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STRONG m-CONVEXITY OF SET-VALUED FUNCTIONS

Teodoro Lara , Nelson Merentes, Roy Quintero,
Edgar Rosales

Abstract. In this research we introduce the concept of strong m-convexity for
set-valued functions defined on m-convex subsets of real linear normed spaces,
a variety of properties and examples of these functions are shown, an inclusion
of Jensen type is also exhibited.

1. Introduction

In this research we introduce the notion of a strongly m-convex set-valued
function, which represents a generalization of the usual concept ofm-convexity
for the real case that can be found in [3] and references therein. The idea of
this new approach involves the concepts of strong convexity and m-convexity
of set-valued functions. This is the main reason for which we start off by
recalling both definitions. Along this paper X,Y will denote any real normed
linear spaces, D an m-convex subset of X ([1]), B the closed unit ball in Y
and n(Y ) the family of all nonempty subsets of Y .
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Definition 1.1 ([4]). Let c > 0. A set-valued function F : D → n(Y ) is
called strongly convex with modulus c if it satisfies the inclusion

tF (x) + (1− t)F (y) + ct(1− t)‖x− y‖2B ⊆ F (tx+ (1− t)y),

for all x, y ∈ D and t ∈ [0, 1].

Definition 1.2 ([3]). Let m ∈ [0, 1]. A set-valued function F : D → n(Y )
is called m-convex if the inclusion

tF (x) +m(1− t)F (y) ⊆ F (tx+m(1− t)y),

holds for all x, y ∈ D and t ∈ [0, 1].

Our first definition runs as follows:

Definition 1.3. Let c > 0 and m ∈ [0, 1]. A set-valued function F : D →
n(Y ) is called strongly m-convex with modulus c if

(1.1) tF (x) +m(1− t)F (y) + cmt(1− t)‖x− y‖2B ⊆ F (tx+m(1− t)y),

for any x, y ∈ D, t ∈ [0, 1].

Remark 1.4. Notice that (1.1) is equivalent to

mtF (x) + (1− t)F (y) + cmt(1− t)‖x− y‖2B ⊆ F (mtx+ (1− t)y),

with x, y, t as before.

Remark 1.5. If a set-valued function F is strongly m-convex with mod-
ulus c, then it is also m-convex. It follows immediately from the fact that
0 ∈ B.

The converse in the foregoing remark is not true. Namely, we have the
following.

Example 1.1. The set-valued function F : [0, 1] ⊆ R → n(R), given by
F (x) = [0, x], is m-convex ([3, Example 2.17]). But for all x, y, t ∈ [0, 1]

tF (x)+m(1− t)F (y) + cmt(1− t)‖x− y‖2B

=
[
−cmt(1− t)‖x− y‖2, tx+m(1− t)y + cmt(1− t)‖x− y‖2

]
,
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while that

F (tx+m(1− t)y) = [0, tx+m(1− t)y],

so F can not be a strongly m-convex function.

Example 1.2. If b > 0 and f, g : [0, b] → R are two real functions, f
and −g being strongly m-convex with the same modulus ([2]) and f ≤ g on
[0, b], it is not difficult to verify (by reasoning as in Example 2.2 from [3]) that
the set-valued functions F1, F2, F3 : [0, b] ⊆ R→ n(R) given by

F1(x) = [f(x), g(x)], F2(x) = [f(x),+∞), F3(x) = (−∞, g(x)]

are strongly m-convex (with the same modulus). So, for example, functions
f1, g1 : [0, 1] → R defined as f1(x) = 0 and g1(x) = −1 are clearly m-
convex ([5, 6]), while functions f(x) = 1

2x
2, g(x) = 1 − 1

2x
2 are such that

f and −g are strongly m-convex with modulus c = 1
2 ; moreover f ≤ g

on [0, 1]. Consequently the set-valued function F : [0, 1] → n(R) defined by
F (x) =

[
1
2x

2, 1− 1
2x

2
]
is stronglym-convex with modulus 1

2 , and so is G(x) =[
1
2x

2 − 1,−1
2x

2
]
. The graphs of F and G are shown in Figures 1 and 2, re-

spectively.
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Figure 1. Graph of F
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Figure 2. Graph of G

2. Results

In this section we present some set-properties of the unit ball B. At
the same time, a characterization of the family of all the strongly m-convex
functions is given and illustrate with an interesting example. We begin with
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a lemma related to two well-known properties of convexity whose proofs are
omitted.

