i-1} x_{i} \Big\|^{2} B \\ &= t_{1} F(x_{1}) + m t_{2} F(x_{2}) + cm \frac{t_{2}}{T_{1} T_{2}} \| t_{1} x_{1} - T_{1} x_{2} \|^{2} B \\ &= t_{1} F(x_{1}) + m t_{2} F(x_{2}) + cm \frac{t_{2}}{t_{1} (t_{1} + t_{2})} \| t_{1} x_{1} - t_{1} x_{2} \|^{2} B \\ &= (t_{1} + t_{2}) \Big[ \frac{t_{1}}{t_{1} + t_{2}} F(x_{1}) + m \frac{t_{2}}{t_{1} + t_{2}} F(x_{2}) + cm \frac{t_{1} t_{2}}{(t_{1} + t_{2})^{2}} \| x_{1} - x_{2} \|^{2} B \Big] \\ &\subseteq (t_{1} + t_{2}) F\Big( \frac{t_{1}}{t_{1} + t_{2}} x_{1} + m \frac{t_{2}}{t_{1} + t_{2}} x_{2} \Big), \end{split}$$

where the last inclusion results from the strong m-convexity of F. From Remark 1.5 and [3, Proposition 2.11] we obtain the following inclusion

$$(t_1 + t_2)F\left(\frac{t_1}{t_1 + t_2}x_1 + m\frac{t_2}{t_1 + t_2}x_2\right) \subseteq F(t_1x_1 + mt_2x_2)$$
$$= F\left(\sum_{i=1}^2 m^{1-\delta_{i1}}t_ix_i\right).$$

We assume now the result is true for n. So for n+1, let  $t_1, \ldots, t_{n+1}$  be positive real numbers with  $T_{n+1} = \sum_{i=1}^{n+1} t_i \in (0,1]$ , and  $x_1, \ldots, x_{n+1} \in D$ . Then,

$$\begin{split} &\sum_{i=1}^{n+1} m^{1-\delta_{i1}} t_i F(x_i) + cm \sum_{i=2}^{n+1} \frac{t_i}{T_{i-1} T_i} \Big\| \sum_{k=1}^{i-1} m^{1-\delta_{k1}} t_k x_k - T_{i-1} x_i \Big\|^2 B \\ &= t_1 F(x_1) + m t_2 F(x_2) + cm \frac{t_2}{T_1 T_2} \| t_1 x_1 - t_1 x_2 \|^2 B \\ &\quad + \sum_{i=3}^{n+1} m^{1-\delta_{i1}} t_i F(x_i) + cm \sum_{i=3}^{n+1} \frac{t_i}{T_{i-1} T_i} \Big\| \sum_{k=1}^{i-1} m^{1-\delta_{k1}} t_k x_k - T_{i-1} x_i \Big\|^2 B \\ &= (t_1 + t_2) \Big[ \frac{t_1}{t_1 + t_2} F(x_1) + m \frac{t_2}{t_1 + t_2} F(x_2) + cm \frac{t_1 t_2}{(t_1 + t_2)^2} \| x_1 - x_2 \|^2 B \Big] \\ &\quad + \sum_{i=3}^{n+1} m^{1-\delta_{i1}} t_i F(x_i) + cm \sum_{i=3}^{n+1} \frac{t_i}{T_{i-1} T_i} \Big\| \sum_{k=1}^{i-1} m^{1-\delta_{k1}} t_k x_k - T_{i-1} x_i \Big\|^2 B \\ &\subseteq (t_1 + t_2) F\Big( \frac{t_1}{t_1 + t_2} x_1 + m \frac{t_2}{t_1 + t_2} x_2 \Big) + \sum_{i=3}^{n+1} m^{1-\delta_{i1}} t_i F(x_i) \\ &\quad + cm \sum_{i=3}^{n+1} \frac{t_i}{T_{i-1} T_i} \Big\| \sum_{k=1}^{i-1} m^{1-\delta_{k1}} t_k x_k - T_{i-1} x_i \Big\|^2 B \\ &= (t_1 + t_2) F\Big( \frac{t_1}{t_1 + t_2} x_1 + m \frac{t_2}{t_1 + t_2} x_2 \Big) + m \sum_{i=2}^{n} t_{i+1} F(x_{i+1}) \\ &\quad + cm \sum_{i=2}^{n} \frac{t_{i+1}}{T_i T_{i+1}} \Big\| \sum_{k=1}^{i} m^{1-\delta_{k1}} t_k x_k - T_i x_{i+1} \Big\|^2 B \\ &= (t_1 + t_2) F\Big( \frac{t_1}{t_1 + t_2} x_1 + m \frac{t_2}{t_1 + t_2} x_2 \Big) + m \sum_{i=2}^{n} t_{i+1} F(x_{i+1}) \\ &\quad + cm \sum_{i=2}^{n} \frac{t_{i+1}}{T_i T_{i+1}} \Big\| t_1 x_1 + m t_2 x_2 + \sum_{k=3}^{i} m^{1-\delta_{k1}} t_k x_k - T_i x_{i+1} \Big\|^2 B \end{aligned}$$

$$= (t_1 + t_2)F\left(\frac{t_1}{t_1 + t_2}x_1 + m\frac{t_2}{t_1 + t_2}x_2\right) + m\sum_{i=2}^n t_{i+1}F(x_{i+1})$$

$$+ cm\sum_{i=2}^n \frac{t_{i+1}}{T_iT_{i+1}} \left\| (t_1 + t_2)\left(\frac{t_1}{t_1 + t_2}x_1 + m\frac{t_2}{t_1 + t_2}x_2\right) + \sum_{k=2}^{i-1} m^{1-\delta_{(k+1)1}}t_{k+1}x_{k+1} - T_ix_{i+1} \right\|^2 B.$$

