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STRONG m-CONVEXITY OF SET-VALUED FUNCTIONS

TEODORO LARAY, NELSON MERENTES, ROY QUINTERO,
EDGAR ROSALES

Abstract. In this research we introduce the concept of strong m-convexity for
set-valued functions defined on m-convex subsets of real linear normed spaces,
a variety of properties and examples of these functions are shown, an inclusion
of Jensen type is also exhibited.

1. Introduction

In this research we introduce the notion of a strongly m-convex set-valued
function, which represents a generalization of the usual concept of m-convexity
for the real case that can be found in [3] and references therein. The idea of
this new approach involves the concepts of strong convexity and m-convexity
of set-valued functions. This is the main reason for which we start off by
recalling both definitions. Along this paper X,Y will denote any real normed
linear spaces, D an m-convex subset of X ([I]), B the closed unit ball in Y
and n(Y") the family of all nonempty subsets of Y.

Received: 11.10.2022. Accepted: 24.01.2023. Published online: 07.02.2023.

(2020) Mathematics Subject Classification: 26A51, 52A30.

Key words and phrases: m-convex set, strongly m-convex set-valued function, Jensen
type inclusion, normed space.

(©2023 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
CC BY (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0002-3028-1961
http://creativecommons.org/licenses/by/4.0/

Strong m-convexity of set-valued functions 83

DEFINITION 1.1 ([4]). Let ¢ > 0. A set-valued function F': D — n(Y) is
called strongly convex with modulus c if it satisfies the inclusion

tF(2) + (1= ) F(y) + ct(1 = t)]|lz — y|*B C F(t + (1 - t)y),
for all ,y € D and t € [0, 1].

DEFINITION 1.2 (3]). Let m € [0, 1]. A set-valued function F': D — n(Y')
is called m-convez if the inclusion

tF(z) +m(l —t)F(y) C F(tz +m(1 —t)y),
holds for all z,y € D and ¢ € [0, 1].
Our first definition runs as follows:

DEFINITION 1.3. Let ¢ > 0 and m € [0,1]. A set-valued function F': D —
n(Y) is called strongly m-convex with modulus c if

(1.1)  tF(z) +m(1 — t)F(y) + emt(1 — t)||z — y||>B C F(tz + m(1 — t)y),
for any z,y € D, t € [0,1].
REMARK 1.4. Notice that is equivalent to
mtF(z) + (1 —t)F(y) + emt(1 — t)||z — y||>B € F(mtz + (1 —t)y),
with x,y,t as before.
REMARK 1.5. If a set-valued function F' is strongly m-convex with mod-
ulus ¢, then it is also m-convex. It follows immediately from the fact that

0e B.

The converse in the foregoing remark is not true. Namely, we have the
following.

EXAMPLE 1.1. The set-valued function F': [0,1] € R — n(R), given by
F(z) = [0, ], is m-convex (|3, Example 2.17]). But for all z,y,t € [0,1]

tF(z)+m(1 — t)F(y) + emt(1 — t)||z — y||>B

= [emt(1 = t)l|lz — y|* ta + m(1 = )y + emt(1 — t)l|lz — y|*] ,
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while that
F(tx +m(1 —t)y) = [0,tx +m(1 —t)y],
so F' can not be a strongly m-convex function.

ExAmMPLE 1.2. If b > 0 and f,g: [0,b] — R are two real functions, f
and —g being strongly m-convex with the same modulus (|2]) and f < g on
[0, 0], it is not difficult to verify (by reasoning as in Example 2.2 from [3]) that
the set-valued functions Fy, Iy, F5: [0,b] C R — n(R) given by

Fi(z) = [f(z),9(x)], Fa(z) = [f(z),+00), Fs(z) = (—00,9(z)]

are strongly m-convex (with the same modulus). So, for example, functions
f1,91: [0,1] — R defined as fi(x) = 0 and gi(x) = —1 are clearly m-

convex ([5, 6]), while functions f(z) = 222, g(z) = 1 — 12? are such that

f and —g are strongly m-convex with modulus ¢ = %; moreover f < g
on [0,1]. Consequently the set-valued function F': [0,1] — n(R) defined by
F(z) = [322,1 — 3x?] is strongly m-convex with modulus 3, and so is G(z) =

[%xz -1, —%xﬂ. The graphs of F' and G are shown in Figures |1l and [2| re-

spectively.