Lemma 2.1. (1) If 0 ≤ α1 ≤ α2, then α1B ⊆ α2B.
(2) If α1α2 ≥ 0, then (α1 + α2)B = α1B + α2B.

Proposition 2.2. A set-valued function F : D → n(Y ) is strongly m-
convex with modulus c if and only if

(2.1) tF (A1)+m(1−t)F (A2)+cmt(1−t)‖A1−A2‖2B ⊆ F (A1+m(1−t)A2)

for all A1, A2 ⊆ D and t ∈ [0, 1], where F (Ai) = {F (x) : x ∈ Ai} (i = 1, 2)
and ‖A1 −A2‖ = inf{‖x− y‖ : x ∈ A1, y ∈ A2}.

Proof. (⇒) Let A1, A2 be two fixed but arbitrary subsets of D and z ∈
tF (A1) +m(1− t)F (A2) + cmt(1− t)‖A1 −A2‖2B. Then

(2.2) z ∈ tF (a) +m(1− t)F (b) + cmt(1− t)‖A1 −A2‖2B

for some a ∈ A1 and b ∈ A2. Since 0 ≤ ‖A1 − A2‖ ≤ ‖a − b‖, 0 ≤ cmt(1 −
t)‖A1 − A2‖2 ≤ cmt(1 − t)‖a − b‖2 and from Lemma 2.1(1), the inclusion
cmt(1− t)‖A1 −A2‖2B ⊆ cmt(1− t)‖a− b‖2B takes place. Hence,

(2.3) tF (a) +m(1− t)F (b) + cmt(1− t)‖A1 −A2‖2B

⊆ tF (a) +m(1− t)F (b) + cmt(1− t)‖a− b‖2B.

Furthermore, since ta+m(1− t)b ∈ tA1 +m(1− t)A2, it is clear that

(2.4) F (ta+m(1− t)b) ⊆ F (tA1 +m(1− t)A2).

So, (2.1) follows from (2.2), (2.3), the strong m-convexity of F and (2.4).
(⇐) Let x, y ∈ D and t ∈ [0, 1]. The strong m-convexity with modu-

lus c of F is obtained by considering in (2.1) the singletons A1 = {x} and
A2 = {y}. �

Proposition 2.3. Let b ∈ R\{0} and D = [min{0, b},max{0, b}] ⊆ R. If
F : D → n(Y ) is strongly m-convex with modulus c, and 0 < n ≤ m < 1, then
F is strongly n-convex with modulus c.
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Proof. If b < 0, then D = [b, 0]. Let t ∈ [0, 1] and x, y ∈ D with x ≤ y.
So, x − n

my ≤ x − y ≤ 0 and therefore, ‖x − y‖2 ≤
∥∥x− n

my
∥∥2 . Since F is

strongly m-convex with modulus c, F is m-convex (Remark 1.5). Thus, from
[3, Proposition 2.11], Lemma 2.1(1), and the strong m-convexity of F ,

tF (x)+n(1− t)F (y) + cnt(1− t)‖x− y‖2B

= tF (x) +m(1− t)
( n
m

)
F (y) + cmt(1− t)

( n
m

)
‖x− y‖2B

⊆ tF (x) +m(1− t)F
( n
m
y
)
+ cmt(1− t)

∥∥∥x− n

m
y
∥∥∥2B

⊆ F (tx+ n(1− t)y).

And for y < x, ‖x− y‖2 ≤
∥∥∥ n
m
x− y

∥∥∥2, hence
ntF (x)+(1− t)F (y) + cnt(1− t)‖x− y‖2B

= mt
( n
m

)
F (x) + (1− t)F (y) + cmt(1− t)

( n
m

)
‖x− y‖2B

⊆ mtF
( n
m
x
)
+ (1− t)F (y) + cmt(1− t)

∥∥∥ n
m
x− y

∥∥∥2B
⊆ F (ntx+ (1− t)y),

where the last inclusion arises from the strong m-convexity of F and Re-
mark 1.4.

