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THE GENERALIZATION OF GAUSSIANS AND
LEONARDO’S OCTONIONS

RENATA PASSOS MACHADO VIEIRA Y, MILENA CAROLINA
DOS SANTOS MANGUEIRA, FRANCISCO REGIS VIEIRA ALVES,
PAaurLA MARIA MACHADO CRUZ CATARINO

Abstract. In order to explore the Leonardo sequence, the process of complex-
ification of this sequence is carried out in this work. With this, the Gaussian
and octonion numbers of the Leonardo sequence are presented. Also, the re-
currence, generating function, Binet’s formula, and matrix form of Leonardo’s
Gaussian and octonion numbers are defined. The development of the Gauss-
ian numbers is performed from the insertion of the imaginary component ¢ in
the one-dimensional recurrence of the sequence. Regarding the octonions, the
terms of the Leonardo sequence are presented in eight dimensions. Further-
more, the generalizations and inherent properties of Leonardo’s Gaussians and
octonions are presented.

1. Introduction

Historically, the origin of the Leonardo sequence reports that this sequence
was possibly created by Leonardo of Pisa (1180-1250) [2]. This fact is due to its
great similarity with the Fibonacci sequence and also because the sequence
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has the same name as the Italian mathematician. It is possible to find the
mathematical evolution of this sequence in the works [3], 1}, [7, 10} §].
The Leonardo sequence satisfies the following recurrence relation:

Ln:Ln,1+Ln,2+1, n22, LOZlel.

On the other hand, for n + 1 we can rewrite this recurrence relation as
Lpt1 =L, + Ly—1 + 1. With this, we can add the term —L,,+1, resulting in
another recurrence relation. Hence, we have:

Ln - LnJrl = Lnfl + Ln72 +1- Ln - Lnfl - 17
ie.,
LnJrl =2Lyp — Lp_2,

where Lo = L1 = 1 are initial conditions.

In 1981 Harman (J4]) introduced the Gaussian numbers denoted by z =
a + bi with a, b € Z and i? = —1, which will be associated with the Leonardo
sequence, improving the process of mathematical complexification of this se-
quence. Regarding octonion numbers, according to Vieira, Alves, and Catarino
(2020) [9], it can be said that in the work of Karatas and Halici (2017) [5]
the algebra in sixteen dimensions was studied and Horadam octonions by Ho-
radam sequence which is a generalization of second order recurrence relations
were defined.

Octonions were defined as the R numerical field, writing as ([6}, 5]):

p=p +pe,

where p',p"” € H = {ag + a1i + azj + azk | i* = j? = k? = —1,ijk = —1,
ap,Q1,02,03 € R}

For the operation of adding and multiplying between two octonions,
p=p +p’eand, g=¢q + ¢"e:

pra=0"+4¢)+ ®"+d¢")e,
pq — (p/ql _?p//) + ( /Ip/ _’_p//?)e’

where ¢’ and ¢ are the conjugates of the quaternions ¢’ and ¢”, respectively.
Therefore, O is the algebra of the octonions, on a natural basis in the space
over R formed by the elements: eg = 1, e; =14, e =7, e3 =k, e4 = e, e5 = ie,
eg = je, e; = ke and the multiplication of these numbers is shown in the

Table [
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Table 1. Multiplication of the octonions of Q.
Source: [€]

1 |e1 |e2 |e3 |es |es5 |es |er
1 1 €1 €2 €3 €4 €5 €6 er
€1 €1 -1 €3 -€2 €5 -€4 -e7 €6
ex |es|-e3|-1 |e1 |eg |er | -es | -e5
€3 €3 €2 -e1 -1 er -€6 €5 -€4
€4 €4 -€5 -€6 -e7 -1 €1 €2 €3

es|es|es |-er|es |-e1 |-1 |-e3 | e
€6 €g e7 €4 -€5 -€9 €3 -1 -€1
er |er | -eg | e5 |es |-e3|-e2 e |-1

Thus, the following notation is used for octonions:

7
p = szeS7
p=0

where pg is the real coefficient, with p € O, in format p = Re(p) + Im(p),
where Re(p) = po represents the real part and, Im(p) = ZZ:1 Pps€s represents
the imaginary part.