1

0.5 -0.5

—1

Figure 1. Graph of F Figure 2. Graph of G

2. Results

In this section we present some set-properties of the unit ball B. At
the same time, a characterization of the family of all the strongly m-convex
functions is given and illustrate with an interesting example. We begin with
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a lemma related to two well-known properties of convexity whose proofs are
omitted.

LEmMA 2.1. (1) If 0 < ag < ag, then an B C aaB.
(2) If cyae >0, then (a1 + a2)B = a1 B + a2 B.

PROPOSITION 2.2. A set-valued function F: D — n(Y) is strongly m-
convex with modulus c if and only if

(2.1) tF(A1)+m(1—t)F(As)+cmt(1—t)|| A1 — As||2B C F(A +m(1—t)As)

for all A1, As C D and t € [0,1], where F(A;) = {F(x) : x € A;} (1 =1,2)
and HA1 — AQH = lIlf{H$ — yH RS Al, Yy < AQ}

PROOF. (=) Let A1, Az be two fixed but arbitrary subsets of D and z €
tE(Ay) +m(1 —t)F(Ag) + emt(1 — t)||A; — A||*B. Then

(2.2) z € tF(a) +m(1 — t)F(b) + emt(1 —t)||A; — As*B
for some a € A; and b € As. Since 0 < ||A; — 43| < ||la — b, 0 < emt(1 —

)| A1 — A2|? < emt(1 — t)|ja — b]|> and from Lemma [2.1(1), the inclusion
emt(1 —t)|| Ay — A2||?B C emt(1 — t)||a — b||* B takes place. Hence,

(2.3) tF(a)+m(1 —t)F(b) +cmt(l —t)||A; — As||*B

C tF(a) +m(1 —t)F(b) + emt(1 — t)|ja — b||*B.
Furthermore, since ta + m(1 —t)b € tA; + m(1 — t) As, it is clear that
(2.4) F(ta+m(1 — t)b) C F(tA; +m(1 —t)As).

So, (2.1) follows from ({2.2)), (2.3]), the strong m-convexity of F' and (2.4]).

(<) Let z,y € D and t € [0,1]. The strong m-convexity with modu-
lus ¢ of F' is obtained by considering in (2.1) the singletons A; = {z} and

PROPOSITION 2.3. Let b € R\{0} and D = [min{0, b}, max{0,b}] C R. If
F: D — n(Y) is strongly m-convex with modulus ¢, and 0 < n < m < 1, then
F' is strongly n-convex with modulus c.
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PrOOF. If b < 0, then D = [b,0]. Let ¢t € [0,1] and z,y € D with < y.

So, x — Ly < x —y < 0 and therefore, ||z — y[|* < |z — 2y ? . Since F is
strongly m-convex with modulus ¢, F' is m-convex (Remark |1.5)). Thus, from
[3, Proposition 2.11|, Lemma (1)7 and the strong m-convexity of F,

tF(z)+n(l — ) F(y) + ent(1 — t)||z — y|*B

= tF(z) +m(1 —t) ( ) F(y) + emt(1 —t) ( ) |z — y|2B

n n
m m
n n |2
CtF(z)+m(l—t)F (—y) + cemt(1 —t) Hx - —yH B
m m

C F(tz +n(l —1t)y).
n 2
And for y < x, ||z — y||? < fo - y“ , hence
m
ntF(z)+(1 — t)F(y) + ent(1 — t)||z — y||>B

— mt (%) F(z) + (1 — H)F(y) + emt(1 —t) (%) |z —y|I°B

CmtF (%x) + (1 —t)F(y) + cmt(1 —t) H%x — sz B
C F(ntz + (1 —t)y),

where the last inclusion arises from the strong m-convexity of F' and Re-
mark L4

If b> 0, D = [0,b] and the proof runs in a similar way, this time for x < y,

we obtain [|z—y||? < || 2z — yHZ, and the result follows from Remar while

1.1). O

fory <z, lv—y|* < ||z - %y”2 and the conclusion follows from (

For the next proposition, X is a real inner product space, cc(Y') denotes
the subfamily of n(Y") of all convex closed sets. We also recall the cancellation
law of Radstrom ([4]):

LEMMA 2.4. Let A, B,C be subsets of X such that A+ C C B+ C. If B
is convez closed and C' is nonempty bounded, then A C B.