If b > 0, D = [0, b] and the proof runs in a similar way, this time for x ≤ y,
we obtain ‖x−y‖2 ≤

∥∥ n
mx− y

∥∥2, and the result follows from Remark 1.4; while
for y < x, ‖x− y‖2 ≤

∥∥x− n
my
∥∥2 and the conclusion follows from (1.1). �

For the next proposition, X is a real inner product space, cc(Y ) denotes
the subfamily of n(Y ) of all convex closed sets. We also recall the cancellation
law of Rådström ([4]):

Lemma 2.4. Let A,B,C be subsets of X such that A+ C ⊆ B + C. If B
is convex closed and C is nonempty bounded, then A ⊆ B.

Proposition 2.5. If F : D ⊆ X → n(Y ) is m-convex, c > 0, and there
exists a function G : D → cc(Y ) such F (x) = G(x) + c‖x‖2B for all x ∈ D,
then G is strongly m-convex with modulus c.
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Proof. Let x, y ∈ D and t ∈ [0, 1]. By the m-convexity of F,

t[G(x) + c‖x‖2B] +m(1− t)[G(y) + c‖y‖2B]

⊆ G(tx+m(1− t)y) + c‖tx+m(1− t)y‖2B,

which in turn implies, multiplying by t+m(1−t) and applying Lemma 2.1(1),

(2.5) [t+m(1− t)](tG(x) +m(1− t)G(y))

+ [t+m(1− t)](ct‖x‖2B + cm(1− t)‖y‖2B)

⊆ [t+m(1− t)]G(tx+m(1− t)y) + c‖tx+m(1− t)y‖2B;

or

[t+m(1− t)](t‖x‖2 +m(1− t)‖y‖2)

= mt(1− t)‖x− y‖2 + ‖tx+m(1− t)y‖2.

So, by this equality, (2.5), and Lemma 2.1(2), we obtain

[t+m(1−t)](tG(x)+m(1−t)G(y))+cmt(1−t)‖x−y‖2B+c‖tx+m(1−t)y‖2B

⊆ [t+m(1− t)]G(tx+m(1− t)y) + c‖tx+m(1− t)y‖2B.

On the other hand, Lemma 2.1(1) implies

(2.6) [t+m(1− t)]cmt(1− t)‖x− y‖2B ⊆ cmt(1− t)‖x− y‖2B.

Then, by Lemma 2.4 and (2.6),

[t+m(1− t)](tG(x) +m(1− t)G(y) + cmt(1− t)‖x− y‖2B)

⊆ [t+m(1− t)]G(tx+m(1− t)y);

or better,

tG(x) +m(1− t)G(y) + cmt(1− t)‖x− y‖2B ⊆ G(tx+m(1− t)y). �
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Example 2.1. The set-valued function F : [0, 1] ⊆ R → n(R), defined
by F (x) = [0, 1] is m-convex ([3, Example 2.2]). Moreover, the function
G : [0, 1] ⊆ R→ cc(R) given by G(x) =

[
1
2x

2, 1− 1
2x

2
]
, is such that

F (x) = [0, 1] = G(x) +
1

2
x2 [−1, 1] .

Hence, from Proposition 2.5, G is a strongly m-convex function with modulus
1/2. Note that this fact agrees with Example 1.2.

3. More results

We finish the paper with this section, in which some properties of the
union, intersection and sum of strongly m-convex set-valued functions are
shown same as a Jensen type inclusion for this class of functions.

Proposition 3.1. Let F1, F2 : D → n(Y ) be two strongly m-convex func-
tions with modulus c, such that

(3.1) F1(x) ⊆ F2(x) (or F2(x) ⊆ F1(x))

for each x ∈ D. Then the union function ([3, Definition 2.18]) of F1 and F2

is also strongly m-convex function with modulus c.