Now we set

$$\bar{t}_i = \begin{cases} t_1 + t_2, & \text{if } i = 1, \\ t_{i+1}, & \text{if } i \in \{2, \dots, n\}, \end{cases}$$

and

$$\overline{x}_i = \begin{cases} \frac{t_1}{t_1 + t_2} x_1 + m \frac{t_2}{t_1 + t_2} x_2, & \text{if } i = 1, \\ x_{i+1}, & \text{if } i \in \{2, \dots, n\}, \end{cases}$$

then  $T_{n+1} = t_1 + t_2 + \cdots + t_{n+1} = \overline{t}_1 + \overline{t}_2 + \cdots + \overline{t}_n := \overline{T}_n$ . With this in mind the latter expression can be rewritten as

$$\overline{t}_1 F(\overline{x}_1) + m \sum_{i=2}^n \overline{t}_i F(\overline{x}_i) + cm \sum_{i=2}^n \frac{\overline{t}_i}{\overline{T}_{i-1} \overline{T}_i} \left\| \sum_{k=1}^{i-1} m^{1-\delta_{k1}} \overline{t}_k \overline{x}_k - \overline{T}_{i-1} \overline{x}_i \right\|^2 B$$

or better.

$$(3.3) \qquad \sum_{i=1}^{n} m^{1-\delta_{i1}} \overline{t}_i F(\overline{x}_i) + cm \sum_{i=2}^{n} \frac{\overline{t}_i}{\overline{T}_{i-1} \overline{T}_i} \bigg\| \sum_{k=1}^{i-1} m^{1-\delta_{k1}} \overline{t}_k \overline{x}_k - \overline{T}_{i-1} \overline{x}_i \bigg\|^2 B,$$

where  $\bar{t}_1, \ldots, \bar{t}_n > 0$  with  $\bar{T}_n = \sum_{i=1}^n \bar{t}_i \in (0,1]$  and  $\bar{x}_1, \ldots, \bar{x}_n \in D$ . Therefore, by using the inductive hypothesis, (3.3) is a subset of  $F(\sum_{i=1}^n m^{1-\delta_{i1}} \bar{t}_i \bar{x}_i)$ . In conclusion,

$$\sum_{i=1}^{n+1} m^{1-\delta_{i1}} t_i F(x_i) + cm \sum_{i=2}^{n+1} \frac{t_i}{T_{i-1} T_i} \left\| \sum_{k=1}^{i-1} m^{1-\delta_{k1}} t_k x_k - T_{i-1} x_i \right\|^2 B$$

$$\subseteq F\left(\sum_{i=1}^{n} m^{1-\delta_{i1}} \bar{t}_i \bar{x}_i\right) = F\left(\sum_{i=1}^{n+1} m^{1-\delta_{i1}} t_i x_i\right)$$

and the result is true for n+1 as well.

# References

- [1] T. Lara, N. Merentes, Z. Páles, R. Quintero, and E. Rosales, On m-convexity on real linear spaces, UPI J. Math. Biostat. 1 (2018), no. 2, JMB8, 16 pp.
- [2] T. Lara, N. Merentes, R. Quintero, and E. Rosales, On strongly m-convex funtions, Math. Æterna 5 (2015), no. 3, 521–535.
- [3] T. Lara, N. Merentes, R. Quintero, and E. Rosales, On m-convexity of set-valued functions, Adv. Oper. Theory 4 (2019), no. 4, 767–783.
- [4] H. Leiva, N. Merentes, K. Nikodem, and J.L. Sánchez, Strongly convex set-valued maps, J. Global Optim. 57 (2013), no. 3, 695–705.
- [5] G. Toader, Some generalizations of the convexity, in: I. Muruşciac and W.W. Breckner (eds.), Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, pp. 329–338.
- [6] G. Toader, On a generalization of the convexity, Mathematica (Cluj) 30(53) (1988), no. 1, 83–87.

Teodoro Lara
Departamento de Física y Matemáticas
Universidad de los Andes
Núcleo "Rafael Rangel"
Trujillo
Venezuela
e-mail: tlara@ula.ve

Nelson Merentes
Universidad Central de Venezuela
Escuela de matemáticas
Caracas
Venezuela
e-mail: nmerucv@gmail.com

ROY QUINTERO
DEPARTMENT OF MATHEMATICAL SCIENCES
NORTHERN ILLINOIS UNIVERSITY
DEKALB
USA
e-mail: rquinterocontreras@niu.edu

Edgar Rosales
Departamento de Física y Matemáticas
Universidad de los Andes
Núcleo "Rafael Rangel"
Trujillo
Venezuela
e-mail: edgarr@ula.ve