Therefore, in this work, it is intended to continue the mathematical evo-
lution of this sequence, presenting the Gaussian and octonion numbers of
Leonardo’s sequence.

2. Leonardo’s Gaussians

Henceforward, Leonardo’s Gaussian numbers will be introduced, beginning
complex studies around this sequence, with the insertion of an imaginary unit.
Thus, their respective mathematical aspects are portrayed.

DEFINITION 2.1. For n > 0, Leonardo’s Gaussians are defined by:

GL, =Ly +iLpy1,
where Lo = L; = 1. In particular, GLg =1+ 1¢,GL; = 1 + 3i.

From the previous definition, it is easy to see that for alln > 3 and n € N,
the recurrence formula of Leonardo’s Gaussian is given by:

GL, = 2GLn71 - GL7L737

where GLog=1+i and GL; =1+ 3i.
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DEFINITION 2.2. For n > 0, Fibonacci’s Gaussians are defined by:
GFn:Fn+iFn+17
where Fy = 0, F; = 1. In particular, GFy =i and GF; =1+ .

From the previous definition, it is easy to see that for alln > 2 and n € N,
the recurrence formula of Fibonacci’s Gaussian is given by:

GF,=GF,_1+GF,_,,
where GFy =i and GF; =1+ 1.

DEFINITION 2.3. Leonardo and Fibonacci’s Gaussian recurrence formula
is given by:

GLF, = GL, + GF,,
where n € Z.

THEOREM 2.4. The generating function of Leonardo’s Gaussians is given by:

oGl 2) = 1+z‘zr1(_1;xi)_(;§)+x )

PROOF. Let us consider the function
9(GL,, ) = GLo+ GLiz + GLo2® + ... + GLp,2™ + .. ..

Multiplying this function by 2z and 23, we get

2209(GLy, x) = 2GLox + 2GL12* + 2GLyx® + ...+ 2G L, 12" + ...,

239(GLy,x) = GLox® + GLyx* + GLoa® + ...+ GL, 32" + ...
Subtracting the previous equalities and after some calculations, we obtain:

(1 -2z — 2°)g(GLy,z) = GLo + (GL1 — 2GLo)x + (GLay — 2G Ly )22,

(1—2x—23)g(GLyp,x) =1+i— (1 —i)x+ (1 —i)a?,

(1—2x—2%)g(GLyp,x) =1+i+ (1 —i)(—z +2?),

14+i+ (1 —i)(—x+2?)
(1 —2x — 23) '

Q(Gme) =
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THEOREM 2.5. The Binet formula of Leonardo’s Gaussians, withn € Z, is:
GL, = Ay(1 +ir)rl + By(1 +irg)ry + Cy(1 + ir3)ry,
where 11,79, 73 are the roots of the characteristic polynomial > —2r2 +1 =0,

(7’1 — 1)(7’3 — 1)
(ro —7r1)(r2 —13)’

PRrROOF. Through the Binet’s formula GL,, = ar] + fry + yry and the
recurrence of Leonardo’s Gaussians GL,, = L,, +iL,, 1, with the initial values
GLy =144, GL;1 =1+ 3¢ and GLy, = 3 + b1, it is possible to obtain the
following system of equations:

a+B+y=1+1,
ary + Bro +yrs = 1+ 34,
ar? + Bri +yr: = 3 + 5i.

Solving the system, we get:

(B4 50) + (—ra —r3)(1 4 37) +ror3(1 + 1)
B 72 — 11T — T17T3 + Tar3

I

(3 + 52) + (—7"1 — 7”3)(1 + 3Z) + 7"17"3(1 + Z)

= T3 —Tar3 —T1T2 + 7173 ’
o (3 + 51) + ( r — 1"2)(1 + 31) + 1"17'2(1 + Z)
7“3 + 7rire — 1r1r3 — rors
Through Girard’s relations: r1rorg = —1,7r1 +7r9+713 = 2 and r179 +ror3 +

rirg = 0, it is easy to see that:

_(rorg —ro —r3+1)

(7"2—1 r3 — )
(7“1*7“2)(7"1*7”3) )

( —T2)(T1 —

)(
)

(r1 —1)(rs — )
(re —r1)(r2 —13)
)(

)(

(1 + iTl

(1 +iry) =Ag(1 +iry),

_(T1T3—T1—T3—|—1)

~ (rg—r1)(ra —r3)

(1+iry)= (14 1iry) =Bgy(1 +1irg),

(1—1 To — )
(3—7“1 7“3—"”2)

(rirg =711 =12+ 1)
(r3 —r1)(r3 —ra)

(1—|—i7“3) (1+i7”3) :Cg(l-i-’iTg).D
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Based on the work of Vieira, Mangueira, Alves and Catarino ([10]), one
can establish the matrix form of Leonardo’s sequence in the complex form.