Proof. It is straightforward from assumption (3.1). �

The following example shows that the condition (3.1) can not be omitted.

Example 3.1. In Example 1.2 was shown that the functions F,G : [0, 1]→
n(R) defined by F (x) = [12x

2, 1− 1
2x

2] andG(x) = [12x
2−1,−1

2x
2], are strongly

m-convex with modulus 1
2 . Nevertheless, the function F ∪G is not, since it is

not m-convex (Remark 1.5). We may notice that its graph (Figure 3) clearly
is not an m-convex set ([3, Theorem 2.10]).

For any nonempty subsets A,B,C,D of a linear space and α any scalar,
the following properties hold:
• α(A ∩B) = (αA) ∩ (αB),
• A ∩B + C ∩D ⊆ (A+ C) ∩ (B +D),
• If A ⊆ B and C ⊆ D, then A ∩ C ⊆ B ∩D,
with these in mind, proof of following result comes out.
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Figure 3. Graph of F ∪G

Proposition 3.2. Let F1, F2 : D → n(Y ) be two set-valued functions, such
that F1 is strongly m-convex with modulus c1 and F2 is strongly m-convex
with modulus c2. Then the intersection function ([3, Definition 2.18]) F1 ∩ F2

is strongly m-convex with modulus c, where c = min{c1, c2}.

Proof. Let x, y ∈ D and t ∈ [0, 1]. From Lemma 2.1(1) it follows that if
c = min{c1, c2}, then cmt(1− t)‖x−y‖2B ⊆ c1mt(1− t)‖x−y‖2B∩ c2mt(1−
t)‖x− y‖2B. Hence,

t(F1 ∩ F2)(x) +m(1− t)(F1 ∩ F2)(y) + cmt(1− t)‖x− y‖2B

⊆ t[F1(x) ∩ F2(x)] +m(1− t)[F1(y) ∩ F2(y)]

+ c1mt(1− t)‖x− y‖2B ∩ c2mt(1− t)‖x− y‖2B

= tF1(x) ∩ tF2(x) +m(1− t)F1(y) ∩m(1− t)F2(y)

+ c1mt(1− t)‖x− y‖2B ∩ c2mt(1− t)‖x− y‖2B

⊆ [tF1(x) +m(1− t)F1(y) + c1mt(1− t)‖x− y‖2B]

∩ [tF2(x) +m(1− t)F2(y) + c2mt(1− t)‖x− y‖2B]

⊆ F1(tx+m(1− t)y) ∩ F2(tx+m(1− t)y)

= (F1 ∩ F2)(tx+m(1− t)y). �
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Proposition 3.3. Let F1, F2 : D → n(Y ) be two strongly m-convex func-
tions with modulus c1 and c2, respectively. Then the sum function ([3, Defini-
tion 2.18]) F1 + F2 is strongly m-convex with modulus c1 + c2.

Proof. If x, y ∈ D and t ∈ [0, 1], then

t(F1 + F2)(x) +m(1− t)(F1 + F2)(y) + (c1 + c2)mt(1− t)‖x− y‖2B

= [tF1(x) +m(1− t)F1(y) + c1mt(1− t)‖x− y‖2B]

+ [tF2(x) +m(1− t)F2(y) + c2mt(1− t)‖x− y‖2B]

⊆ F1(tx+m(1− t)y) + F2(tx+m(1− t)y)

= (F1 + F2)(tx+m(1− t)y). �

Proposition 3.4. Let F1 : D → n(Y ) and F2 : D → n(Z) be two strongly
m-convex functions with modulus c1 and c2, respectively. Then the Cartesian
product function ([3, Definition 2.19]) F1×F2 is strongly m-convex with mod-
ulus c, where c = min{c1, c2}, BY , BZ are the closed unit balls in Y and Z,
and B = {(y, z) ∈ Y × Z : max{‖y‖, ‖z‖} ≤ 1} ⊆ BY ×BZ .