PROPOSITION 2.5. If F: D C X — n(Y) is m-convex, ¢ > 0, and there
exists a function G: D — cc(Y) such F(z) = G(z) + c||z||*B for all x € D,
then G is strongly m-convex with modulus c.
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PROOF. Let x,y € D and t € [0, 1]. By the m-convexity of F,
t[G(z) + cllz||* B] + m(1 - )[G(y) + clly[|* B]
C G(tr +m(1 —t)y) + ¢tz + m(1 — t)y|*B,
which in turn implies, multiplying by ¢t+m(1—t) and applying Lemma (1),
(2.5) [t+m(l—08)](tG(x)+m(l—1t)G(y))
+ [+ m(1 = O)(etal*B + em(1 — 1)y B)
C [t +m(1 —t)]G(tx +m(1 — t)y) + c|[tz + m(1 — t)y||* B;
or
[t +m(1 = )] (tl|z]|* +m(L — 1) [ly[*)
= mt(1 —t)]lx — y|* + [tz + m(1 — t)y]|*.
So, by this equality, (2.5), and Lemma (2), we obtain
[t+m(1—1)](tG(x)+m(1—t)G(y))+emt(1—t)||z—y||* B+c|[tz+m(1—t)y|*B
C [t +m(1 —t)]G(tx + m(1 — t)y) + c|[tz + m(1 — t)y||*B.
On the other hand, Lemma 1) implies
(2.6) [t +m(1 —t)]emt(1 —t)||lx —y||*B C emt(1 —t)||z — y||*B.
Then, by Lemma and (12.6)),
[t +m(1 —t)](tG(z) + m(1 — t)G(y) + emt(1 — t)||z — y||*B)
Ct+m(l—1t)]G(tx +m(1l —t)y);
or better,

tG(x) + m(1 —t)G(y) + emt(1 — t)||z — y||*B C Gtz + m(1 —t)y). O
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ExaMPLE 2.1. The set-valued function F': [0,1] € R — n(R), defined
by F(x) = [0,1] is m-convex (|3, Example 2.2]). Moreover, the function
G:[0,1] C R — cc(R) given by G(z) = [$2%,1 — 12?], is such that

F(a) = [0,1] = G(a) + 52° [-1,1].

Hence, from Proposition 2.5} G is a strongly m-convex function with modulus
1/2. Note that this fact agrees with Example

3. More results

We finish the paper with this section, in which some properties of the
union, intersection and sum of strongly m-convex set-valued functions are
shown same as a Jensen type inclusion for this class of functions.

PROPOSITION 3.1. Let Fy, Fo: D — n(Y) be two strongly m-convex func-
tions with modulus ¢, such that

(3.1) Fi(z) C Fa(z) (or Fa(z) C Fi(x))

for each x € D. Then the union function (|3, Definition 2.18|) of Fy and F
s also strongly m-convex function with modulus c.

PROOF. It is straightforward from assumption (3.1]). O
The following example shows that the condition (3.1)) can not be omitted.

EXAMPLE 3.1. In Example|l.2{was shown that the functions F, G: [0,1] —
n(R) defined by F(z) = [322,1—32?] and G(z) = [32?—1, —2?], are strongly
m-convex with modulus 1. Nevertheless, the function F UG is not, since it is
not m-convex (Remark [1.5). We may notice that its graph (Figure |3) clearly

is not an m-convex set (|3, Theorem 2.10]).

For any nonempty subsets A, B,C, D of a linear space and « any scalar,
the following properties hold:
e a(ANB) = (al) N (aB),
e ANB+CNDC(A+C)n(B+ D),
e f ACBand CC D,then ANCC BND,

with these in mind, proof of following result comes out.
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Figure 3. Graph of FUG

PROPOSITION 3.2. Let Fy, Fo: D — n(Y) be two set-valued functions, such
that Fy is strongly m-convex with modulus ¢y and Fy s strongly m-conver
with modulus ca. Then the intersection function (|3, Definition 2.18]) Fy N Fy
is strongly m-convex with modulus ¢, where ¢ = min{cy,ca}.