PROPOSITION 2.6. For n > 2 and n € N, the matriz form of Leonardo’s
Gausstans is given by:

n[ GF, GF, S%tf=

2 1 0 Lyt
31 10 o0 1] |2 qgFr, GF
100 bl G
- —GFy % GF_4
OB GRS
= [Ln+2 Lnp1 Ly .. GF. Gk
~GF, GLF_» GF_,

LTL

— [GLn+2 GLn+1 GLn] 5
where GLF,, = GL,, + GF,,, forn < 0.

PROOF. By the principle of finite induction, we have for n = 2:

2 GF, GF, GLf=

2 10 Ly
B 1 1o o0 1| |£= GFr, GF
-1 00 |-¢r “= gFy

GF, GF, %=
=[9 5 3] |9LE2 @qF, GR

5
~GFy, = GF,

= [9GF2—3GFQ+GLF,2 9G Iy +5GF_1+GLF_, GLF72+5GF0+3GF,1]
~ [GLs GL; GLi.

So, assume it is true for any n = k, with k € N:

[ GF,  GF, Gﬂj

2 10
3 1 1](0 0 1| |2 GF., GF | =[GLis2 GLrs1 GL.
00 |-¢r, %I gF,
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Let us show that it is still valid for n = k£ + 1:

1T GF, GF, S

2 10 Lits
3110 01 G2 OF,  GFR
-1 0 0 GLF_
—GF, Lk+12 GF_,
) 1 0 GFQ GFO 7GLL:_;2
:[Lk+2 Lk+1 Lk] 0 0 1 GL[;}:_;Q GF_ GFO
-1 0 0] |_gFp, CEL2 @gF,

L1

GF, GF, GLf-

GLF sy
= [Lits Liy2 Lps1] .. GFa G
~GF, GLF>  qgp |

Liqq
= [Lk+3GF2 — Lp1GFy+GLF_ 5 Ly sGFy+ Ly oGF_1 +GLF_,
Lk+2GFO + Lk+1GF_1 + GLF_Q]

= [GLits GLits GLpsi]. O

3. The generalization of Leonardo’s Gaussians

Next, the behavior of terms with non-positive integer indices of Leonardo’s
Gaussians will be analyzed.

DEFINITION 3.1. For all n > 0 and n € N, Leonardo’s Gaussians, for
non-positive integer indez, are defined by the equation:

7
GL_p =) L_njses.
s=0

From the previous definition, it is easy to see that for alln > 0 and n € N,
the recurrence formula of Leonardo’s Gaussians for non-positive integer index,
is given by:

GL_n = 2GL_n+2 - GL_n+3,

where GLy=1+14,GL; =1+ 3i and GLy = 4 + 6i.
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ProproSITION 3.2. The generating function of Leonardo’s Gaussians for
non-positive integer index, is expressed by:

1+i+ (—=1+i)x+ (=1 — 3i)a?
Y(GLn,x) = 3 — 222 4+ 1 '

PROOF. Let us consider the function

9(GL_pa) = GL_pa" =GLo+GL 12+ GL 92° + ...+ GL_na" +....

n=0
Multiplying this function by 2z? and z2, we have:
2029(GL_p,x) = 2GLox? + 2GL_12° + 2GL _ox* + ... + 2GL_,, 92" + ...,
23g(GL_,,2) = GLox® + GL_12* + GL_92® + ...+ GL_, 32" +....
Subtracting the previous equalities and after some calculations, we obtain:
(2 —22% + 1)g(GL_,,x) = GLy + GL_yx + (—2G Lo + GL_5)x?,
(2% — 222 + 1)g(GL_p,x) =1 +i+ (=1 + i)z + (=1 — 3i)2?,

1+i+ (=14+i)z+ (=1 — 3i)a?
23— 222 +1 '