Proof. Let x, y ∈ D and t ∈ [0, 1]. Because c ≤ c1, c2, Lemma 2.1(1)
implies

(3.2)
cmt(1− t)‖x− y‖2BY ⊆ c1mt(1− t)‖x− y‖2BY
cmt(1− t)‖x− y‖2BZ ⊆ c2mt(1− t)‖x− y‖2BZ

}
.

Taking into account (3.2) and properties of Cartesian product ([3]),

[cmt(1− t)‖x− y‖2BY ]× [cmt(1− t)‖x− y‖2BZ ]

⊆ [c1mt(1− t)‖x− y‖2BY ]× [c2mt(1− t)‖x− y‖2BZ ].

Then,

t(F1 × F2)(x) +m(1− t)(F1 × F2)(y) + cmt(1− t)‖x− y‖2B

⊆ t[F1(x)× F2(x)] +m(1− t)[F1(y)× F2(y)]

+ cmt(1− t)‖x− y‖2(BY ×BZ)

= tF1(x)× tF2(x) +m(1− t)F1(y)×m(1− t)F2(y)

+ cmt(1− t)‖x− y‖2BY × cmt(1− t)‖x− y‖2BZ
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⊆ tF1(x)× tF2(x) +m(1− t)F1(y)×m(1− t)F2(y)

+ c1mt(1− t)‖x− y‖2BY × c2mt(1− t)‖x− y‖2BZ

= [tF1(x) +m(1− t)F1(y) + c1mt(1− t)‖x− y‖2BY ]

× [tF2(x) +m(1− t)F2(y) + c2mt(1− t)‖x− y‖2BZ ]

⊆ F1(tx+m(1− t)y)× F2(tx+m(1− t)y)

= (F1 × F2)(tx+m(1− t)y). �

We finish the work by presenting a Jensen type inclusion for strongly m-
convex set-valued functions, for the discrete case. Thereon, we simplify the no-

tation by employing the well-known Delta of Kronecker δij =
{

0, if i 6= j,
1, if i = j.

Theorem 3.5. Let t1, . . . , tn be positive real numbers (n ≥ 2) such that

Tn =

n∑
i=1

ti ∈ (0, 1]. If F : D ⊆ X → n(Y ) is a strongly m-convex function

with modulus c, then

n∑
i=1

m1−δi1tiF (xi) + cm

n∑
i=2

ti
Ti−1Ti

∥∥∥ i−1∑
k=1

m1−δk1tkxk − Ti−1xi

∥∥∥2B
⊆ F

( n∑
i=1

m1−δi1tixi

)
,

for all x1, . . . , xn ∈ D.

Proof. The proof runs by induction on n. For n = 2,

2∑
i=1

m1−δi1tiF (xi) + cm

2∑
i=2

ti
Ti−1Ti

∥∥∥ i−1∑
k=1

m1−δk1tkxk − Ti−1xi

∥∥∥2B
= t1F (x1) +mt2F (x2) + cm

t2
T1T2

‖t1x1 − T1x2‖2B

= t1F (x1) +mt2F (x2) + cm
t2

t1(t1 + t2)
‖t1x1 − t1x2‖2B

= (t1 + t2)
[ t1
t1 + t2

F (x1) +m
t2

t1 + t2
F (x2) + cm

t1t2
(t1 + t2)2

‖x1 − x2‖2B
]

⊆ (t1 + t2)F
( t1
t1 + t2

x1 +m
t2

t1 + t2
x2

)
,
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where the last inclusion results from the strong m-convexity of F . From Re-
mark 1.5 and [3, Proposition 2.11] we obtain the following inclusion

(t1 + t2)F

(
t1

t1 + t2
x1 +m

t2
t1 + t2

x2

)
⊆ F (t1x1 +mt2x2)

= F
( 2∑
i=1

m1−δi1tixi

)
.

We assume now the result is true for n. So for n + 1, let t1, . . . , tn+1 be
positive real numbers with Tn+1 =

∑n+1
i=1 ti ∈ (0, 1], and x1, . . . , xn+1 ∈ D.