PROOF. Let 2,y € D and ¢ € [0,1]. From Lemma [2.1(1) it follows that if
c = min{cy, ca}, then emt(1 —t)||z —y||?B C cymt(1 —t)||x —y||? BN camt(1 —
)|z — y||* B. Hence,

HFL N Fy)(z) + m(1 — t)(Fy N F)(y) + emt(1 — t)||z — y|*B

C t[Fi(2) N Fa(2)] + m(1 — t)[F1(y) N Fa(y)]
+eamt(l—t)|lz —y|*Bneamt(l —t)|x —y|*B

= tFy(z) N tFy(x) + m(1 — ) Fy(y) nm(l — t)Fy(y)
+eamt(l —t)lz —y|*Bneamt(l —t)|x - y[|*B

C [tFi(z) + m(1 — t)Fi(y) + cimt(1 — t) ||z — y||* B]
N [tFo(x) +m(l = t)Fa(y) + camit(l —t)[|lz — y||* B)

C Fy(tz +m(1 — t)y) N Fy(tz + m(1 — t)y)
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PROPOSITION 3.3. Let Fyi, Fy: D — n(Y) be two strongly m-convez func-
tions with modulus c¢; and ca, respectively. Then the sum function (|3, Defini-
tion 2.18]) Fy + Fy is strongly m-convex with modulus ¢y + ca.

PROOF. If x,y € D and t € [0, 1], then
HF) + Fy)(@) + m(1 — ) (Fy + F)(y) + (c1 + c)mt(1 — t)||z — y||*B
= [tFi(z) +m(1 = ) Fi(y) + comt(l —t) |z — y[|*B]
+ [tFo(2) +m(1 = 1) Fa(y) + camt(1 — t)||lz — y||* B]
C Fy(tz + m(1 — t)y) + Fo(te +m(1 — t)y)
— (F + By)(tz + m(1 — t)y). 0

PROPOSITION 3.4. Let Fy: D — n(Y) and Fy: D — n(Z) be two strongly
m-convex functions with modulus ¢y and co, respectively. Then the Cartesian
product function (|3, Definition 2.19]) Fy x Fy is strongly m-convex with mod-
ulus ¢, where ¢ = min{cy,c2}, By, Bz are the closed unit balls in'Y and Z,
and B ={(y,2) € Y x Z : max{||y||, ||z]|} < 1} € By x Bz.

PROOF. Let z,y € D and t € [0,1]. Because ¢ < ¢, ¢z, Lemma (1)
implies

(3.2) emt(1 —t)[lz — y|*By C exmt(1 —t)l|lz — y|*By }

emt(1 —t)||z — y||?Bz € comt(1 - t)||lz — y||* Bz
Taking into account and properties of Cartesian product ([3]),
[emt(1 = t)]|x — yl* By] x [emt(1 — t)|x — y||* Bz]
C [exmt(1 = )]z — ylI* By] x [comt(1 — t)||=x — y|* Bz].
Then,
t(Fy x Fy)(2) +m(1 = t)(F1 x F2)(y) + emt(1 — t)||lz — y|*B
C t[Fi(x) x Fa(x)] +m(1 = t)[Fi(y) x Fa(y)]
+ emt(1 —t)||z — y||*(By x By)
= thi(z) x tFy(z) + m(1 = t)F1(y) x m(1 — 1) Fa(y)

+ emt(1 — t)||z — y||2By x emt(1 —t)||z — y||> By
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CtF(z) x tFy(x) + m(1 — t)Fy(y) x m(1 — t)Fy(y)
+ ermt(1 — t)||x — y||> By x camt(1 — t)||z — y||*Bz
= [tFi(z) + m(l = ) Fi(y) + comt(1 — t) |z — y||* By]
X [tFy(z) +m(1 = ) Fa(y) + camt(1 — t) ||z — y[|* Bz]
C Fi(tz +m(1 —t)y) x Fa(tx + m(1 —t)y)

= (F1 x Fy)(tx + m(1 —t)y). O

We finish the work by presenting a Jensen type inclusion for strongly m-
convex set-valued functions, for the discrete case. Thereon, we simplify the no-

tation by employing the well-known Delta of Kronecker d;; = { (1)’ g z i “?.’
THEOREM 3.5. Let tq,...,t, be positive real numbers (n > 2) such that

T, = Zti € (0,1]. If F: D C X — n(Y) is a strongly m-convex function

=1
with modulus ¢, then

2
B

i-1
E m* Oy — Ty
k=1

n
- F( Z mlfé“ti%)?
i=1

n n
t:
1-6;1 ?
m tiF(x;) +cm

forall z1,...,2, € D.