9(GL_p,z) =

PropPOSITION 3.3. Forn>0 andn €N, the generating matriz of Leonardo’s
Gaussians, with a non-positive integer indez, is given by:

n GLF_
00 —1 GFQ GFO 7L7n+22
31 1](1 0 2| [ gFr, Gk
L_pq1
01 0] |-¢r %= Gr.,
GF, GF, $H=2
=[Lonyo Lopa Lo |22 GF..  GFy
~GF, GLF_» GF_,

L_,

= [GL_p42 GL_ny1 GL_,],
where GLF_, =GL_, +GF_,,, GF o =i—1, GF_1 =1 and GFy = 1.

PROOF. Similarly to the demonstration performed in Proposition [2:6] this
property can be validated. ([
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4. Leonardo’s octonions

In this section, Leonardo’s octonions will be studied, addressing their re-
spective mathematical properties.

DEFINITION 4.1. For n > 0, Leonardo’s octonions are defined by:
7
OLn = Z Ln+5657
s=0

where OLg = 37_ Lyes, OLy = Y21 _  Liyses, OLy = 37 Loy e

From the previous definition, it is easy to see that for all n > 3 and n € N,
the recurrence formula of Leonardo’s octonions is given by:

OL, =20L,_1 — OL,_s,
where OL() = ZZ:O Lses, OL1 = ZZ:O L1+Ses, OL2 = 22:0 L2+ses.

THEOREM 4.2. The generating function of Leonardo’s octonions, OL,,, is
given by:

7
Z(Ls + LS_Qm + LS_1£E2)GS.
s=0

1

g(OLp,x) = (=22 — a9

PRrROOF. Let us consider the function
g(OL,, ) = OLy+ OLx + OLoz* + ... + OL,z" + . ...
Multiplying the function by 2z and z3, we get:
2xg(OLy,x) = 20 Loz + 20L12* + 20Ly2® + ... + 20Ly 13" + ...,
23g(OL,, ) = OLoz® + OL1x* + OLox® + ...+ OLy_sa"™ + . ...
Subtracting the previous equalities and after some calculations, we obtain:

(1 -2z —23)g(OL,,z) = OLy + (OLy — 20Lo)z + (OLy — 20Ly )22,

7
Z(Ls + Ly oz + Ly_12%)es. O
s=0

1

9(OLy,,x) = =22 — a9
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THEOREM 4.3. Binet’s formula for Leonardo’s octonions, with n € 7Z, is
given by:

OL,, = ary + pry +~ry,
where Ty, 79 and r3 are the roots of the characteristic polynomial r3—2r2+1=0,

(=13 - 1) _ (m=1(rs—1) _ (m=1(2—1)
A= (r1—r2)(r1 —r3)’ b= (ro —x1)(rg —13)’ = (rs —ri)(rs —r2)’

7 7 7
S S S
Qo = 5 ries, Bo = E r5€s, Yol = 5 T3es,
s=0 s=0 s=0

a= Ao, B=DBifou, v=Ca.

PRrROOF. Through the Binet’s formula oL, = or} + Bry + vyry and the

recurrence of Leonardo’s octonions OL,, = ZZ:O L, ses, with the initial val-

ues OLg = ZZ:O Lses, OLy = ZZ:O Lgsi1es and OLy = ZZ:O Lgyoeg, it is
possible to obtain the following system of equations:

7
a+18+’7:ZL3637

s=0

7
ary + fro +yrz = ZLS-‘f-leS)
s=0

7
2 2 2
arf + B3 +9r3 =Y Lyyocs.
s=0

Solving this system, we have:

(i Ls+2es) + (=12 —73) ( i LS+1es> + rorg ( i Lses>
s=0 = ~

a = ) )
r{ —Trirg —rirs + 7rors
7 7 7
(Z Ls+2es) + (—7“1 - 7“3) ( Z Ls+1es) +rirs ( Z Lses)
/B — s=0 s=0 s=0
T3 — roT3 — T1T2 + 7173 ’
7 7 7
(Z LS+2eS) +(—=r1 —12) ( Z LS+1es) 4117 ( Z Lses)
v = s=0 s=0 s=0

2
r3 +rire — T3 — rors
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Through Girard’s relations: rizors = —1,71 + 19 + 73 = 2 and r17o + 7273 +
rirg = 0, it is easy to see that:

7
(rorg — 712 — 73+ 1) (r2 -1 Z } :
= E 1 s = s — =A Sy
(Tl - TQ)(TI - T3) e (Tl - ’1"2 Tl - T3 Tle : Tle

s=0

(rirs —ry —rz+1) (ri —=1)(rg —1)
- = roes = B T5€g,
7 (ro —r1)(ra —rs) SZZS (r2 —r1)(r2 —r3) ZZS ZZQS

— - 1) —1(ry—1
,y:(Tsz rL—Tre+ 27’35— (r1 7’2 )nges szrges

(rs —ri)(rs —r2) = (rg —r1)(rs —r2)

. 7 7 7 ..
Defining ao = Y ,_77€s, Bot = Do T5€s and yo = Y. T3€s, it is easy to
see that:

a= Ao, B=DBiBo, 7=Cll O
The matrix form of Leonardo’s octonions is based on the work of Vieira,
Mangueira, Alves and Catarino (JI0]), in which we found a development on

the matrix form of the one-dimensional Leonardo sequence.

PROPOSITION 4.4. For n > 2 and n € N, the matrixz form of Leonardo’s
octonions is given by:

9 1 01" [ OF OF %
3 1 1|0 0 1| |95 OF, OF
-1 0 0 _OF, OLLJZ_2 OF_,

OF, OF 9=

:[Ln—I—Q Ln+1 Ln] OLI;LF_:Q OF_1 OFO

—OF, 2= oF,

Ln

= [OLn+2 OLn+1 OLn]

where OLF,, = OL,, + OF,,.
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PRrROOF. By the principle of finite induction, we have for n = 2:

2l OoF, OF, 9Lf-=

2 10 Ly
3 1 10 o0 1| |Z= oFr, OFRK
-1 0 0 —OF, OLLIZ—z OF_,

OF, OF, %=
=[9 5 3] |%= 0oF, OF

5
~OF, %= oF,

:[90F2—30F0+OLF_2 90Fy+50F_1+0OLF_, OLF_2+5OF0+3OF_1]

— [OLs OL; OLs).

So, assume it is true for any n = k, with k € N:

K[ OF, OF, 9LtF-=2

21 0] 5 Lito
3 1 1]{0 01 o> OF.1 OFy | =[0Lk OLgp1 OLy]
—1 O 0 _OFO O[L]:—Q O};"_1

Finally, the validity for n = k + 1 is verified:

OLF_
2 1 0 k+1 OF2 OFO 7Lk+32
3110 01 G2 OF,  OF
-1 00 ~OF, 9= oF,
2 1 0[O0 OR G
=[Liz Ly L) |0 0 1| |2 OF,  OF,
100 -or 9= or,
OLF_
= [Lits Liy2 Lps1] ... OFa O
—0F, 92 oF_,

L1
= [Lk+3OF_2 —Lk+1OF0—|—OLF_2 Lk+3OF0+Lk+20F_1 +OLF_5
Lk+20F0+Lk+1OF_1 +OLF_2]

= [OLkys OLpyz OLjgq].

O
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5. The generalization of Leonardo’s octonions

Next, the behavior of terms with non-positive integer indices of Leonardo’s
octonions will be analyzed.

DEFINITION 5.1. For all n > 0 and n € N, Leonardo’s octonions, for
non-positive integer indez, are defined by the equation:

7
OL_p =Y L_py.es
s=0

From the previous definition, it is easy to see that for alln > 0 and n € N,
the recurrence formula of Leonardo’s octonions for non-positive integer index,
is given by:

OL,n = 20L7n+2 - OL,n+3,
where OL_1 = ZZ:O L_1+ses, OL_2 = ZZ:O L_2+Ses, OL_g = ZZ:O L_3+Ses.