Then,

n+1∑
i=1

m1−δi1tiF (xi) + cm

n+1∑
i=2

ti
Ti−1Ti

∥∥∥ i−1∑
k=1

m1−δk1tkxk − Ti−1xi

∥∥∥2B
= t1F (x1) +mt2F (x2) + cm

t2
T1T2

‖t1x1 − t1x2‖2B

+

n+1∑
i=3

m1−δi1tiF (xi) + cm

n+1∑
i=3

ti
Ti−1Ti

∥∥∥ i−1∑
k=1

m1−δk1tkxk − Ti−1xi

∥∥∥2B
= (t1 + t2)

[ t1
t1 + t2

F (x1) +m
t2

t1 + t2
F (x2) + cm

t1t2
(t1 + t2)2

‖x1 − x2‖2B
]

+

n+1∑
i=3

m1−δi1tiF (xi) + cm

n+1∑
i=3

ti
Ti−1Ti

∥∥∥ i−1∑
k=1

m1−δk1tkxk − Ti−1xi

∥∥∥2B
⊆ (t1 + t2)F

( t1
t1 + t2

x1 +m
t2

t1 + t2
x2

)
+

n+1∑
i=3

m1−δi1tiF (xi)

+ cm

n+1∑
i=3

ti
Ti−1Ti

∥∥∥ i−1∑
k=1

m1−δk1tkxk − Ti−1xi

∥∥∥2B
= (t1 + t2)F

( t1
t1 + t2

x1 +m
t2

t1 + t2
x2

)
+m

n∑
i=2

ti+1F (xi+1)

+ cm

n∑
i=2

ti+1

TiTi+1

∥∥∥ i∑
k=1

m1−δk1tkxk − Tixi+1

∥∥∥2B
= (t1 + t2)F

( t1
t1 + t2

x1 +m
t2

t1 + t2
x2

)
+m

n∑
i=2

ti+1F (xi+1)

+ cm

n∑
i=2

ti+1

TiTi+1

∥∥∥t1x1 +mt2x2 +
i∑

k=3

m1−δk1tkxk − Tixi+1

∥∥∥2B
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= (t1 + t2)F
( t1
t1 + t2

x1 +m
t2

t1 + t2
x2

)
+m

n∑
i=2

ti+1F (xi+1)

+ cm

n∑
i=2

ti+1

TiTi+1

∥∥∥(t1 + t2)
( t1
t1 + t2

x1 +m
t2

t1 + t2
x2

)

+

i−1∑
k=2

m1−δ(k+1)1tk+1xk+1 − Tixi+1

∥∥∥2B.
Now we set

ti =

{
t1 + t2, if i = 1,

ti+1, if i ∈ {2, . . . , n},

and

xi =


t1

t1 + t2
x1 +m

t2
t1 + t2

x2, if i = 1,

xi+1, if i ∈ {2, . . . , n},

then Tn+1 = t1 + t2 + · · ·+ tn+1 = t1 + t2 + · · ·+ tn := Tn. With this in mind
the latter expression can be rewritten as

t1F (x1) +m

n∑
i=2

tiF (xi) + cm

n∑
i=2

ti

T i−1T i

∥∥∥ i−1∑
k=1

m1−δk1tkxk − T i−1xi

∥∥∥2B
or better,

(3.3)
n∑
i=1

m1−δi1tiF (xi) + cm

n∑
i=2

ti

T i−1T i

∥∥∥ i−1∑
k=1

m1−δk1tkxk − T i−1xi

∥∥∥2B,
where t1, . . . , tn > 0 with Tn =

∑n
i=1 ti ∈ (0, 1] and x1, . . . , xn ∈ D. Therefore,

by using the inductive hypothesis, (3.3) is a subset of F
(∑n

i=1m
1−δi1tixi

)
.

In conclusion,

n+1∑
i=1

m1−δi1tiF (xi) + cm

n+1∑
i=2

ti
Ti−1Ti

∥∥∥ i−1∑
k=1

m1−δk1tkxk − Ti−1xi

∥∥∥2B
⊆ F

( n∑
i=1

m1−δi1tixi

)
= F

( n+1∑
i=1

m1−δi1tixi

)
and the result is true for n+ 1 as well. �
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