PRrROOF. The proof runs by induction on n. For n = 2,

2
B

2 2 1—1

t.
§ ml*&;ltiF(‘ri) +cm E T L T E mli&kltkwk - Ti*l-’l’ﬁi
= i—2 i—144 b1

t
= tlF($1) + mtgF(l‘g) + cm—2||t1x1 — T1x2||QB
T Ty

— 4 F toF 2 ita — ta|?B
1 (331) +m 2 (CCQ) -+ Cmtl(tl T tg) || 1X1 1$2||

y— )[LF@ )+ m—2 F(es) +em—2 ey — & IB]
P Y T T ey (ti+t2)2 72

C (t1 +t2)F( 1+

! m :L'Q),
i1 +to t1 +to
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where the last inclusion results from the strong m-convexity of F. From Re-
mark and [3 Proposition 2.11] we obtain the following inclusion

t
(tl + tQ)F <t_¢$1 +m

C F(t + mt
1+ 12 t1+t2$2>_ (frws + mtzws)

2
= F( z mlf‘s“tixi) .
i=1

We assume now the result is true for n. So for n 4+ 1, let ¢1,...,¢t,41 be
positive real numbers with Ty, = S0 ¢ € (0,1], and 21, ..., 2,41 € D.
Then,
n+1 n+1 9
Zml S'ItF (x; —l—cmz 1= 5’“1thk—Tl 12|l B

i=2
= tlF(.fL'l) =+ thF($2) + cm ||t1.fE1 — t11'2|| B
n+1 n+1 2
+ Zml 6”t F 117, + sz T 1_6kltk{17k —T;_1x;|| B
to
:t+t[7F +m——F +7 —~ B]
(t1 +t2) T (1) ™ (22) Cm(t T h)? |1 — 2|
n+1 n+1 2
+ Zml dirg, F(x;) + cmz T Y=Okiy v — Ti_q2;|| B

n+1

t
C(t; + tz)F(ilxl + me— ) Zml it F(x;)

t1 +to

2
=0y oy — Ty 14| B

+cmz

Z

1'2) + mzti+1F($i+1)

1=2

tq to
=(t1 +1 F( r1+m
(1 2) i1+ to ! t1 + to

i
2
7»+1 1*6141 . H
cm m trxr — Tz B
+ Z TTH-l H Zl kLk ibi41

t1 n to
X m
titto Tty +

Ig) + mzti+1F($i+1)

= (1 + 12)F

n 7
Lit1 H 1-5 2
cm tix misx m- *x, — Tix; H B
+ i_E_QTiTiH 121 + mio 2+;§—3 kTk iTit1
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t t .
= (tl + tQ)F< ! xr1+m 2 l‘g) + mZtHlF(le)

t1 + 12 i1+t —
=2
- t t
tiv1 1 2
i) )
+sz < TTrp1 H< vHb)| o mtm e
i—1 )
+ Z MmOk g — Til’i+1H B.
k=2
Now we set
t 4 ty, ifi=1,
o tit1, ifiE{Q,...,n},
and
ty n i1
1 +m o, ifi=1,
Ti={ titts ' bty
Tit1, ifi€{2,...,n},

then Ty, 1 =t1 +to+--+tp1 =11 +to+ -+, :=T,. With this in mind
the latter expression can be rewritten as

n n 2
LE@)+mY LF@) +emd) —— =0t 7, — T, 17| B
@) £ Y EE) fem gt T
or better,
2
(3.3) Zml 0ul, F(T;) +cm =0y, — T 17| B,

where t1,...,t, > 0with T,, = Z?Zlf 6 (0,1] and Zy, ..., T, € D. Therefore,
by using the inductive hypothesis, (3.3) is a subset of F(Z L omiT Ot )
In conclusion,

n+1 n+1
E m' 5“1?le —}—cmE ‘
i—2 1 1T
1=2
n+1

- F(iml‘s“tixi) = F( Z mliéilti$i>
i=1 =1

and the result is true for n + 1 as well. O

=0y oy — Ty oy B
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