PROPOSITION 5.2. The generating function of Leonardo’s octonions for
non-positive integer index, is expressed by:

OLy+ OL_q1xz + (—20L0 + OL,2)$2
9(OLn,z) = 3 — 222 +1 ’

with the respective initial values:
7 7 7
OL_y=) L_gises, OL.y=)Y L.opie; and OLy=» Lge.
s=0 s=0 s=0

PRrROOF. Let us consider the function

(o]
g(OL_p o) =) OL_p2" =OLy+OL 1z + OL _52° + ...+ OL_nz" +....

n=0
Multiplying the function by 222 and z3, we have:
22%g(OL_,,x) = 20Loz* + 20L_12® + 20L_oz* + ... + 20L_,,_oz™ + ...,

23g(OL_p,x) = OLoz® + OL_12* + OL_o2® + ...+ OL_,, _sa" +....
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Subtracting the previous equalities and after some calculations, we obtain:

(23 — 222 + 1)g(OL_p,2) = OLg + OL_1z + (—=20Lo + OL_5)z?,

OLo+ OL_1x+ (—20Ly + OL_5)x?
9(OL-n,2) = 2 — 227 4 1 '

Note that OL_o = Z::o L_oyse5, OL_1 = ZZ:O L_o,se5 and OLg =
ST, Les. O

PROPOSITION 5.3. Forn > 0 andn € N, the generator matriz of Leonardo’s
octonions, with non-positive integer index, is given by:

1 n OF, OF, OLF_

0 0 L_pny2
3 1 1|10 2| |2 OF, OF
01 0 —OF, OfF;2 OF_,

OF, OF ¢

=[Lonss Lown L) |52 OF4  OF,

~OF, %= oF ,

= [OL7n+2 OL*TL+1 OL,n] 5
where OLF_,, = OL_,, + OF_,,.

PROOF. Similar to the demonstration performed in Proposition [£.4] this
property can be validated. O

6. Leonardo’s Gaussians and octonions properties

Next, some properties inherent to Leonardo’s Gaussians and octonions are
studied.

PROPOSITION 6.1. The sum of the first n numbers of Leonardo’s Gaussians
s given by:

n n—3
> GLp =2GLy 5 +2GLy 1 — (2+4i)+ Y _ GL..
m=3

s=2
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Proo¥r. Using the recurrence relation of Leonardo’s Gaussians with n € N,
we have:

(6.1) GL, =2GL,_1 —GL,_3.
Thus, evaluating the relation given in (6.1]) in values of n > 3, we get:

GL3 = 2GLy — GLo,
GLy = 2GL3 — GL1,
GLs = 2GLy — GLo,
GLg = 2GLs — GLs3,
GL7 = 2GLg — GL4,

GLy—o=2GLy_5— GLy_s,
GLy_1 =2GLy_5— GL,_4,
GL, =2GLy_1 — GLn_s.

Through successive cancellations, we obtain:

> GLy =GLy — GLy+ GLs — GLy + GLy

m=3
+---4+GLy_3+2GL,,_9+2GL,,_1
n—3

=2GLy—2+2GLn_1 — (GLo + GL1) + Y _ GL,. 0
s=2

PROPOSITION 6.2. The sum of the numbers with even indexes of Leonardo’s
Gaussians is given by:

n n—2
Z GLoy = 2GLoy—1 — GLy + Z GLysy1.
m=3 s=1

PrOOF. Using the recurrence relation of Leonardo’s Gaussians with n € N,
we have:

GL, =2GL,_1 —GL,_3.
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Thus, evaluating the recurrence relation in values of n > 3, we get:
GLy=2GLs — GLq,
GLg =2GLs — GLsg,
GLs =2GL7; — GLs,

GLyy—2 =2GLoy—3 — GLoy 5,
GLap =2GLop 1 — GLop 3.

Through successive cancellations, we obtain:

> GLyy = GL3 — GLy + GLs + -+ + GLyy 3 + 2GLap 1
m=2
n—2
=2GLon—1 — GL1+ Y _ GLaei1. O

s=1

PROPOSITION 6.3. The sum of the odd index numbers of Leonardo’s Gaus-
stans is given by:

n n—3
Z GLoy—1 = 2G Loy — GLo + Z G Los.
m=2 s=0

PrOOF. Using the recurrence relation of Leonardo’s Gaussians with n € N,
we have:

GL,=2GL,_1—GL,_3.
Thus, evaluating the recurrence relation in values of n > 3, we get:
GL3 =2GLs — GLy,
GLs =2GLy — GLs,
GL7; =2GLg — GLy4,

GLyp 3 =2GLap 4 — GLop s,
GLap—1 =2GLoy_9 — GLop—4.
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Through successive cancellations, we obtain:

Y GLom-1=GLy = GLo+GLy+ -+ GLoy_y +2GLay 2
m=2
n—3
=2GLyn_2— GLo+ Y  GLa,. O

s=0

PROPOSITION 6.4. The sum of the first n numbers of Leonardo’s octonions
is given by:

n 7 n—3
> OLy =20Ln_3+20Ly_1 — Y (Ls+ Lop1)es + 3 OL,.

m=3 s=0 s=2

PRrROOF. Using the recurrence relation of Leonardo’s octonions with n € N,
we have:

(6.2) OL, =20L,_1 —OL,_3.
Thus, evaluating the relation given in in values of n > 3, we get:
OL3 =20Ls — OLy,
OLy=20Ls —OLq,
OLs =20L4 — OLo,
OLg =20Ls — OLs3,
OL7; =20Lg — OLy,

OLn72 = 2OLn73 - OLn757
OLn—l = 20Ln—2 - OLn—4a
OL, =20L,,—1 — OL,_3.

Through successive cancellations, we obtain:

Z OL,, = OLy — OLo+ OL3 — OL, + OLy + -+ 20L,_5 +20L,_1
m=3
n—3
=20Lyn_3+20L,_1 — (OLy+ OLy) + Y OL,.
s=2
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Considering the initial values through Definition [£1] it is concluded that:

7 n—3
20Ly—5+20Ly—1— Y (Lsso+ Los1)es + »_ OL,. O
s=0 s=2

PROPOSITION 6.5. The sum of the numbers with even indexes of Leonardo’s
octonions is given by:

n 7 n—2
Z OLgy, =20L2y, 1 — Z Lgiies+ Z OLgsy1.
m=2 s=0 s=1

PRrROOF. Using the recurrence relation of Leonardo’s octonsion with n € N|
we have:

OL, =20L,,—1 — OL,_s.
Thus, evaluating the recurrence relation in values of n > 3, we get:

OL4 = 20L; — OL4,
OLg = 20Ls — OLs,
OLg = 20L; — OLs,

OLsy, 2 =20L2y, 3 — OLa, s,
OL3y, =20L2, 1 — OLoy,_3.

Through successive cancellations, we obtain:

Y OLyy =OLy = OLy + OLs + -+ + OLay—3 +20Lzqy
m=2
2n—3
=20Lg,_1 — OL; + Z OL,.

s=3
Considering the initial values through Definition [.1] it follows that:

n—2

7
20Lop—1 — Z Loiies+ Z OLgg41. 0

s=0 s=1



The generalization of Gaussians and Leonardo’s octonions 135

PROPOSITION 6.6. The sum of the numbers with odd indices of Leonardo’s
octonions is given by:

n 7 n—3
Z OL2p—1 =20Loy,_o — Z Lgyoes + Z OLaso.
m=2 s=0 s=0

PRrROOF. Using the recurrence relation of Leonardo’s octonions with n € N,
we have:

OL,=20L,_1 —OL,_s.
Thus, evaluating the recurrence relation, in values of n > 3, we get:

OL3 = 20Ls — OLy,
OLs = 20L, — OLs,
OL7; = 20Lg — OL4,

OLgy,—3 =20Lg,—4 — OLgy g,
OLs,_1 = 2.

Through successive cancellations, we obtain:

Z OLgpy—1 =0Ly —OLog+OLs+---+OLop_4+20Lo, >

m=2
n—3

=20L2,_2 — OLg + Z OLog1.
s=0

Considering the initial values through Definition it follows that:

2n—4

7
20L2n,2 - Z Ls+Oes + Z OLS O

s=0 s=2
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7. Conclusion

This work presents a discussion about the evolutionary process of
Leonardo’s sequence. When complexifying this sequence, it is possible to
present the dimensional growth of the sequence from the insertion of the imag-
inary unit ¢, thus presenting Leonardo’s Gaussians. And yet, it was possible
to approach the terms of Leonardo’s sequence in eight dimensions, obtaining
Leonardo’s octonions.

Moreover, the generating functions, Binet’s formula, matrix forms, gener-
alizations and properties linked to these numbers were also presented. Finally,
this article makes it possible to contribute to the mathematical field and pro-
vides mathematical researchers with knowledge about Leonardo’s sequence
and its evolutionary process.
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